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Abstract

Automata Based Monitoring and Mining of Execution Traces
Giles Reger

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy, 2014

This thesis contributes work to the fields of runtime monitoring and specification
mining. It develops a formalism for specifying patterns of behaviour in execution
traces and defines techniques for checking these patterns in, and extracting pat-
terns from, traces. These techniques represent an extension in the expressiveness
of properties that can be efficiently and effectively monitored and mined.

The behaviour of a computer system is considered in terms of the actions it
performs, captured in execution traces. Patterns of behaviour, formally defined
in trace specifications, denote the traces that the system should (or should not)
exhibit. The main task this work considers is that of checking that the system
conforms to the specification i.e. is correct. Additionally, trace specifications can
be used to document behaviour to aid maintenance and development. However,
formal specifications are often missing or incomplete, hence the mining activity.

Previous work in the field of runtime monitoring (checking execution traces)
has tended to either focus on efficiency or expressiveness, with different ap-
proaches making different trade-offs. This work considers both, achieving the
expressiveness of the most expressive existing tools whilst remaining competitive
with the most efficient. These elements of expressiveness and efficiency depend
on the specification formalism used. Therefore, we introduce quantified event au-
tomata for describing patterns of behaviour in execution traces and then develop
a range of efficient monitoring algorithms.

To monitor execution traces we need a formal description of expected be-
haviour. However, these are often difficult to write - especially as there is often
a lack of understanding of actual behaviour. The field of specification mining
aims to explain the behaviour present in execution traces by extracting specifi-
cations that conform to those traces. Previous work in this area has primarily
been limited to simple specifications that do not consider data. By leveraging the
quantified event automata formalism, and its efficient trace checking procedures,
we introduce a generate-and-check style mining framework capable of accurately
extracting complex specifications.

This thesis, therefore, makes separate significant contributions to the fields
of runtime monitoring and specification mining. This work generalises and ex-
tends existing techniques in runtime monitoring, enabling future research to bet-
ter understand the interaction between expressiveness and efficiency. This work
combines and extends previous approaches to specification mining, increasing the
expressiveness of specifications that can be mined.
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Chapter 1

Introduction

This thesis is about patterns of behaviour in computer systems; specifying, checking and ex-

tracting them. We present a new automata-based formalism for describing these patterns that

is designed to be well-suited for the activities of monitoring and mining execution traces.

These patterns of behaviour capture one notion of system correctness, i.e. what the com-

puter system does or is supposed to do, and can therefore be used to check correctness and

document the system. These issues are important. There are numerous examples of cases where

identifiable faults in computer systems have led to disastrous outcomes, even loss of life. We

can attempt to identify and remove these faults by comparing formally specified, required or

prohibited, patterns of behaviour against the actual behaviour of the system. Additionally in

safety-critical systems it is common to monitor behaviour to ensure that unsafe actions are

not taken. Formal descriptions of system behaviour can also aid other tasks, such as mainte-

nance and development, by providing an understanding of what the system does. By describing

patterns of behaviour we can capture complex relationships between elements of a system.

The notion of computer system behaviour can be described in various ways. One approach is

to specify input-output functionality using logical expressions. Another is to build an abstract

model relating program states. Here we consider a different notion of behaviour; the ordering of

events that occur in a system. Instead of giving predicates on the contents of program variables,

this approach abstracts a system as a set of event sequences, or execution traces, and specifies

behaviour in terms of predicates on these. To define this abstraction it is necessary to relate

these events to actions performed by the system.

A trace specification describes a pattern of behaviour and denotes a set of execution traces

that contain this behaviour. There are several different methods that can be used to describe

trace specifications. A natural choice is to use concepts from formal language theory where

patterns of symbols are described using different forms of automata (or equivalently captured

by formal grammars). Alternatively, we can consider temporal logics where temporal rules

describe orderings between events. Both of these fields allow us to include symbols carrying

data; in language theory, automata for data words have been suggested, and in logic we have

the standard use of variables and quantification.

To inspect the traces of a system we can either extract these directly from the code (as
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done in symbolic execution), build a model of the system and explore this (as done in model

checking) or run the system and record traces (as done in trace analysis). We take the approach

of trace analysis. Whilst this approach can only sample a selection of possible executions it

has the advantage of capturing the actual behaviour of the system, removing issues such as

state explosion. Additionally, runtime traces record the actual data values used instead of

taking an over-approximation. In trace analysis the abstraction activity is achieved through

instrumentation; a mapping, from system activities to events, is used to instrument the system

to output these events whenever the associated activity occurs.

Two interesting trace analysis activities are monitoring and mining. Both consider the

satisfaction of a specification with respect to a set of traces but differ in their aim; monitoring

performs deduction, checking whether a trace specification is satisfied, whereas mining performs

induction, constructing a specification that is satisfied.

Trace monitoring is a verification activity that asks whether a trace is in the set of traces

denoted by the given specification. However, as we are dealing with runs of real systems it

would be preferable to check this whilst the system is running to detect errors as early as

possible. This is the aim of runtime verification or runtime monitoring. The term monitoring

refers to the fact that not only do we check correctness but we can also take actions to recover

from failure. The activity of runtime verification is distinct from testing as it inspects patterns

of behaviour of the running system using a formal notion of correctness. As this is a runtime

activity we are concerned with efficiency, in terms of overhead and interference. Monitoring

techniques also need to be incremental i.e. be able to make decisions as execution progresses.

Runtime monitoring can therefore complement other methods for checking the correctness

of computer systems. As this process only considers the current trace, it is far more tractable

than techniques such as model-checking, but it also gives stronger guarantees than testing as it

is based on a formal notion of correctness.

The motivation behind mining traces is that computer systems are usually extensively,

and sometimes systematically, tested to establish correctness, yet often lack a formal notion

of this correctness. The general idea is to use traces extracted from a system to construct a

specification, based on the assumption that the system is (mostly) correct. There exist several

methods for mining or learning a model or specification from a set of traces. Some approaches

allow interaction with an oracle that has knowledge of the true model, but this is outside the

scope of passive trace analysis. Another approach from language theory uses the notion of

congruence classes of strings to reduce a model accepting all traces to some minimal form. We

take a different approach that uses a generate-and-check strategy where candidate specifications

are constructed and filtered using the given traces. A key to this approach is that the checking

process takes the form of runtime verification.

Specifications extracted from execution traces have been used for program comprehension,

test generation, program verification and to support intrusion and malware detection.

This research considers a new formalism for specifying trace specifications suitable for the

activities of monitoring and mining. Whilst there exist expressive trace specification languages

(such as first-order linear temporal logic) these formalisms do not interact well with the require-

ments of monitoring or mining. Namely the need for an efficient, incremental, trace checking
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algorithm. The new formalism is expressive, combining the automata from language theory with

the concept of quantification from logic, and admits a range of efficient monitoring algorithms.

In the rest of this chapter we present the contributions of this thesis. We begin with a brief

synopsis of the work (Sec. 1.1) before discussing the contributions in context (Sec. 1.2) and

finish with an overview of the thesis structure (Sec. 1.3).

1.1 The three Es

In discussion with Klaus Havelund [Hav13a], we have proposed three non-orthogonal dimensions

for discussing formalisms for trace specifications. We consider the Expressiveness of the for-

malism, the Efficiency of the trace-checking method, and the Elegance of specifications written

in that formalism.

We say that these dimensions are non-orthogonal as there are dependencies; more expressive

systems will typically take more work to carry out trace checking and be more difficult to write

concise specifications in. This space is not well understood. Previously the development of

runtime monitoring systems has tended to either focus primarily on expressiveness or efficiency.

As a consequence, the most expressive systems tend not be very efficient, and the most efficient

systems have certain restrictions to their expressiveness. Mining techniques generally focus on

simple specification formalisms and the generate-and-check approach used here depends on an

efficient checking method. Elegance is an often overlooked, but important, property.

The main motivation of this work is therefore that, for both monitoring and mining, there

are points in this space that are useful yet unexplored. This research presents quantified event

automata as a new point in this space, placing itself between the most expressive and most

efficient techniques. Here we discuss our work along these three dimensions.

1.1.1 Expressiveness

There are two aspects to the expressiveness dimension. On one hand we can ask the standard

language theory questions about where in the Chomsky hierarchy we belong. We are also

interested in the treatment of data in events, and can view this treatment as a measure of

expressiveness.

It is natural to consider data values occurring in events. For example, an event might

capture the fact that a file “out.txt” is opened and can therefore be written open(“out”). In

the field of logic we would usually describe languages that capture specification over such events

as first-order, however in trace analysis the common term is parametric as events are viewed as

taking data parameters. We can, of course, consider parametric events as propositional symbols

and only consider the Chomsky hierarchy view (extended to infinite alphabets) but this is less

informative than separating the two.

We distinguish between two different ways that data can occur:

• In a quantified manner. For example, the property that every file that is opened is

eventually closed. If we had events open(f) and close(f) then f would be quantified

and we only consider the ordering of open and close for the same values for f .
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• In a free manner. For example, the property that a countdown latch (used in concurrency)

must only decrease and waiting threads can only proceed when this count reaches zero

treats the count value in a free manner. The value assigned to c in change count(c)

would be free to change and we would use the guard c = 0 to decide whether proceed

could occur.

The difference being that in the first case we fix the data values and then consider behaviour,

whilst in the second there is an interaction between data and behaviour. Quantified event au-

tomata combine logical quantifications with a form of extended finite state machine. Therefore,

both universally and existentially quantified data is captured in the logical component whilst

free data is captured using guards and assignments labeling an automaton’s transitions.

We note that we only consider quantified data in our mining work, although our generate-

and-check framework can be extended to include free data and we outline this extension in a

discussion of future work at the end of the thesis. The treatment of data in specification mining

has only begun to draw attention recently and whilst there are a few promising techniques

[BJR06, HSJC12, AHK+12, BHLM13, WTD13] considering free data, only a few [LCH+09,

LRRV12, LCR11] consider quantified data and none combine the two fully.

In the field of runtime monitoring a common trace specification formalism is linear temporal

logic [Pnu77], which is usually defined over infinite traces. However, it is standard to define

a finite-trace version [BLS10] as, in trace analysis, we are only concerned with finite traces

(computer systems can only run for a finite time). We only consider the word problem of

quantified event automata for finite traces. In general, this work is only concerned with finite

things as these are the only things we can observe at runtime. As we do not concern ourselves

with infinite traces we cannot address the notions of true liveness or fairness. This is because

of our initial decision that we only consider the runtime actions of a system.

Therefore, quantified event automata capture both quantified and free forms of data but

as they are based on automata the underlying language is regular. We make this distinction,

even though the expressive power of quantified event automata is Turing complete due to the

extended finite state machine component, as it has repercussions for elegance discussed below.

1.1.2 Efficiency

For a specification formalism to be useful for both monitoring and mining (specifically our

generate-and-check approach to mining) we need an efficient trace checking method.

One of the main issues of efficiency comes from the appropriate handling of data; we do not

need to consider ambiguous parsing or ‘past time’ formulas as in other languages. At a high

level, whilst checking a trace we will construct and update a structure that encodes the current

status of the trace with respect to the specification. Different parts of this structure will relate

to different data values and when we process a parametric event we need to decide which part

of the structure we need to update based on the data values. To be efficient we need to do this

without searching the whole structure.

The two most efficient runtime verification systems (JavaMOP and TraceMatches, dis-

cussed later) both make use of a technique called trace slicing, which allows them to develop



24 CHAPTER 1. INTRODUCTION

efficient indexing strategies. The general idea is to slice the trace with respect to values given

to (in their case implicitly) quantified variables and then consider each slice as data-free.

Previous approaches employing trace slicing make certain design decisions that limit ex-

pressiveness. Quantified event automata takes a trace slicing approach, formalising the notion

of quantification, and maintaining a higher level of expressiveness by including free variables

among other things.

However, the notion of trace slicing is not inherently incremental (which is necessary for

monitoring) as it requires us to know the domains of quantified variables up-front, which are

typically extracted from the trace. We therefore have to develop an incremental semantics that

can keep track of partial information about data values in the trace.

In the generate-and-check mining approach we do not require incremental checking but it

is common to check many specification patterns at the same time. To do this efficiently we

introduce a mechanism for combining these patterns together to check them all at once.

1.1.3 Elegance

The dimension of elegance is not as measurable as that of expressiveness or efficiency and

treating the notion rigorously is beyond the scope of this work. Later (Sec. 2.2.4) we discuss

how elegance might be measured but in our evaluation we will only briefly consider succinctness

as one aspect of elegance. Here we informally argue for the elegance of our approach. By elegant

we mean easy to understand and concise, properties that are often at odds.

We firstly note that the two components of quantified event automata are natural. Automata

are a commonly used for capturing properties and are typically more concise than regular

expressions for a useful class of properties. The notion of quantification in logic is standard.

There are two different styles of writing trace specifications: in the validation style we

describe the minimal behaviour required for success and therefore want to ignore extra symbols,

whereas in violation style we describe exactly the allowed behaviours and therefore want extra

symbols to cause failure. Quantified event automata can capture both styles effectively using

two different kinds of state.

Approaches that deal with quantified data typically implicitly quantify variables. However

some approaches [Sto10, GDPT13] encode this information into their automata formalism. By

separating quantification from the automata representation of the property and explicitly quan-

tifying variables we clearly separate the concerns of quantified and free behaviour. Additionally,

we include both universal and existential quantification.

However, we accept that elegance is not only subjective, it is also dependent on the domain

of application. For example, there is a notion of connectedness that is used in other systems

[MJG+11] to restrict the data values of interest. We encode connectedness in quantified event

automata using the notion of global guards. This is necessary as specifications that rely on this

notion but are written without it can be complex and difficult to understand.

Finally, although most languages are translated into a form of automata for checking, other

formalisms may offer more elegant methods for specifying some kinds of property. For example,

although it is possible to encode context-free properties using quantified event automata these

can be inelegant compared to other approaches that make use of context-free grammars. To
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Figure 1.1: The three components of this work and how they relate.

address this, we discuss possible extensions to context-free grammars in further work at the end

of this thesis. We should also consider abstraction. Linear temporal logic (LTL) is a common

specification formalism used in runtime monitoring and can concisely capture complex patterns

of behaviour. As quantified event automata operate at the lowest level of abstraction, i.e. event

transitions, some of these properties will require complex transition structures. However we

can translate directly between LTL and quantified event automata (without free variables).

1.1.4 Summary

In summary, the aim of this work is to develop an expressive specification formalism that

can describe trace specifications for use in runtime monitoring and specification mining. This

requires us to explore a new point along the expressiveness-efficiency dimension. To be clear,

we are aiming to develop a system that may not be more, or as, efficient as the most efficient

techniques, but achieves greater expressiveness whilst remaining competitive.

Figure 1.1 illustrates how the different elements of this work are related. The runtime

monitoring algorithm relies on the slicing-based semantics of quantified event automata to be

efficient. The specification mining technique targets quantified event automata and makes use

of the efficient runtime monitoring algorithm to check possible specifications.

1.2 Contributions

Here we consider the contributions made by this work and the potential impact they may have.

Quantified event automata (QEA)

We have developed quantified event automata as a new formalism for trace specifications that

is suitable for both monitoring and mining.

Our first contribution in this space is a full account of the trace slicing approach that

formalises the notions of quantification and acceptance. Previous accounts [AAC+05, MJG+11]

do not consider how these two concepts interact. Our second contribution is an extension of

trace slicing to allow free variables and existential quantification. Most runtime monitoring

tools do not allow us to capture data in this way, with the notable exception of rule-based
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approaches [BRH08]. No mining approaches consider existential quantification. We also present

a wide range of example quantified event automata taken from different domains.

Runtime monitoring

We develop and optimise an efficient monitoring algorithm for QEA. Firstly, this requires us to

define a small-step (incremental) semantics for QEA. This development highlights the need for

the maximality concept used elsewhere [MJG+11] and provides a new description that empha-

sizes the role of binding ordering more clearly than previous work. Additionally, we prove that

this small-step semantics is equivalent to the non-incremental semantics.

We make use of four different verdicts to indicate the correctness of a trace with respect to

a quantified event automaton, differentiating between verdicts that may change in the future

and those that cannot. To do this we define a notion of strong states, from which either success

or failure is unreachable. Distinguishing between these different verdicts is not novel [BRH08],

but our method for automatically extracting this information from the specification is.

We present four alternative indexing techniques for quantified event automata. Two of these

are natural exploitations of structural properties and the third is a straightforward adaptation

of the approach taken by JavaMOP [MJG+11]. Our fourth is novel, adapting the symbol-based

approach proposed by Dwyer et al. [PDE12] to allow for the notion of maximality.

Finally, we introduce the notion of algorithm selection based on structural properties of

the specification. This general idea can be applied in any tool where complex mechanisms are

required for dealing with certain parts of the language that are not always used in specifications.

We found that this technique was essential for monitoring simple properties efficiently.

Specification mining

We introduce a new method for mining quantified parametric specifications i.e. QEA. We are

the first to adapt the generate-and-check specification mining approach to this setting, which

we achieve through the use of trace slicing.

We make general contributions to the generate-and-check approach which could also be ap-

plied in a propositional setting. Specification mining of this form usually has to check many

patterns against a trace. To optimise this process we have introduced pattern-checkers which

compile these patterns into a single structure, allowing us to process the trace once only. A

common method used to refine the results of specification mining is to combine extracted pat-

terns to form larger patterns. Previous work showed that using standard automata for mining

means that extracted concrete patterns are imprecise leading to generalised combinations. To

combat this we introduce open automata to soundly and precisely combine extracted patterns.

There has been previous work dealing with noise, or imperfections, in execution traces

caused by bugs in the original system. However, these techniques either assume restrictive

properties about the patterns used for mining or cannot be applied to the generate-and-check

approach. We introduce a new technique for dealing with these so-called imperfect traces that

measures the edit-distance between the trace and pattern. This technique is presented for the

propositional case but could easily be lifted to the parametric one. This method can also suggest
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potential corrections as the edits relate to changes to the code. Therefore there are possible

applications in the fields of bug finding and fixing.

Evaluation

This work has involved the development of two tools: one for runtime monitoring, the other

for specification mining. To establish the utility of our techniques, and answer specific research

questions about these tools, we developed extensive evaluation frameworks. To help this effort

we have developed two sets of example specifications: one set describes the correct usage of

parts of the Java standard library, and the other describes a hypothetical planetary rover case

study inspired by discussions with Klaus Havelund from NASA’s Jet Propulsion Laboratory.

1.2.1 Publications

The following describes publications derived from, or based on, work in this thesis.

A Tutorial on Runtime Verification [FHR13]. This invited book chapter accompanied

a summer school course given at Marktoberdorf 2012 by Klaus Havelund. The chapter gives a

thorough introduction to runtime verification and an overview of key tools in the area. Concepts

from this chapter are used in Chapter 2 and examples are used throughout the thesis.

Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors

[BFH+12]. Presented at the 18th international symposium on formal methods (FM 2012),

this paper introduces the quantified event automata specification formalism within the context

of runtime verification. Chapters 3 and 5 build on the ideas in this paper.

A Pattern-Based Approach to Parametric Specification Mining [RBR13b]. Pre-

sented at the 28th international conference on automated software engineering (ASE 2013),

this paper presents a new technique for extracting parametric specifications from program

traces. This paper forms substantial parts of chapters 8 and 10.

Automata-based Pattern Mining from Imperfect Traces [RBR13a]. Presented at the

second international workshop on software mining, this paper explores a novel idea for dealing

with noise when mining specifications from so-called imperfect traces using automata-based

pattern mining techniques. The paper is a condensed version of Chapter 11.

1.3 Structure

The work is split into Part I, developing quantified event automata as a specification formalism,

Part II, developing a runtime monitoring approach for quantified event automata, and Part III,

which looks at how we can mine quantified event automata from traces.
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Part I

Chapter 2 discusses the notion of program specification. We explore what a specification

is and how it is used in runtime monitoring and specification mining. This chapter therefore

introduces the relevant background material for the rest of the thesis.

Chapter 3 introduces quantified event automata as a formalism for parametric trace spec-

ifications. We build up the formalism by motivating the different components separately and

present a big-step style semantics.

Chapter 4 explores quantified event automata as a specification formalism, addressing the

complexity of its trace checking process and discussing its expressiveness.

Part II

Chapter 5 develops a small-step semantics for quantified event automata, allowing a runtime

trace to be processed an event at a time. This allows for online monitoring and we present a

basic monitoring algorithm for this based on the small-step semantics.

Chapter 6 optimises the runtime monitoring process. We first extend the notion of accep-

tance to be more informative and then explore extensions to the monitoring algorithm that

should improve performance.

Chapter 7 evaluates the quantified event automata monitoring approach. This uses a hypo-

thetical case study to address a number of research questions and then the DaCapo benchmark

suite to evaluate the applicability of the approach to real-world systems.

Part II

Chapter 8 introduces our pattern-mining technique for a form of quantified event automata

that does not include free variables. The different stages of the mining process are explained

and brought together in a worked example.

Chapter 9 explores what makes a good pattern library. Our specification mining approach

makes use of a predefined pattern library that will determine what specifications can be re-

turned. The library developed here is used for evaluation.

Chapter 10 evaluates the pattern-based specification mining approach. We measure the

accuracy of the technique borrowing the notions of precision and recall from the field of infor-

mation retrieval. We make use of traces generated from predefined ground truths and traces

extracted from the DaCapo benchmark suite.

Chapter 11 tackles the problem of imperfect traces in the propositional setting.

Finally we conclude in Chapter 12 and discuss possible future work.
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Chapter 2

On specifications and their uses

in monitoring and mining

This research is about writing and using formal specifications of patterns of behaviour in com-

puter systems so we begin with a discussion of specifications. In the next chapter we will be

building a new specification formalism, which will be used for runtime monitoring and specifi-

cation inference. Therefore, we review specifications within the context of these two activities.

This chapter therefore gives the background material for the rest of this work. The aim is to

motivate the quantified event automata specification formalism whilst presenting existing work

in the areas of runtime monitoring and specification inference.

Structure. We begin by introducing general terms and notation necessary for the rest of the

thesis (Sec. 2.1). Next we present a high-level discussion of what it means to specify system

behaviour (Sec. 2.2). Here we identify the kinds of specifications we are interested in in this

work. We then introduce runtime monitoring (Sec. 2.3) and how the requirements of runtime

monitoring effect the choice of specification language. We consider existing monitoring tools

with respect to our developed technique in Section.4.5. As well as manually writing system

specifications we can automatically extract them from ‘correct’ systems. We cover the basic

ideas behind the disparate field of specification inference (Sec. 2.4), focusing again on the

kinds of specification formalisms used. The specific approach used in this work is discussed in

Chapter 8 and this chapter also discusses alternative existing approaches and contrasts them

to the selected approach.

2.1 Preliminaries

We begin by introducing notation and terminology used throughout this thesis. At this point

we introduce general concepts related to automata as they are a key component of this work.

30
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2.1.1 Notation

In this thesis we use the following standard notation.

We use the concepts of sets, lists functions and maps (partial functions with finite domain)

throughout . The set of sets of objects of kind T will be written 2T or P(T ), the set of lists of

objects of kind T will be written T ∗ and the set of functions (maps) from objects of kind T to

objects of kind S will be written T → S (T ⇁ S).

We use curly brackets ({}) to denote a set, angled brackets (⟨⟩) to denote a list (or tuple), and

square brackets ([]) to denote a map. A map will typically be written as [x1 ↦ v1, x2 ↦ v2, . . .].
We will use standard set operators, list concatenation will be denoted using ‘.’ and the empty

list will be denoted by ε. We will use comprehensions to define sets, lists and maps. For

example, [x ↦ v ∣ condition on x and/or v] and [(x ↦ v) ∈ θ ∣ condition on x and/or v] where

θ is a map. Formal notions of map override (†) and least upper bound (⊔) are introduced later

(Sections 3.1.2 and 5.2).

When we introduce a tuple Γ = ⟨A,B,C⟩ we will sometimes use standard dot notation to

access an element of that tuple, i.e. Γ.A, which denotes the value of A in the tuple Γ.

2.1.2 Automata

Automata, or state machines, are popular for writing temporal specifications as they give an

immediate incremental checking procedure using their transition function. Here we present the

standard notion of automata.

Definition 1 (Finite State Automata). A finite state automaton (FSA) is a tuple ⟨Q,Σ, q0, δ, F ⟩
where Q is a finite set of states, Σ is a finite alphabet of symbols, q0 ∈ Q is an initial state,

δ ∈ Q ×Σ ×Q is a set of transitions, and F ⊆ Q is a set of final states.

FSA denote regular languages and are closed under union, intersection and complement. A

FSA is deterministic if for every state q ∈ Q and symbol a ∈ Σ there is at most one transition

(q, a, q′) ∈ δ. We sometimes refer to a deterministic FSA as a DFA.

We lift the transition function of an automata to words (finite sequences of symbols), as is

standard. This is defined inductively for a set of states S:

δ(S, ε) = S

δ(S, τ.a) = ⋃s∈S δ({s′ ∣ (s, a, s′) ∈ δ}, τ)

Therefore the states reachable by word τ are given by δ({q0}, τ). We say a state s′ is reachable

from a state s if there exists a word τ such that s′ ∈ δ({s}, τ). A FSA accepts a word if a final

state is reachable from the initial state i.e. δ({q0}, τ) ∩ F ≠ ∅.

A FSA is complete if for every state q ∈ Q and symbol a ∈ Σ there exists at least one

transition (q, a, q′) ∈ δ. If a FSA is complete then given a state and symbol we can always

generate at least one next state. It is often laborious to write complete state machines and we

therefore have a notion of ‘completing’ an FSA and there are two methods for this:

• Skip style: This introduces a self-looping transition for each missing symbol, therefore if

a transition cannot be taken the next symbol is skipped.
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• Next style: This introduces a transition to an implicit non-final state (with no outgoing

transitions) for each missing symbol, therefore we will fail if we cannot take a transition

on the next symbol.

We will refer to an automata-based language that assumes states are skip/next style as having

a skip/next semantics. When giving graphical representations of automata we will use shaded

states to denote final states, and draw states as circles if they have a skip semantics and as

rectangles if they have a next semantics. Note that later we intermix these two kinds of state

in the same machine.

Note. We have introduced notions of completion rather than assuming an automata is complete

as the efficiency of checking will depend on the manner of completion. For example, if a skip

style is used then if there are no transitions then no work is required; however, if the automata

has been completed we would need to process these self-looping transitions. Therefore, we do

not assume complete automata for pragmatic reasons.

2.2 Specifying system behaviour

In this section we discuss the concepts and terms used to describe the behaviour of computer

systems, whether it is actual or intended behaviour. As mentioned previously, our notion of

system behaviour is not the only one and there is a large range of specification techniques that

we do not consider. We have chosen this view as it represents a useful class of specification.

2.2.1 Computer systems as state machines

At the lowest level a computer system consists of a list of operations that carry out some compu-

tation by manipulating memory. We typically work at a higher level of abstraction. Operations

are grouped together as transitions between sets of memory configurations, labelled as states.

Transitions may relate to observable inputs/outputs or internal actions of interest, let us call

these events. Theoretically, computer systems can represent infinite state machines (although

limitations on memory size and the domains of data structures restrict this in practice). In

some cases we are interested in the contents of a state, i.e. the values assigned to variables. In

this case we might treat these values as semantic objects, for example strings or lists, which

allows us to describe their properties. In other cases we only consider the transitions allowable

at each state.

2.2.2 Specifying properties of computer systems

The behaviour of a system is given by the states the system passes through. When considering

this view, there are two types of behaviour we may wish to specify: allowed states and allowed

sequences of states.
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State specifications

A typical state specification might be that x is always positive. This predicate divides the

memory configurations of the program into two states: one where x is positive and one where

it is not. Function pre and post conditions are a form of state specifications, as are class

invariants. These all place a predicate on the contents of memory in a particular context. State

specification denote the set of allowable states. Checking state specifications dynamically is

straightforward; we insert assertions wherever the relevant parts of memory are accessed or

updated. Statically we can ask whether unsafe states are reachable.

Trace specifications

A sequence of states describes the behaviour of a system over time. Rather than the sequence

of states we are often interested in the sequence of events that controlled that behaviour. We

call a sequence of events a trace, hence trace specifications. A trace specification denotes the

set of allowable traces.

Traces can be finite or infinite, and can be over discrete or continuous time. If we consider

computer systems statically it is common to consider the possible infinite traces, whereas dy-

namic analysis can only deal with finite traces. Continuous time is only relevant if the system

consists of multiple concurrent parts and we do not consider this situation further here.

2.2.3 Including data

So far we have noted that states abstract sets of memory configurations and that events la-

bel transitions between these. However, often the data being manipulated by the system is

important and we need to make it apparent in our model.

A standard way of doing this is to allow events to carry data, for example set name(“Giles”).

As it is usual to write the data values as parameters we call specifications over such events

parametric. As data domains are often infinite, the use of such parametric events often leads

to infinite alphabets. To deal with this it is usual to represent sets of parametric events using

variables, for example, set name(n).

We note here that time can be considered as data i.e. we can add a timestamp to an event

to allow us to reason about the time at which the event occurred.

Specifications may deal with data parameters in two orthogonal ways: in a quantified manner

or in a free manner. We discuss these two views in the following (a specification can mix the

two views).

Quantified-view on data

In this view we are concerned with the behaviour of (or related to) specific data values. For

example, the property that a file should only be read when open considers the behaviour related

to each file and can be specified by saying that event open(f) occurs before read(f) for every

file f . We call this the quantified view as when written in English this kind of specification will

talk about ‘for every’ or ‘for some’.
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Typestate [SY86] (discussed later) is a popular specification approach that takes a quantified

view. However, typestates are typically over a single type of value, whereas in general we could

consider multiple values. For example, “every lock can only be taken by one thread”. Here we

implicitly quantify over one lock and two threads. Dealing with properties involving multiple

quantifications is inherently more complicated.

Free-view on data

In this view we are concerned with how data values effect behaviour. For example, the property

that the temperature should be kept above 16 degrees Celsius but below 30 using a heater and

a fan can be specified by saying that when temperature(t) occurs then if t < 16 then heater on

should occur or if t > 30 then fan on should occur. Behaviour is captured by states entered, so

we can also use data values to restrict transitions taken. For example, we can specify that a

counter is strictly increasing by stating that if count(x) follows count(y) then x > y. We call

this the free view as the values assigned to variables are free to change over time.

The most common specification formalism that takes a free-view on data is the extended

finite state machine. Here transitions are labelled with enabling and update functions and

there is a notion of assigning values to variables. There are other state machine extensions that

manipulate data in this way [NSV04].

2.2.4 An elegant specification language

Previously (Sec. 1.1) we mentioned that elegance is a desirable trait in a specification language.

Here we briefly discuss what elegance might mean, and how it could be measured. However,

this work is not primarily concerned with elegance and later we only discuss it briefly. The

notion of an elegant specification language could be considered in many ways, including:

• Succinctness. Intuitively a shorter specification is more elegant. If it takes fewer symbols

to express an equivalent concept then there are fewer components to understand, hence

it should be easier to understand. However, this is a rather crude view and the opposite

may be the case. For example, we could encode all specifications in a concise integer form;

this would be succinct but not elegant. Measuring succinctness is straightforward; we can

count the number of symbols required to express a property.

• Expressive power. If a specification language contains symbols able to express a large

amount then specifications written in that language should be succinct. Especially if the

language provides capacity for abstraction, allowing complex concepts to be condensed

for ease of understanding. We have formal notions of expressive power, allowing us to

measure this. However, these do not necessarily capture notions such as abstraction.

• Readability. Separate from the notion of succinctness and expressive power is readabil-

ity, i.e. how easy is it to discern the intended meaning from the specification. This can be

dependent on both the complexity of the specification language, and the way in which the

specification is presented. For example, one might expect small specifications to be easy

to read in a graphical language (such as automata) but that this would fail to scale to
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larger specifications. There exist certain metrics [O11, BW08] for measuring readability,

often based on user-studies. These will typically take a set of features, such as number of

lines or identifier lengths, and compute a readability score.

• Cognitive complexity. It is possible to take a more structured approach. In the study

of cognitive complexity [Str92, HBPS11, Rau96, MA08, CJH13] a complexity model of

a system or process (in our case specification) is built and analysed. There are notions

of weak and strong requirements, reflecting to what extent the modelled system captures

human cognition. In the field of specification a model might consider the number of sym-

bols, perhaps giving weights based on arity, kind, or placement within the specification.

This approach is based on principles from psychology and requires careful application.

• Usability. A specification language should be accompanied by tools - both theoretic and

pragmatic. From a theoretical viewpoint we should be able to manipulate specifications,

perhaps transforming or combining them. From a pragmatic viewpoint we want to be able

to easily create, edit and visualize specifications. Usability is often an objective quality

and a common method for measuring this dimension is through user studies. For example,

one might ask students to perform the same tasks with different specification languages

and measure how quickly and effectively they perform these tasks.

In summary, there are many aspects to elegance and a good specification language should

consider these at some level.

2.3 An introduction to runtime monitoring

Runtime monitoring, sometimes referred to as runtime verification, is the process of checking a

property against the runtime behaviour of a system. Let us begin with a brief overview of the

stages involved in monitoring a system, captured in Figure 2.1:

Figure 2.1: Runtime monitoring.

1. Monitor creation: A monitor is created

from a formal property.

2. Instrumentation: The system is instru-

mented to generate events; discrete ob-

jects that contain some information about

the system.

3. Execution: The system is executed, gen-

erating events for the monitor.

4. Responses: The monitor produces a ver-

dict for each event giving the current

status of the property. It also sends

feedback to the system that may give
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further information so that more spe-

cific corrective actions can be taken.

Therefore, the inputs to the process are a formal description of a property and a finite trace

of events, and the output is a finite sequence of pairs of verdicts and feedback (corresponding

to each event).

Runtime verification has a number of advantages over static formal program verification:

Firstly, there is more information available at runtime than from static analysis of the code;

Secondly, rather than checking a model or abstraction of the code the actual code is being

verified; Lastly, action can be taken immediately if an execution is seen to violate a specification.

Additionally, as mentioned previously, by considering only the current trace we do not suffer

from the state explosion issues seen in model checking. Runtime monitoring extends the notion

of testing by including a formal notion of behaviour.

In the rest of this section we consider some key concepts in runtime monitoring.

2.3.1 Instrumentation

Events and responses need to be communicated from and to the monitored system. In the

runtime verification process this is handled via instrumentation. It is a matter of discussion

whether this instrumentation forms part of the runtime verification system itself or not. Some

tools intermix scripts defining instrumentation and properties, whereas others keep them firmly

separate. From a theoretical point of view it is reasonable to separate the two, and we will not

explicitly consider instrumentation in our work. However instrumentation is a key part of the

runtime verification process and, at the very least, an interface should be defined between a

runtime verification tool and monitored system.

The instrumentation approach used depends on the system being instrumented. Whilst

instrumentation can require manual effort to insert assertions into code there has been much

progress in automating the task. A key development is that of AOP (Aspect Oriented Pro-

gramming) [EFB01] where specified code representing cross-cutting concerns is weaved into the

program at specified points. The majority of the tools that target Java programs use AspectJ

[Lad03], an AOP language for Java.

2.3.2 Responses

One advantage of verifying a system at runtime is that the system can take corrective action

if a property is violated, using the results of verification to steer itself towards more desirable

behaviours. To achieve this, monitors communicate with the system through verdicts and

feedback. Verdicts give the status of the monitored system with respect to a property and

feedback provides additional information about what actions should be taken, if any.

A runtime verification system will return a verdict from some verdict domain D after pro-

cessing each event, or the whole trace.

In the most simple case this verdict domain would be B, either true or false. However,

many runtime verification systems use verdict domains containing three or more values to give

a more fine-grained result as illustrated in Figure 2.2 and explored in detail by Bauer et al.
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Figure 2.2: Possible verdict domains.

[BLS07, BLS10]. The first step is to introduce a third value to indicate that the system has

not succeeded or failed yet. An alternative is to extend B with two new values, which we call

weak success and weak failure here. These indicate that the monitored system is currently

succeeding/failing but its status may change in the future. This linear order of four verdicts

has been explored in detail in previous work [BLS10].

The area of feedback has not been widely explored within the context of runtime verification.

There are relations to automatic program repair, program steering, fault protection, self-healing

systems, planning, and runtime enforcement to mention just a few topics. However, we will not

discuss it further in this work.

2.3.3 A matter of efficiency

As runtime monitoring may have to run alongside existing code our interest in efficiency is not

restricted to how fast monitoring algorithms can run. We are concerned with the following

forms of efficiency:

• Overhead. This is usually taken as the extra time required to execute the system with

monitoring. This will consist of time spent monitoring as well as interference.

• Interference. The extra time taken to execute the original code after interference from

monitoring code. This is most apparent in multi-threaded code where monitoring code

takes locks, creating a bottleneck. Interference can also have a positive effect, where

monitored code causes optimisations to be triggered making the original code run faster.

• Throughput. The number of events processed in a given time. This may be in terms of

overall time or time spent inside the monitor.

The specification formalism and the checking mechanism are linked as one may place restric-

tions on the other. Therefore, the checking mechanism should be considered when designing

a specification formalism. Furthermore, as is often the case, the way a specification is written

can also have a large impact on efficiency.

2.3.4 Classifying approaches

Many different runtime monitoring approaches have been suggested. Here we briefly consider

how these may be compared. In 2004 Delgado et al. [DGR04] suggest classifying runtime
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monitoring systems using the dimensions of Specification Language, Monitor, Event Handler,

and Operational Issues. We discuss these dimensions shortly. What Delgado et al. mention

but do not include in their taxonomy or synopsis of tools is the subject of usability, such as

visualisation, ease of forming specifications, or automated tools for translating specifications.

As discussed previously, we would like to suggest the three (non-orthogonal) dimensions

of Expressiveness, Efficiency and Elegance that can be considered at a somewhat higher level.

Expressiveness is the range of different properties that a system can express. Efficiency is the

speed at which a system can check a property against a trace, discussed earlier. Elegance, or

usability, is how easily specifications can be written and understood by a human.

Specification language

A runtime verification system will typically provide a Domain-Specific Language (DSL) for

describing properties. The different approaches for defining a DSL may be categorized as

follows [BH11a]:

1. External. The DSL is a stand-alone language.

(a) Compilation. A property is parsed and translated into a program, representing a

monitor for that property, which is then executed.

(b) Interpretation. A property is parsed and translated into a data structure, represent-

ing a monitor for that property, which is then interpreted.

2. Internal. The DSL is embedded in an existing General-Purpose Language (GPL) and is

therefore directly executable.

(a) Shallow. A property can make use of features in the GPL.

(b) Deep. A property is represented as a data structure in the GPL.

Many runtime verification approaches use their own specification languages to describe

properties that they can monitor. Different specification languages will offer different levels of

expressiveness, therefore restricting what types of properties can be expressed. Languages may

also operate at different levels of abstraction, although a common approach is to define events

in terms of language features and then specify properties over these events.

Monitor

Here we are concerned with when and where monitoring occurs. This can either be online,

monitoring occurs whilst the system is running, or offline, monitoring occurs after the system

has run, applied to a log file. If running online, the monitor can either be inline, the monitor

is included in the code of the system, or outline, the monitor exists as an external entity. Note

that offline implies outline. In the online case a key consideration is whether the monitor will

share the resources of the application.

Another concern is whether instrumentation is part of the monitoring system (and if so, if

it is automated). As mentioned previously, a common approach is to use AOP. Some systems

automatically produce AspectJ files (i.e. JavaMOP), or extend AspectJ directly (i.e. Trace-

Matches), whilst some outline approaches use AspectJ to call the monitor (i.e. RuleR).
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Event handler

Here we consider how events, and the verdicts returned, are handled. The first consideration

is whether an approach detects violation, when the monitored property becomes false, or vali-

dation, when the monitored property becomes true, or either. Furthermore, the approach may

be able to differentiate between different kinds of violation.

Another consideration is whether the monitor can affect the application’s behaviour e.g.

perform actions in response to a certain verdict. A common approach is to attach arbitrary

pieces of code to be executed when a certain verdict is returned.

Operational issues

The main differentiating factor here is which systems the approach can be applied to i.e only

Java programs. Whilst most outlined approaches can be applied generally they will often have

been developed with a particular implementation language in mind.

Delgado et al. also consider whether the tool is dependent on certain hardware or software,

as well as the maturity of the tool.

2.3.5 Existing work

Here we give a brief overview of the existing work in this field.

The programming approach

The most primitive approach to runtime monitoring is to write a custom monitor for each

property we wish to check. This is generally possible in most programming languages, but is

made far easier through the use of AOP. To monitor a system with AOP we simply capture

the events we are interested in and then write some logic to check the relevant property. In

AspectJ a pointcut syntactical defines program points that should be instrumented (later some

tools use these in specifications). The drawback here is that the language has no abstraction to

separate description of the property from the mechanics of checking it, and there is little scope

for reuse of monitors.

Generally, to capture temporal behaviour we need to remember what method calls have

occurred previously. The standard way of doing this is through the use of an automaton, or

state machine.

Design by Contract

Design by Contract is a term coined by Bertrand Meyer [Mey92a] in the late 80s. The general

idea is that every piece of code (method) comes with an associated contract that states what

must hold before the code (precondition) and gives guarantees of what will hold after it (post-

condition). These can be combined to give an invariant i.e. something that can be assumed

before and after the code. These contracts can be checked to ensure that different pieces of

code use each other correctly. These contracts are typically non-temporal.
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There are a number of well-known tools for writing and checking contracts. The key example

being the Eiffel language [Mey92b] produced by Meyer. For Java we have the Java Modelling

Language (JML) [LBR98], jContractor [KHB99] and Jass (Java with assertions) [BFMW01].

Jass is interesting as, on top of the standard notion of contract, it provides trace-assertions for

defining the internal temporal behaviour of a method. These are based on the process algebra

CSP (Communicating Sequential Processes), where a trace is defined by beginnings and ends

of method invocations.

We are interested in approaches that capture trace specifications over many method calls.

Propositional approaches

The first runtime verification approaches operated on events without data values, we call these

propositional.

Java-MaC [LBaK+98] is based on the Monitoring and Checking (MaC) framework. The MaC

framework uses two specification languages, MEDL and PEDL. MEDL (Meta-Event Definition

Language) is similar to PT-LTL (Past-Time Linear Temporal Logic) with timing operators and

is used to specify properties to monitor. PEDL (Primitive Event Definition Language) is used

for instrumentation. PEDL scripts define the MEDL events and conditions in terms of system

objects, and this mapping is used to generate an event recogniser and observation filter. The

DMaC [ZSLL09] tool, standing for Distributed Monitoring and Checking, builds on the MaC

framework to provide a tool for specifying and verifying distributed network protocols.

TemporalRover (TR) [Dru00] is a commercial runtime verification tool, first appearing in

2000, developed by Doron Drusinsky. It can be used to verify applications written in C, C++,

Java, Verilog and VHDL, using specifications written in LTL or MTL (Metric Temporal Logic)

augmented with additional operators. TR assertions are written as comments in the application,

which are expanded into source code by the TR parser. The ATG Rover, a related tool, can be

used to generate test sequences from the specifications, a form of Model Based Testing. More

recently Drusinsky has focused on using UML as a specification language.

JavaPathExplorer [HR01] (JPaX) has been developed by NASA to verify code related to

their Mars mission. The tool performs both logic based monitoring and error pattern analysis

for common types of errors. Logics are expressed in Maude [Cla96](a term rewriting logic). An

instrumentation script specifies how the Java bytecode is to be instrumented by Jtrek, a Java

bytecode engineering tool. JavaPathExplorer is related to the JPF (JavaPathFinder) tool.

Parametric approaches

More recently runtime monitoring approaches have focussed on parametric monitoring, which

considers events carrying data. Here we describe the broad areas that these tools can be divided

into. These are discussed further (in relation to QEA) in Sec. 4.5.

• Slicing. This approach is most prominent in the JavaMOP [MJG+11, CR09] tool, but

is used elsewhere. The general idea is to ‘slice’ a trace into a set of propositional values;

we discuss this further below.
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• Rule-based. A parametric rule system is defined where rules rewrite a set of facts about

the monitored system. Key examples of this approach are the RuleR [BHRG09] and

TraceContract [BH11b] tools.

• Extending LTL. Different extensions of LTL have been considered. Generally these add

some form of restricted quantification but do not consider data in a free sense.

• Query languages. These approaches treat a trace as a set of records and phrase moni-

toring in terms of database-like queries.

The main concern with parametric monitoring is maintaining efficient processing whilst

allowing for expressive statements about the use of data.

More on the slicing approach

As the slicing approach is the approach taken by QEA we expand on this notion here, but all

of the key concepts will be introduced for QEA in the next Chapter.

The slicing approach deals with quantified data by taking each set of data values (those

bound to the quantified variables) and considers only those events relevant to those values.

Note that this is not slicing in the same way as we have with, say, vegetables as an event can

belong to more than one slice if it contains values from more than one set.

Checking is performed by slicing the trace into multiple smaller traces relevant to each

binding of quantified variables. Each of these traces can then be treated as propositional.

These approaches tend not to treat data in a free way, or if they do, only in a limited sense.

Therefore, the general notion is to transform a parametric case into multiple propositional ones,

to be checked by a propositional checker.

For example, take the trace f(1).f(2).g(3). We would create two slices, both consisting of

the propositional trace f.g; one for the values {1,3} and one for the values {2,3}.

The sets of data values used are typically constructed as followed. If we mention variables x

and y then we construct the sets of values X and Y , giving all possible values for x and y, and

slice the trace for each pair in X × Y . All current approaches consider universal quantification

only i.e. the property must hold for all trace slices. There is a notion of connectedness1 that

restricts the set of bindings used to ones transitively connected by events in the trace i.e. we

only consider (1,2) ∈ X × Y if event g(1,2) appears in the trace. This makes sense when we

consider data values being created from other data values, for example one collection being

constructed from another, as data values not connected in this way have no semantic relation.

This slicing approach is popular as it allows for efficient checking and a separation of con-

cerns. We can separately optimise propositional checking and the slicing activity, and slicing

allows for efficient indexing, discussed further in Sec. 6.5.

Reducing overhead

Finally, some tools exist explicitly to tackle the monitoring overhead problem.

1Only named explicitly by JavaMOP
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For example, Clara [BLH10] attempts to statically evaluate runtime monitors ahead of time

to reduce monitoring overhead. The idea of state estimation [SBS+12] allows monitors to sample

the program (build snapshots of the trace) and estimate the missing behaviour, thus reducing

overhead. The field of predictive analysis [CSR08] attempts to predict errors that could occur

(but might not occur in the monitored trace) by considering alternative orderings of events in

the trace (that could be caused by different thread interleavings). This reduces overhead by

reducing the number of runs that must be inspected.

2.4 Inferring specifications

Deciding whether a program satisfies a specification is a matter of deduction. From the facts

that the program exhibits the behaviours X and the correct program behaviours are Y we can

deduce either that the program is correct or not. This is what we did in runtime verification.

We now consider the problem of induction. From the facts the program exhibits the be-

haviours X and the program is correct we wish to induce the specification the correct program

behaviours are Y. This is the aim of specification inference.

In the rest of this section we will cover the fundamental ideas behind the (disparate) field

of specification inference. It is worth noting that many techniques and theoretical results are

heavily tied up in a particular domain and that we can draw a distinction between grammar

inference and specification mining.

Grammar inference.

This is a machine-learning technique which attempts to construct a model or grammar to

describe some language, from examples of words in (or not in) that language. Work in this

area dates back to the 50s and 60s, where the focus was on learning natural languages, and

since then the field has become very diverse. Because of the focus on language (rather than

programs) these techniques do not generally consider models over symbols parameterised with

data values. There exist some good reviews of the field [AS83, Mur96, dlH05, dlH10, Leu07].

The grammar inference problem is usually described in terms of uncovering a hidden language.

Conceptually, the process is often modelled as a student attempting to learn a language. The

most popular problem is that of regular inference; constructing a model for a regular language.

Specification mining.

The term ‘Specification Mining’ has been attributed to Ammons et al. from a paper written in

2002 [ABL02]. Some writers [WBHS08] have applied the term only to techniques that analyse

execution traces, although others [SYFP07] have applied the name to techniques that analyse

source code. We take the broad definition that Specification Mining is a collection of techniques

that attempt to mine a specification of a program from some artefact of that program. The

specification mining problem is usually described in terms of describing a set of observations in

some minimal way, however some approaches take the hidden language view. Interest in this

area has grown recently, leading to a book [LKHL11] and review paper [RBK+13].
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Our contribution belongs to the field of specification mining, however we also discuss the field

of grammar inference here as it is relevant. Additionally, many recent advances in specification

mining draw on established ideas from the field of grammar inference.

2.4.1 The ins and outs

As a process, specification inference is very general. We put some observations about a system

in and get a description of the system out. There are many choices of the kinds of observations

we can make about the behaviour of a system and many ways in which we can describe a

computer system, as previously discussed.

Making observations

There are three kinds of artefacts that can describe the behaviour of a system:

1. Source code. This completely describes a system’s behaviour. However, it does not

reflect the common, or actual, behaviour exhibited by the program. Additionally we do

not capture any input-specific or timing behaviour that is available at runtime. These

techniques are called static.

2. Execution traces. These describe the actions the system takes when run. However,

we must run the system to capture traces and therefore require a range of inputs to

exercise the system. Thankfully, many systems already have large test suites that do

this, and there exist techniques for automatically generating tests with certain coverage

properties. One disadvantage is that we can lose structure obvious in the source code i.e.

if one method is always called by another then their temporal relationship is uninteresting.

These techniques are called dynamic.

3. Development documents. Design documents, source control logs and bug reports can

all reflect the behaviour, intended or actual, of a computer system. Some work [LZ05b]

has mined these artefacts, but it still remains relatively unexplored due to the largely

unstructured quality of this data.

We are interested in execution traces, and therefore we must decide how we collect these

traces. We can passively observe the traces or actively ask for them. To be more precise,

an approach is passive if it cannot guide which data is to be provided during the inference

process and is active if it can. There is an overlap with given or requested data here - an active

approach necessarily uses requested data but a passive approach may either work from given

data or request all the data it is to use before the inference process. The distinction between the

two forms of passive approach have both theoretical and pragmatic repercussions - mainly that

some passive approaches can only guarantee exactness if the data has some certain properties.

We decide to take a passive approach as it is more widely applicable as it does not require a

teacher to answer queries about the system.

There is also the notion of observed traces being positive or negative i.e. belonging to the

behaviour of the system or not. Later (Sec. 2.4.4) we see that most cases of exact learning can

only be achieved using negative traces. The significance of negative traces is more prominent
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in the grammar inference community where there is a more obvious source for them - they are

rarely used in specification mining as it is difficult to record what a program does not do.

There is an underlying assumption that the observations we make are correct and are of

a correct system. If this is not the case then the observations will contain noise. There has

been an increased interest in the study of systems that can deal with noise in recent years. In

the student/teacher description this has been phrased in terms of having an unreliable teacher

[Leu07]. In terms of computer systems this noise is usually framed as programming bugs.

Describing the system

The output will be a temporal specification, and the exact form that might take will be discussed

later. However, it will either exactly describe the system or approximately describe it.

There are two reasons an inferred specification may be approximate. Firstly, the approach

may attempt to infer an approximate specification in an attempt to reduce the tractability of

the problem, or secondly, the approach may only be able to infer an approximate specification

as it is not provided with sufficient data to infer an exact specification. The general passive

approach we have chosen is necessarily approximate. If we can make no guarantees about the

coverage of the original system then it is possible that some behaviours have not been observed

and consequently cannot be captured in the output.

Additionally, some approaches attempt to describe the target system using a single specifi-

cation, whereas others generate many small specifications describing the relationship between

different parts of the system.

2.4.2 Target specification formalisms

There have been a range of specification formalisms that have been targeted for specification

inference.

Propositional regular

The most popular target for specification inference is a regular language captured by a finite

state machine - although some approaches have considered regular grammars.

Some techniques target only a set of predefined regular languages, for example specifications

of the form ‘if a happens then later b happens’ or ‘a and b alternate’. Some methods choose

to extract many small automata or rules and some focus on extracting a single automaton

representation.

Beyond regular... but still propositional

There have been a few approaches that attempt to infer specifications that are more expressive

than regular. Firstly, there has been work reducing the problem of inferring an even linear

context-free language to that of inferring a regular language [M9̈6, Tak88, KMT95]. Others infer

context-free grammars given information about grammatical structure [SM00, SK99]. Work

has also been done on inferring probabilistic context-free grammars [TH08]. There has also

been some work applying genetic algorithms to evolve pushdown automata [Lan95, NP07] and
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context-free grammars [Wya93, Pan10, CK10]. Genetic algorithms have also been used to infer

stochastic regular grammar [SO95] and stochastic context-free grammars [KL97].

Quantified parametric

Three techniques have targeted languages that have a general approach that treats data in a

quantified way. JMiner [LCR11] targets quantified state machines whose semantics are deter-

mined using slicing in connected mode i.e. the state machine describes a propositional language

and slicing uses connected bindings to translate a parametric trace into many propositional ones.

Pradel and Gross [PG09] take a similar approach by identifying (connected) object collaboration

sets and using them to slice traces, building up an automaton using a non-standard technique.

Both approaches use heuristics to identify possible alphabets. Tark [LCH+09, LRRV12] targets

quantified binary temporal rules with equality constraints (QBEC). For example, the forward-

eventual rule is of the form ∀x.a(x1)→ b(x2) where x1 and x2 are sublists of x. A trace satisfies

this rule if, for any binding to the variables x, if a(x1) occurs, then at some point later b(x2)
occurs. Tark also captures some limited information about free variables as it can infer that

the value of a free variable is constant (and that constant value).

Some techniques take a limited approach that considers typestate only (i.e. a single quanti-

fied variable). Xiao et al. infer typestates by separating the behaviours related to each instance

of an object. Alternatively, some propositional techniques [YEB+06] use a context-sensitive

approach to deal with data values - i.e. slicing on callee object identity.

Free parametric

The target of specification inference techniques that treat data in a free way is always some

form of extended finite state machine. However, the exact form often varies.

In the passive setting, Lorenzoli [LMP08] extracts state machines with transitions labelled

with guards and Mariani [MP08] extracts data recurrence patterns that capture the reuse of

values through equality constraints. Lo et al. [LM12] mine live sequence charts enriched with

invariants.

In the active setting, approaches [BJR06, AHK+12] extend Angluin’s original L∗ algorithm

[Ang87] to augment state machines with transition constraints. There has also been a recent in-

terest [HSJC12, BHLM13] in Register Automata where data values can be saved and compared.

Xiao et al. [XSL+13] infer typestates with guarded transitions.

Difference between quantified and free parametric

There is a fundamental difference between techniques that focus on free, rather than quan-

tified, uses of parameters. The free variable approach augments a specification mined by a

propositional technique, whereas the quantified variable approach uses quantifications to iden-

tify the propositional parts. Applying a propositional technique to the trace open(1).open(2).
open(3).close(1).close(3).close(2) would not produce the specification that correctly ab-

stracts the data, i.e., ∀f.open(f).close(f).
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An empirical study [LMS12] examined whether the techniques for mining with free variables

of Lorenzoli [LMP08] and Mariani [MP08] necessarily achieve specifications that better describe

the underlying software than their propositional counterparts. They conclude that neither

significantly increase accuracy. However, these results cannot be applied to work for quantified

variables, or other techniques for free variables.

2.4.3 Using specification inference

The fields of grammar inference and specification mining both began with the same goal - to

explain and understand. However, there are other uses for specification inference, which we

discuss here. We note that our principal interest in this work remains the comprehension of

program behaviour.

Program Comprehension

The majority of techniques aim to aid program understanding. By inferring a specification

of normal program behaviour a programmer can better understand how to use a third-party

piece of code or check to see if their understanding of what the code does is correct. There is

also a need for understanding legacy systems that need to be updated or maintained. Inferred

specifications can be used to form design documentation or used in combination with testing

or verification to ensure that certain previous behaviours have not been altered after change.

Many of the techniques reviewed in a recent review paper [RBK+13] aim to understand the

usage of APIs.

Testing

Inferred specifications have been used to generate tests. This is called model-based testing and

there has been work integrating the specification inference approach with model-based testing

for black-box systems [RSM08, PVY01]. A related area is that of automatically generating

tests to improve specification inference - for example, the Tautoko tool [DKM+10] explores

undefined transitions in a mined specification by mutating an existing test suite. Shabaz et al.

[SLG07b, SLG07a] use inferred models of program components to generate integration tests.

Pradel et al. [PG12] use specification mining to drive test generation for bug finding.

Verification

Inferred specifications can be used for runtime verification. A key application of this is to infer

specifications for a library from one system and check them against another system. There has

also been some work on both inferring and checking specifications at runtime [GS10]. Addi-

tionally, Puasuareanu et al. [PGB+08] use an active technique for assume-guarantee reasoning

- assumptions as labelled transition systems are extracted with the help of a model checker.

Security

Shu et al. infer certain security protocols. Firstly, they describe how specification inference

techniques can be used to test if security protocols obey an important security property [SL07]
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- message confidentiality under the general Dolev-Yao attacker model [DY83]. Later [SHL08]

they suggest an approach for combining protocol inference with fuzz testing [Oeh05] to detect

security (and reliability) problems in communication protocols.

Based on an approach by Forrest et al. [HFS98] that identifies anomalous sequences of

system calls to detect intrusions, a number of attempts have been made to infer specifications

for intrusion detection. Sekar et al. [SBDB01] use an ad-hoc technique for inferring state

machines to describe normal behaviour. Gosh et al. [GMS00] describe three approaches to

learning normal program behaviour that learn three different models - Elman recurrent neural

networks, string transducers and finite state machines. Goa et al. [GRS04] extract an execution

graph during a training period and continue to update this during monitoring. Ingham et al.

[ISBF07] learn DFA representations of the HTTP protocol to protect web applications.

Specification inference has also been used for malware detection. Christodorescu et al.

[CJK07] use a dynamic specification mining technique to infer specifications from a known

malicious program and a set of benign programs to identify the parts of the specification that

identify it as being malicious. Their approach created a lot of false positives but was able to

identify programs as malicious.

2.4.4 The limitations

The field of grammar inference tells us a lot about what is possible and feasible. The main

result is that regular inference is NP-complete and this partly motivates heuristic specification

mining techniques that tackle this intractability by recovering approximate specifications.

The field ofcomputational learning theory [Ang92] studies the feasibility of learning, where a

computation is feasible if it can be carried out in polynomial time. There are three main models

for learning [Sak97, dlH05] - identification in the limit [Gol67], query learning [Ang88] and PAC

learning [Val84]. Pit [Pit89] gives a thorough overview of the complexity results for Grammar

Inference. It has been noted that although the Grammar Inference problem is intractable in

the worst case (without access to an oracle) it is reasonable in the average case.

Identification in the limit [Gol67]. Gold was the first to formalise the problem of grammar

inference and has produced a number of results. In his identification in the limit model a learner

is presented with each example in turn and hypothesises a model for the language after each

example. Identification occurs when, after seeing a significantly large number of examples, the

learner produces the same, correct (with respect to the seen examples), hypothesis for two

consecutive examples. Clark and Lappin [CL11] outline Gold’s results as follows - The class

of finite languages and any finite class of recursive languages is identifiable in the limit on the

basis of positive data only; A super-finite2 class of languages is not identifiable in the limit on

the basis of positive evidence only; The class of recursive languages is identifiable in the limit on

the basis of negative and positive data. Note that given a complete labelled enumeration of all

words we can generate a minimal model for a language - called identification by enumeration.

We can consider complexity in the length of the input traces. It was shown by Gold that

the problem of identifying a minimum DFA from a given finite set of examples is NP-complete

2Containing all finite languages and at least one infinite language
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[Gol78]. The regular inference problem has been compared to breaking the RSA cryptosystem

[KV94]. However, by assuming additional information (the samples given are structurally

complete) it is possible to construct a polynomial algorithm within this learning model that

can exactly identify a regular language.

Query Learning [Ang88]. To tackle the NP-hardness of the language learnability problem

Angluin [Ang88] presented a framework in which a learner can ask questions of a teacher or

oracle. A membership query asks whether a word belongs to the hidden language and an

equivalence query asks whether a hypothesised language is equivalent to the hidden language.

It has been shown that the class of regular languages is polynomially identifiable using both

equivalence and membership queries, but not only using either on its own.

Probably Approximately Correct (PAC) learning [Val84]. In this learning model,

given a set of samples, a learner must select a hypothesis generalisation function from a set of

possible functions or concepts such that the hypothesis is probably approximately correct - that

is with high probability the hypothesis will have a low generalisation error, or approximate the

actual distribution of the samples. It has been shown that regular languages are PAC-learnable.

2.4.5 Evaluating solutions

For exact techniques the inferred specification is guaranteed to be correct. In this case the

evaluation considers the efficiency of the approach. For approximate techniques we find two

approaches to evaluation in the literature, which we describe below.

Explorative

In some cases [ABL02, GS08b, GS12, LCR11, YEB+06] evaluation is carried out by selecting one

or more real-world application and applying the developed technique, recording running times

and inspecting the ‘quality’ of the mined specifications - sometimes manual effort is expended

to identify ‘true’ and ‘false’ mined specifications. This method is often used to justify the utility

of the technique by demonstrating that known or interesting specifications can be extracted.

Additionally, techniques that work in the presence of noise are sometimes used to identify bugs

in software where a specification is extracted and found not to hold in some places.

Measuring accuracy

A more thorough approach [LK06a, LRRV12, WB08] measures the accuracy of the inferred

specification. The general approach is to have a set of training traces and a set of test traces,

apply the specification inference technique to the training set and then measure accuracy on the

test set. At a basic level accuracy can be given by the percentage of correctly classified traces

in the test set. The notion of accuracy can be refined further by borrowing the dimensions

of precision and recall from the field of information retrieval [vR79]. Precision captures a

measure of exactness and recall a measure of completeness. Walkinshaw et al. [WBJ08] have

proposed a more informative approach that extracts precision and recall separately for positive
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and negative behaviour. This is motivated by the observation that precision/recall is biased

towards positive behaviour and will not capture the situation where the inferred and actual

specification both correctly reject a trace. Pradel et al. [PBG10] also consider techniques for

measuring the structural similarity between ground truths and extracted models.

The ground truths can be formed in two different ways. Firstly, a system that generates the

traces can be manually inspected to identify the intended behaviour. Secondly, representative

specifications are used to generate the traces and then used themselves as ground truth.

2.5 Summary

We have reviewed methods of temporal specification within the context of runtime verification

and specification inference, paying particular attention to first-order, or parametric, provisions.

On one hand we have efficient runtime monitoring techniques such as JavaMOP [MJG+11,

CR09] and TraceMatches [AAC+05] that use a slicing approach, and on the other hand we

have very expressive techniques such as RuleR [BGHS04, BRH08, BHRG09] who’s focus on

expressiveness leads to a lack of efficiency. The slicing techniques focus on the quantified view

of data and do not allow for existential quantification.

Tark [LCH+09, LRRV12], JMiner [LCR11], Pradel and Gross [PG09] and TzuYu [XSL+13]

learn forms of quantified parametric specification. GkTail [LMP08], KLFA [MP08], a new

method using data classifiers [WTD13] and many extensions of L∗ [BJR06, HSJC12, AHK+12,

BHLM13] learn forms of free parametric specification.

In the next few chapters we introduce quantified event automata, a specification formalism

that captures both a free and quantified view on data, including existential quantification. This

automata formalism is designed to admit a slicing semantics.



Chapter 3

Quantified Event Automata

This chapter presents quantified event automata (QEA) as an expressive formalism for writing

parametric specifications. We separate the part of the specification concerned with orderings of

events and free variables from the part concerned with quantification. The first is captured by

event automata (EA) and consists of a form of extended finite sate machine. We use automata

as they will give us a straight-forward incremental monitoring algorithm later. We extend EA

with logical quantification to define QEA.

We can see this separation in the specification process. An event automaton is written to

describe the behaviour of a particular set of values. For example, how a given user object

should interact with a given file object. A quantified event automaton then extends this notion

to multiple sets of of values by replacing the values with quantified variables, for example, for

every user and file object.

Structure. We begin with our basic definitions (Sec. 3.1) before introducing simple event

automata (Sec. 3.2) as simple state machines. We then add a simple notion of quantification

to define simply quantified simple event automata (Sec. 3.3) giving a form of QEA without

free variables. Free variables are then introduced to give a (Turing-complete) version of event

automata (Sec. 3.4). Finally, we extend our notion of quantification to give the quantified event

automata (Sec. 3.5) that we will use later.

3.1 Definitions

In this section we introduce the building blocks of this runtime monitoring approach. We met

some of these notions informally in Section 2.3.

3.1.1 Events and traces

A symbol is either a variable or a value. We ignore the notion of type here as it does not provide

any distinctions that would significantly alter the development.

Definition 2 (Symbols). Let Sym = Val ∪Var be the set of all symbols where Val is a countably

infinite set of variables and Val is a countably infinite set of values disjoint from Var.

50
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We use s to refer to symbols and x, y to refer to variables. Values can represent anything

i.e. integers, strings or objects from an Object Oriented programming language. The sets Val

and Var are countably infinite but a finite trace can only contain a finite number of values and

a QEA can only contain a finite number of variables. Therefore, when considering whether a

trace satisfies a specification we will only consider a finite subset of each.

Events and traces are built from symbols and event names.

Definition 3 (Events and Traces). An event is a pair ⟨e, s⟩ ∈ Σ×Sym∗, written e(s). An event

e(s) is ground if s ∈ Val∗. Let Event and GEvent be the sets of all events and ground events

respectively. A trace is a finite sequence of ground events. Let Trace = GEvent∗ be the set of

all traces and ε be the empty trace.

We use a,b to refer to events and σ, τ to refer to traces. Recall that we are only interested

in finite traces (Sec. 1.1.1).

3.1.2 Bindings

Bindings are maps (partial functions with finite domain) from variables to values, i.e, elements

of Bind = Var ⇁ Val . Let dom(θ) be the domain of binding θ. If binding θ maps x to v then we

write θ(x) = v. We overload this notation to allow us to apply bindings to symbols in general.

Given a symbol s we let θ(s) equal v if θ maps x to v and equal s otherwise i.e. we lift θ to a

total function on symbols.

Given two maps A and B, the map override operator is defined as:

(A†B)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B(x) if x ∈ dom(B),
A(x) if x /∈ dom(B) and x ∈ dom(A),
undefined otherwise.

There exists a (well-known1) partial order ⊑ on bindings such that θ1 ⊑ θ2 iff θ1 is a submap

of θ2 i.e.,

θ1 ⊑ θ2 iff ∀x ∈ dom(θ1) ∶ x ∈ dom(θ2) ∧ θ2(x) = θ1(x)

3.1.3 Creating bindings from events

We can apply a binding to an event, replacing any variables defined in the binding.

Definition 4 (Substitution). The binding θ can be applied to an event e(s) as follows:

θ(e⟨s0, . . . , sn⟩) = e⟨θ(s0), . . . , θ(sn)⟩

Recall that we have lifted bindings to total functions on symbols.

This can be used to give a definition of a ground event and an event matching to give a

binding.

1This ordering has been called informativeness in other work [CR09, RC12] as a larger binding contains more
information.
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Definition 5 (Matching). Given a ground event a and an event b, let matches(a,b) hold iff

there exists a binding θ s.t. θ(b) = a. Let match(a,b) denote the smallest such binding w.r.t ⊑
(the submap relation) if it exists (and is undefined otherwise).

For example, let us attempt to match the event b = e(x, y,2, x) with different ground events.

ground event a matches match reason

f(2) false − event names different

e(1,2,3,1) false − 3 ≠ 2 in third position

e(1,1,2,2) false − x cannot equal 1 and 2

e(1,1,2,1) true [x↦ 1, y ↦ 1]
e(1,2,2,1) true [x↦ 1, y ↦ 2]

3.1.4 Projecting traces with sets of events

A trace can be projected with respect to a set of ground events to remove events not in the

given set.

Definition 6 (Projection). The projection of τ ∈ Trace w.r.t. a set of ground events A is

defined as:

ε ↓A= ε τa ↓A=
⎧⎪⎪⎨⎪⎪⎩

(τ ↓A).a if a ∈ A
(τ ↓A) otherwise

For example, given A = {e(1),e(2)} if τ = e(1).e(5).e(2).e(6) then τ ↓A= e(1).e(2).

3.1.5 Guards and assignments

We consider two kinds of functions on bindings: guards and assignments. We will be using

bindings to represent state (i.e. stored values) and these functions will allow us to manipulate

this state. For example, a binding [count ↦ 1] may be used to store the fact that the variable

count has value 1 and the guard count > 1 (denoting λθ.θ(count) > 1) would be false for this

binding and the assignment count++ (denoting λθ.θ†[count↦ θ(count)+ 1]) would return the

binding [count↦ 2].

Definition 7 (Guards and Assignments). A guard g ∈ Guard = Bind → B is a predicate

on bindings i.e. a computable function from bindings to the boolean domain B = {⊺,�}. An

assignment γ ∈ Assign = Bind → Bind is a total computable function from bindings to bindings.

We do not specify a particular language for guards and assignments here - we assume they are

computable but make no further assumptions. The definition of QEA is therefore parameterised

by this choice of language for guards and assignments. This is an important observation that

will have implications when discussing the complexity of trace checking and the expressiveness

of the formalism. In examples we will use standard programming language notation for guards

and assignments. The majority of examples use integers and standard operations on them but

some also make use of data structures such as sets. We will refer to the trivially true guard as

true and the trivial identity assignment as id. We assume that an assignment language would

deal with the so-called frame problem by ensuring that assignments maintain values they do

not explicitly update i.e. the assignment x = y + 1 would maintain the value of y.
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3.1.6 A note on types

We have chosen not to include types in this framework as it is not necessary for the theoret-

ical developments and would only be necessary for two tasks: firstly ensuring that the input

trace matches with what is expected in the specification, and secondly type-checking guards

and assignments. As we do not have a notion of types we assume that the guard or assign-

ment languages deal with type-safety appropriately e.g. only allowing integer operations to be

performed on integers.

To include a notion of type we would add the concept of event signatures defining the

allowed types of event parameters and then use this signatures to type-check traces, guards and

assignments and to ensure that specifications were type-consistent. This would be relatively

straightforward so is not discussed further here.

3.2 Simple Event Automata

Simple event automata (SEA) describe a pattern of behaviour for a (typically small) set of

ground events. These ground events may contain data values and we could think of the ordering

constraints on ground events as a description of how these values should behave. We explore

this notion further before defining SEA.

3.2.1 Dealing with symbols not in the alphabet

Earlier we stated that state machines are often used to describe event orderings. We revisit this

idea here. As an example consider a simple file handling system with open and close operations.

We can specify the property that these operations must alternate with the following automaton

(recall our notation in Sec. 2.1.2 that square states have a next-style semantics and shaded

states are final).

1 2

open

close

The previously discussed standard acceptance condition for automata can then be used to check

that the word

open.close.open.close

satisfies our specification. But what do we do when faced with the word

open.use.close.open.use.close

where the use event is of no importance to the property being verified? Our specification does

not mention the symbol use, and we need to define how to deal with this symbol. A natural

step to take is to define acceptance over a projected trace, filtering out any symbols not in the

automaton’s alphabet. Therefore, an automaton accepts a word iff the projected subword is

accepted.
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Projection is not the only approach that could be used here, we could add additional tran-

sitions to the automaton to deal with this unknown symbol i.e. use a skip semantics (see

Sec. 2.1.2). So what is the difference between a skip-semantics and projection? Projection

makes a distinction between symbols that are relevant to the automaton and those that are

not. In a skip-semantics some symbols might be relevant at some states but not others. Pro-

jection allows us to tell whether an event is relevant to an automaton without inspecting that

automaton’s current state. This will be important later when we consider efficient monitoring,

where we need to identify one or two automata relevant to an event among tens of thousands.

In most real world applications, events are more complicated than simple event names such

as open and close, they are parametrised with data values. For example, open(file name)
or send(user ,msg). We can label the transitions of our automaton with these parametrised

events, defined earlier as an event name and list of symbols. The following automaton specifies

that opening and closing the file manual.pdf must alternate.

1 2

open(manual.pdf)

close(manual.pdf)

We can still use our natural intuition of projection to deal with traces such as

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

by filtering out events that are not in the alphabet of the automaton, giving us the projected

trace

open(manual.pdf).close(manual.pdf).

We can also write the following automaton to specify that opening and closing the file readme.txt

must alternate.

1 2

open(readme.txt)

close(readme.txt)

Projecting the same trace with respect to the alphabet of this automaton gives us the projected

trace

open(readme.txt).close(readme.txt).

This leads to redundancy; we have written two automaton that only differ in the file they

are specifying the property for. We therefore take the natural step of replacing values with

variables, producing a schema2 that can be instantiated with a binding to give an automaton

for the binding’s value. For example, the following schema states that open(file name) and

close(file name) must alternate for a given file name.

2Later we will introduce simple event automata to describe these schema.
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1 2

open(file name)

close(file name)

We can construct the previous automaton by instantiating this schema with the bindings

[file name ↦ manual.pdf] or [file name ↦ readme.txt]. We do not have a notion of a trace

being accepted by a schema; it needs to be instantiated to be used.

3.2.2 The basic structure

A simple event automaton (SEA) is finite-state automaton with events labelling transitions.

Definition 8 (Simple Event Automaton). A SEA E= ⟨Q,A, δ, q0, F ⟩ is a tuple where Q is a

finite set of states, A ⊆ Event is a finite alphabet, δ ⊆ (Q ×A × Q) is a finite transition set,

q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The variables of E are those that

appear in its alphabet:

vars(E) = {x ∣ ∃e(s) ∈ A.x ∈ s ∧ x ∈ Var}.

E is ground if vars(E) is empty.

A non-ground SEA is a schema and therefore we will assume ground SEA in the follow-

ing notion of acceptance and then introduce an alternative form of acceptance that involves

constructing a ground SEA from a schema using a binding.

3.2.3 Defining acceptance

Here we introduce a notion of acceptance for ground SEA by defining a ground SEA’s language.

To do this we introduce a lifted transition relation that closes the set of transitions δ to give a

skip semantics. As the SEA is ground there are no variables in events in δ.

Definition 9 (Transition Relation). Consider a ground SEA E = ⟨Q,A, δ, q0, F ⟩. Let q
aÐ→E q′

hold if

(q,a, q′) ∈ δ ∪ {(q,b, q) ∣ ¬∃q′ ∶ (q,b, q′) ∈ δ}

We lift this to traces as in Sec. 2.1.2 i.e. q
εÐ→E q holds and q

τ.aÐÐ→E q′ holds iff there exists q′′

such that q
τÐ→E q′′ and q′′

aÐ→E q′. Note that SEA are, in general, non-deterministic. For ground

SEA determinism is defined as usual i.e. events labelling transitions out of a state are unique.

The language of a ground SEA is the set of all traces over its (ground) alphabet that reach

an accepting state using its transition relation.

Definition 10 (Simple Event Automaton Language). The language of the ground SEA E =

⟨Q,A, δ, q0, F ⟩ is defined as

L(E) = {τ ∈ A∗ ∣ ∃q ∈ Q ∶ q0
τ→E q ∧ q ∈ F}
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Note. We have chosen a skip semantics (see Sec. 2.1.2) instead of a next semantics as it is

often more straightforward to define the behaviour that causes failure than the behaviour that

avoids it. To define failing behaviour we want to ignore events that maintain the status, hence

a skip semantics. To define accepting behaviour we want to implicitly fail whenever we violate

the given behaviour, hence a next semantics. We revisit the idea of specifying for violation or

validation later. As it will be useful for specification we will use states with a next semantics

when defining properties (recall these states are differentiated by their shape) which can be

replaced via a simple translation that adds in the implicit failure state q� and transitions to it.

3.2.4 Acceptance with respect to a binding

The previous notion of acceptance was for ground SEA only. Here we introduce SEA instanti-

ation that allows us to define the language of a non-ground SEA for a given binding.

Definition 11 (Simple Event Automaton Instantiation). Given a simple event automaton

E = ⟨Q,A, δ, q0, F ⟩ and a binding θ such that dom(θ) = vars(E), let E(θ) = ⟨Q, θ(A), θ(δ), q0, F ⟩
be the θ-instantiation of E where

θ(A) = {θ(a) ∣ a ∈ A}
θ(δ) = {(q, θ(a), q′) ∣ (q,a, q′) ∈ δ}

Note that E(θ) is necessarily ground as dom(θ) = vars(E). The language of a non-ground

SEA E given a binding of its variables θ is L(E(θ)).

3.2.5 Acceptance for general traces

In our motivating discussion, we were given traces over symbols not in a automaton’s alphabet

but our notions of language so far have been over traces of symbols in the automaton’s alphabet.

We extend this notion of acceptance to traces over any alphabet through the use of projection

(defined previously in Def. 6).

Definition 12 (Simple Event Automaton General Language). The general language of the

ground SEA E = ⟨Q,A, δ, q0, F ⟩ given alphabet B such that A ⊆ B is noted and defined as

LG(E ,B) = {τ ∈ B∗ ∣ τ ↓A∈ L(E)}

we omit B when it is clear from context e.g. the ground events appearing in some trace.

As L(E) ⊆ LG(E ,B) we will use L(E) to refer to the general language of E . Whenever B is

not clear from context we will take it as the set of ground events GEvent .
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3.2.6 Example

Let us complete our example of the file usage property by framing it formally and considering

a trace and two different bindings. The schema for this property is

E = ⟨{0,1,2},{open(f),close(f)},

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1,open(f),2)
(1,close(f),0)
(2,open(f),0)
(2,close(f),1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,1,{1,2}⟩

as described graphically earlier, note that we have implicitly added the state 0 as states with a

next-style semantics are used. We now consider the trace

τ = open(manual.pdf).open(readme.txt).open(readme.txt).close(manual.pdf)

and whether it is accepted with respect to the bindings [f ↦manual.pdf] and [f ↦ readme.txt].

Our first question is τ ∈ L(E([f ↦ manual.pdf])? The first step is to construct E([f ↦
manual.pdf]) as

⟨{0,1,2},
⎧⎪⎪⎨⎪⎪⎩

open(manual.pdf),
close(manual.pdf)

⎫⎪⎪⎬⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1,open(manual.pdf),2)
(1,close(manual.pdf),0)
(2,open(manual.pdf),0)
(2,close(manual.pdf),1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,1,{1,2}⟩ .

Next, we project τ with respect to the alphabet {open(manual.pdf),close(manual.pdf)}.

τ ↓{open(manual.pdf),close(manual.pdf)}= open(manual.pdf).close(manual.pdf).

We then ask if there is a sequence of transitions for this projected trace ending in a final state,

and as the sequence of transitions

1
open(manual.pdf)ÐÐÐÐÐÐÐÐÐ→ 2

close(manual.pdf)ÐÐÐÐÐÐÐÐÐÐ→ 1

ends in a final state the trace τ is accepted by E([f ↦ manual.pdf]). Our next question is τ ∈
L(E([f ↦ readme.txt])? We go through the same steps of instantiation and projection as before,

which leads us to ask whether there is a sequence of transitions for open(readme.txt).open(readme.txt)
ending in a final state. But as the only sequence of transitions is

1
open(readme.txt)ÐÐÐÐÐÐÐÐÐ→ 2

open(readme.txt)ÐÐÐÐÐÐÐÐÐ→ 0

the trace τ is not accepted by E([f ↦ readme.txt]).
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3.3 Simply Quantified Simple Event Automata

We now generalise the notion of SEA schema by quantifying over their variables to give a family

of ground SEA.

3.3.1 Quantifying over SEA

Let us continue our example from the previous section involving files. To say that for all files

file name the operations open and close on that file alternate we will quantify over the variables

in a SEA to construct a set of bindings, which are used to construct a set of ground instances

of the SEA. Our property involving files is therefore specified by the following non-ground SEA

combined with a quantification ∀file name.

1 2

∀file name open(file name)

close(file name)

Let us assume that the domain of file name consists of the two values readme.txt and man-

ual.pdf. We then construct two bindings, [file name↦ readme.txt] and [file name↦manual.pdf],
and instantiate the SEA to give the two ground SEA we saw previously. A trace is then ac-

cepted if it is accepted by both of these ground SEA, remembering that we will ignore (project

out) symbols not in their alphabets. As before, to decide whether the QEA accepts the trace

open(manual.pdf).open(readme.txt).close(readme.txt).close(manual.pdf)

we construct the two ground SEA and check if they accept the trace, using projection.

The language of this quantified SEA is the set of traces which interleave a valid trace of one

ground SEA with a valid trace of the other i.e.:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε,

open(readme.txt).close(readme.txt),
open(manual.pdf).close(manual.pdf),
open(readme.txt).close(readme.txt).open(manual.pdf).close(manual.pdf),
open(readme.txt).open(manual.pdf).close(readme.txt).close(manual.pdf),
open(readme.txt).open(manual.pdf).close(manual.pdf).close(readme.txt),
. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

It is possible to construct a ground SEA that captures exactly this language, given in Fig. 3.1.

However, note that this is only possible when we know the values that file name can take and

that it will often lead to a state explosion that will, in almost all occasions, be impractical. It

will always be possible to construct such a ground SEA as the construction consists of standard

union and intersection operations on automata.

This interleaving looks similar to the shuffle product on formal languages [BBC+10]. The

(ordinary) shuffle of two languages (over the same alphabet) is in arbitrary interleaving of
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1

2

3

4 5

6 7

open(manual.pdf) close(manual.pdf)

open(readme.txt)

close(readme.txt) open(manual.pdf)

close(manual.pdf)

close(readme.txt)

open(readme.txt)close(readme.txt)

open(manual.pdf)

close(manual.pdf) open(readme.txt)

close(readme.txt)

close(manual.pdf)

Figure 3.1: A ground SEA capturing the language interleaving of two other ground SEAs.

symbols from each language. Therefore, if a set of ground SEA’s alphabets are disjoint then an

accepted trace can be given as a shuffle of traces from these ground SEA. However, if one or

more ground alphabets intersect then this is no longer the case as shared ground events would

only occur once and the ground traces would need to ‘synchronize’ on their ordering. This

might be the case if we have both f(x) and f(y) in the alphabet of the SEA. The event f(1)
would belong to the traces of the SEA instantiated with [x↦ 1, y ↦ 2] and [x↦ 2, y ↦ 1].

In the previous discussion we assumed a domain for the variable file name. To interpret

quantifications we must define these domains i.e. what the variables are quantifying over. When

we read the quantified SEA above we intuitively think of file name as ranging over all files in

the universe. However, this does not make sense as it is not possible to view all possible files

in the universe within a finite trace. Instead, we are actually concerned with all files in a given

trace, or to be more precise, all files which are opened or closed in the trace. Therefore, the

domain of file name should be all values that could replace file name when matching any event

in the trace with open(file name) or close(file name). This means that the domain of any

variable is given by the trace and the SEA’s alphabet. As the trace is finite, the domain of each

quantified variable will also be finite and the generated set of bindings used to instantiate the

SEA will be finite.

3.3.2 The structure

A simply quantified simple event automaton is a pair consisting of a set of universally quantified

variables and a simple event automaton.

Definition 13 (Simply Quantified). A SQSEA Q = ⟨X,E⟩ is a pair of a set of quantified

variables X and a simple event automaton E such that X = vars(E).

Note that X can be empty and in this case our SQSEA is equivalent to a ground SEA.

We introduce the concept of a binding being total with respect to the quantified variables of a

SQSEA.
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Definition 14 (Total binding). Given a SQSEA with quantified variables X, a binding θ is

total iff it binds exactly those variables in X

total(θ,X) iff dom(θ) =X

We omit reference to X if it is obvious from context.

3.3.3 Defining acceptance

A trace τ is accepted by a SQSEA ⟨X,E⟩ if τ is accepted by E(θ) for every total binding θ of

variables X. Before defining the language of a SQSEA we must first define the set of bindings

that can be constructed from a trace.

We first derive the domain of each quantified variable from the trace by matching events in

the SEA’s alphabet against events in the trace.

Definition 15 (Derived Domain). The derived domain of a trace τ for a SEA E with alphabet

A is a map from variables to sets of values:

DomE(τ)(x) = {match(a,b)(x) ∣ b = e(..., x, ...) ∈ A ∧ a ∈ τ ∧ matches(a,b)}.

The SEA E is omitted if it is clear from context.

Next we construct all possible bindings from the derived domain and then select the relevant

bindings. A binding can be constructed from Dom(τ) if its domain is a subset of the domain of

Dom(τ) and it is consistent with Dom(τ) i.e. only maps variables to values given by Dom(τ).
The relevant bindings are those that give a unique ground SEA after instantiation i.e. total

bindings constructed from Dom(τ)

Definition 16 (Constructed Bindings). Let us define the constructed and relevant bindings as

follows:

construct(τ) = {θ ∈ Bind ∣ ∀(x↦ v) ∈ θ ∶ v ∈ Dom(τ)(x)}
relevant(τ,X) = {θ ∈ construct(τ) ∣ total(θ,X)}

A trace is therefore accepted by a SQSEA iff for every relevant binding derived from the

trace, the trace is in the (general) language of the instantiated SEA.

Definition 17 (Acceptance). SQSEA ⟨X,E⟩ accepts a ground trace τ iff

∀θ ∈ relevant(τ,X) ∶ τ ∈ L(E(θ))

Note that this requires us to have the full trace as Dom(τ) is required to generate the

relevant bindings. If this were not the case then we could easily transform this approach into

one that takes one event at a time. Finally, we define the language of a SQSEA as the set of

traces it accepts.

Definition 18 (SQSEA Language). A trace τ is in the language of a SQSEA Q, noted L(Q),

iff it is accepted by Q, in which case we say that τ satisfies Q.
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1 2

3

4

∀i
hasNext(i, false)

hasNext(i, false)

hasNext(i, true)

next(i) next(i)
hasNext(i, false)

Figure 3.2: SQSEA for proper usage of Java iterators (HasNext)

1 2 3

∀x∀y

com(x)

suc(x)

com(y)

suc(y)
com(y),suc(y)

Figure 3.3: SQSEA for nested commands

3.3.4 Examples

We consider two examples of simply quantified simple event automata. Appendix A.1.1 gives

a more detailed worked example. Recall the notation of automata introduced in Section 2.1.2.

HasNext

We first consider the proper usage of java.util.Iterator i.e. every call to next is preceded

directly by a call to hasNext returning true, ensuring that we never call next on an empty

iterator. The SQSEA for this property is given in Fig. 3.2. Here the values true and false

are used directly in events labelling transitions, an alternative would be to add them to the

event name. We use state 4 as a failure state; if we reach it we can never achieve acceptance.

We could have used next states instead, as we do in state 3 where we capture the incorrect

behaviour of calling next after hasNext returns false.

The rover system

The next property we consider will be related to an example scenario we will be using frequently

in the rest of this thesis. We therefore take some space to describe this scenario here, but it is

described in greater detail in Appendix A.4.

Our scenario consists of a number of inter-communicating autonomous rovers operating on

a remote planet surface (for example, Mars) and a number of satellites orbiting the planet used

to relay messages from a base station on the home planet, Earth. The rovers receive commands

from the base station and send replies via the satellites. A command consists of a unique

identifier, a command name and some payload data and all commands must be acknowledged

using the commands identifier.
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Nested Commands

The property considered here is that if a command with identifier y is issued after a command

with identifier x is issued (but before it succeeds) then command with identifier y should succeed

before command with identifier x i.e. commands nest. The SQSEA for this is given in Fig 3.3.

Looping transitions on the initial state are required for the case where command y occurs before

command x. This case will happen for half of the quantified variables as each value will appear

in both the x and y position.

Consider the following trace:

τ = com(1).com(2).suc(2).com(2).suc(1)

This gives us Dom(τ) = [x ↦ {1,2}, y ↦ {1,2}], resulting in four relevant bindings. Let us

just consider the binding [x ↦ 1, y ↦ 1] and observe what happens in the presence of the

non-determinism that this introduces. The projected trace is

τ ↓E([x↦1,y↦1]) = com(1).suc(1)

and as state 2 is a next state we have at least two possible sequences of transitions:

1
com(1)Ð→ E([x↦1,y↦1]) 2

suc(1)Ð→ E([x↦1,y↦1]) 1

1
com(1)Ð→ E([x↦1,y↦1]) 2

suc(1)Ð→ E([x↦1,y↦1]) q�

i.e. we can match suc(1) with suc(x) or suc(y). As at least one of these ends in a final state

we have τ ↓[x↦1,y↦1]∈ L(E([x↦ 1, y ↦ 1]). Note that τ does not satisfy the property as com(2)
is issued for a second time and does not succeed before com(1) is issued, this error occurs for

[x↦ 1, y ↦ 2].

3.4 Event Automata

We add free variables to simple event automata, along with guards and assignments to ma-

nipulate them, to define event automata. For SEA the notion of acceptance only applied to

ground SEA and we directly matched events labelling transitions with ground events in a trace.

Adding free variables means that our notion of instantiation can now be partial i.e. we can

supply values for only some of the variables in the schema. We will differentiate between free

variables and quantified variables. Free variables will take different values from matching events

as we evaluate the trace and quantified variables will be initialised beforehand as before.

3.4.1 The need for local state

We begin by giving an example of using free variables in schema, before formally defining

these new structures. We revisit our rover example (page 61), although this property could

apply to any general setting where we have nodes (physical or virtual) sending messages to

each other that must be acknowledged. We consider the property that a sent message must be
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1 2 3
send(m,sent)

a∶=10
ack(m,ack)ack≤sent+100

send(m,resent) resent>sent+100 && a>0
sent∶=resent; a∶=a−1

ack(m,ack)ack>sent+100

Figure 3.4: A schema for describing how messages are sent and acknowledged.

Table 3.1: Evaluating a trace for the schema in Fig. 3.4 and a version instantiated with [m↦ A].
Note the use of the implicit ‘fail’ state q�.

τ Uninstantiated Instantiated with [m↦ A]
event state binding state binding

m sent sent a sent sent ack a
1 - - - - 1 - - - -

send(A,0) 2 A 0 - 10 2 0 - - 10
send(A,110) 2 A 110 110 9 2 110 110 - 9
send(B,120) q� B 120 110 9 ignored
ack(A,220) q� B 120 110 9 1 110 110 220 9
send(A,250) q� B 120 110 9 2 250 110 220 8
ack(A,275) q� B 120 110 9 3 250 110 275 8

acknowledged within 100 units of time and can be resent up to 10 times, but is only resent after

the 100 units of time have elapsed. This is captured by the schema in Fig.3.4. The variable

sent stores the last time the message was sent and a records the number of resend attempts,

resent and ack are only used temporarily. Note that the alphabet contains the distinct events

send(m,sent) and send(m,resent) that share the same event name.

We might ask why it matters when we bind variables; beforehand by initializing the automa-

ton with a binding or whilst processing the trace. If we initialise the automaton with a binding

we replace the variable with a value, effectively fixing it, whereas whilst processing the trace

we can rebind it whenever we encounter it. For example, we can obtain another automaton by

instantiating the schema in Fig. 3.4 with the binding [m ↦ A]. Table 3.1 describes how the

state and binding is transformed for each automaton whilst stepping through a trace. Note that

τ is projected on the alphabet of the automaton, and therefore the third event is not considered

by the uninitialised schema. On the third message the schema rebinds the message m when it

matches send(B,120) with send(m,sent) and fails as it cannot take a transition. The trace is

accepted by the instantiated automaton as it only considers those events where m is fixed as A.

This tells us that it is necessary to instantiate schema and have two different kinds of variables:

those that are replaced and those that are not.

3.4.2 Adding free variables

An event automaton extends the notion of simple event automaton by adding guards and

assignments to transitions.
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Definition 19 (Event Automaton). An Event Automaton E = ⟨Q,A, δ, q0, F ⟩ is a tuple where

Q is a finite set of states, A ⊆ Event is a finite alphabet, δ ⊆ (Q ×A ×Guard ×Assign ×Q) is

a finite transition set, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. As before,

the variables of E are those that appear in its alphabet:

vars(E) = {x ∣ ∃e(s) ∈ A ∶ x ∈ s ∧ x ∈ Var}.

Note that we do not differentiate between quantified and free variables; we are allowed to

replace any variables using instantiation and leave any variables free to be updated. Quantified

event automata introduced in the next section will use quantifications to separate these properly.

3.4.3 Extending the notion of instantiation

The main difference in EA instantiation is that we remove references to quantified variables

from guards and assignments by partially evaluating them.

Definition 20 (Event Automaton Instantiation). Given a binding θ, let E(θ) = ⟨Q, A(θ), δ(θ), q0, F ⟩
be the θ-instantiation of EA E = ⟨Q,A, δ, q0, F ⟩ where

A(θ) = {b(θ) ∣ b ∈ A}
(q,b(θ), g′, γ′, q′) ∈ δ(θ) iff (q,b, g, γ, q′) ∈ δ and g′(ϕ) = g(θ † ϕ)

and γ′(ϕ) = γ(θ † ϕ).

Acceptance with respect to a binding is then taken as before i.e. τ ∈ L(E(θ)).

3.4.4 Extending previous constructions to EA

Finally, we update the notion of language acceptance to account for free variables, assuming

that quantified variables have been removed. Firstly, we define the ground alphabet of an EA

as the set of all ground events that could match an event in the EA’s alphabet.

Definition 21 (Ground Alphabet). The ground alphabet of EA E with alphabet A is

ground(E) = {a ∈ GEvent ∣ ∃b ∈ A ∶ matches(a,b)}

Now we introduce the transition relation for EA, this is where transition guards and assign-

ments are dealt with. Previously this relation was only required to ‘close’ δ but here it also

keeps track of bindings of free variables. It is important to note that the values associated with

free variables will be updated whenever they match with a new event.

Definition 22 (Configurations and Transition Relation). Let E = ⟨Q,A, δ, q0, F ⟩ be our EA.

Let ⟨q, θ⟩ ∈ Config = Q ×Bind be an E-configuration. Let ⟨q,ϕ⟩ a→ ⟨q′, ϕ′⟩ hold if

∃b ∈ A,∃g ∈ Guard,∃γ ∈ Assign ∶ (q,b, g, γ, q′) ∈ δ ∧
matches(a,b) ∧ g(ϕ † match(a,b)) ∧ ϕ′ = γ(ϕ † match(a,b)).

Let c
a→E c′ hold if c

a→ c′ holds. Let c
a→E c hold if there is no c′ such that c

a→ c′ holds.
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Again, we lift this to traces in the standard way. The → relation relates configurations ⟨q,ϕ⟩
and ⟨q′, ϕ′⟩ by ground event a if there exists a transition in δ starting in q, s.t. the events match,

the guard is satisfied, and the new configuration contains state q′ and the binding given by the

assignment. This lifts δ to configurations but may be undefined on some configuration/ground

event pairs as δ is not necessarily complete. The →E completes this relation, and therefore can

be written as a function Config ×GEvent → 2Config . This completion follows a skip semantics

as before but note that it does not include matching so the binding in a configuration remains

unchanged when taking an implicit self-loop but might be updated taking the same explicit

self-loop.

Like SEA, EA are non-deterministic. This not only comes from the fact that δ may define

two different transitions with the same event, but also because two different events can match

the same ground event if they have the same name. We will see an example of this later when

we discuss non-determinism for QEA.

Note. With the introduction of guards and assignments the next-state translation becomes

slightly more complicated as the complement of outgoing transitions must take the complement

of guards. We assume that the free variables and assignments used in implicit failure transitions

are such that the bindings remain unchanged.

The language of an EA is then the set of all traces over the ground alphabet that reach an

accepting state using the EA’s transition relation.

Definition 23 (Event Automaton Language). The language of the EA E = ⟨Q,A, δ, q0, F ⟩ is

defined as

L(E) = {τ ∈ ground(E)∗ ∣ ∃⟨q,ϕ⟩ ∈ Config ∶ ⟨q0, [ ]⟩ τ→E ⟨q,ϕ⟩ ∧ q ∈ F}

As before we define a general language using projection.

Definition 24 (Event Automaton General Language). The general language of an EA E given

alphabet B such that ground(E) ⊆ B is defined as

LG(E ,B) = {τ ∈ B∗ ∣ τ ↓ground(E)∈ L(E)}

we omit B when it is clear from context.

3.4.5 Example

Let us consider an auction bidding site where items are posted and bid on. In this example

we are only concerned with bidding events and assume that every time a bid is made on the

site we record an event bid(item,amount) that records a unique identifier for the item and the

amount bid. The property we want to capture is that bids on an item are strictly increasing.

The variable for the item will be quantified, as we are considering the behaviour of a single

item we will fix it before analysing a trace. However, the value for amount should change during

the trace. Therefore, if a transition is labelled with the event bid(1,amount) and we receive

the event bid(1,10) we bind amount to 10 no matter what previous value amount had. So that
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1 2 3
bid(item, max )

bid(item, new) new>max
max ∶=new

bid(item, new) new≤max

Figure 3.5: A schema for describing how items are bid on in an auction.

we can check that amount is greater than the previous bid amount we keep track of a current

binding of free variables as well as a current state in configurations.

Fig. 3.5 gives an EA for this example. To use this the variable item should be instantiated

to a particular item. The variables max and new are then updated as the trace is processed

i.e., consider the following transition sequence for a trace dealing with a ‘hat’ item.

⟨1, [ ]⟩ bid(‘hat′,4)ÐÐÐÐÐÐ→ ⟨2, [max ↦ 4]⟩ bid(‘hat′,5)ÐÐÐÐÐÐ→ ⟨2, [max ↦ 5,new ↦ 5]⟩ bid(‘hat′,20)ÐÐÐÐÐÐÐ→

⟨2, [max ↦ 20,new ↦ 20]⟩ bid(‘hat′,18)ÐÐÐÐÐÐÐ→ ⟨3, [max ↦ 20,new ↦ 18]⟩

Note how guards are used to decide which state can be reached and an assignment is used to

update the max bid value.

An important observation is that the values bound to the free variables max and new change

during the processing of the trace. The QEA specification does not make sense without this

behaviour.

We give more detailed examples in Appendix A.1.2, including a demonstration of how EA

can be used to monitor and detect SQL injection. We also discuss free variables and their

relation to concepts in other specification languages in Sec. 3.5.10.

3.5 Quantified Event Automata

In this section we introduce quantified event automata as a combination of quantifications with

event automaton. We introduce existential quantification, given domains, type variables and

global guards as advanced quantification concepts. In SQSEA we universally quantified all

variables of a SEA but here we are adding quantifications to EA which have the notion of free

and bound variables. In this case we will only quantify some (or none) of an EA’s variables,

making an EA a special case of a QEA. As well as the increased expressiveness of EA we will

also extend what we are allowed to do in quantifications, as motivated in the next few sections.

3.5.1 The need for existential quantification

It seems natural to universally quantify variables as restrictions usually apply to all instances of

a certain object. However, we may also want to existentially quantify variables. For example,

if we consider the communication between rovers in our rover example (see page 61) we may

want to specify that we find one rover that has successfully sent a message to all other rovers.

A QEA for this property is shown in Fig. 3.6. This contains two new constructs: existential

quantification and global guards. The global guard control ≠ rover is used to exclude any
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1 2 3

∃control∀rover.control ≠ rover

send(control, rover) ack(rover, control)

Figure 3.6: There exists a controller rover who has sent a message to all rovers (that have been
sent messages).

bindings where control and rover are the same. The trace

send(A,B).send(B,C).ack(C,B).send(C,A).send(A,C).ack(B,A).ack(C,A)

satisfies this property as the rover A sends a message to all other rovers (B and C) and has

that message acknowledged. Neither B nor C achieve this and note that A does not send a

message to itself.

3.5.2 Joining the domains of quantified variables

The previous example has a possibly problematic quality; controllers are not considered rovers.

Take, for example, the trace τ = send(A,B).send(C,B).ack(B,A). The derived domain in this

case is Dom(τ) = [control ↦ {A,C}, rover ↦ {A,B}]. The trace is accepted even though A

does not send a message to C as there is a lack of symmetry in the events send(control, rover)
and ack(rover, control). If we want rovers to be all things that send and receive messages we

could add the event send(rover, control) to the alphabet, but this seems redundant as we never

want to use this event.

Instead, we will introduce the concept of type variables that indicate that two or more

quantified variables should share a domain. Therefore, the quantification would be ∃control ∶
R∀rover ∶ R.control ≠ rover. With this quantification the QEA does not accept the above

trace as C is included in the domain of rover.

3.5.3 When might we not want to derive the domain

Previously we derived the domains of quantified variables directly from the trace. However,

there may be circumstances where it is necessary to ‘override’ this domain when there is prior

knowledge of some objects that should (or should not) occur in the trace and the specification

checks that they do (or do not). For example, consider a modification to the above property.

Instead of combining the domains of rover and control perhaps instead we want the controlling

rover to be taken from a predefined set of known ‘good’ controllers. We could achieve this by

overriding the type variable given to control so that this is used when evaluating traces in place

of the derived one, meaning that only prescribed rovers could satisfy the existence criteria.

3.5.4 Formalising our new notion of quantification

We now introduce quantified event automata (QEA) in their final form. These consist of an

EA with some or none of its variables quantified by ∀ or ∃ with a, possibly overridden, type
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variable and global guard. Type variables are symbols used to denote sets of values, let T be

the set of all type variables. We use X,Y to denote type variables. The domain of a variable

will be given by its type variable and may either be explicitly given or derived from the trace.

Definition 25 (Quantified Event Automaton). A QEA is a tuple ⟨Λ,E ,D⟩ where E is a EA,

Λ ∈ ({∀,∃} × vars(E) × T × Guard)∗ is a list of quantified, typed, variables with guards and

D ∈ T ⇁ 2Var is a (partial) type domain map. The variables quantified by a QEA are given by

vars(Λ) = {x ∈ V ar ∣ ( , x, , ) ∈ Λ}

The partial type domain D map can give explicit domains to type variables. If a type

variable is not defined in D then its domain will be derived in a similar way to what happened

for SQSEA in Def. 15. A QEA is well-formed if each variable in vars(E) appears at most once in

Λ. Our previous definition of total bindings (Def. 14) can be lifted to this new form of quantifier

list by using vars(Λ) in place of X.

3.5.5 Defining acceptance

We introduce a new form of acceptance based on this updated form of quantification. First we

update our concept of a derived domain to account for type variables.

Definition 26 (Derived Domain). Let Q = ⟨Λ,E ,D⟩ be a QEA. Define varsOf and typeOf for

converting between type variables and quantified variables as follows:

varsOf(X) = {x ∈ Var ∣ ( , x,X, ) ∈ Λ}
typeOf(x) = X ∈ T if x ∈ varsOf(X)

Let DomE(τ) map type variables to their domains as follows:

DomE(τ)(X) = {match(a,b)(x) ∣ x ∈ varsOf(X) ∧ b = e(..., x, ...) ∈ A ∧
a ∈ τ ∧ matches(a,b)}.

We omit E if it is clear from context.

Note that typeOf is well-defined ifQ is well-formed. We are in a position to define acceptance

using the quantification list and the constructions previously mentioned. To do this we walk

down the quantification list building up a total binding and then use this binding to check

whether an instantiated EA is satisfied i.e. the trace is in its general language.

Definition 27 (Acceptance). QEA Q = ⟨Λ,E ,D⟩ accepts a ground trace τ iff

τ ⊧E,Dom(τ) † D
[ ]

Λ where ⊧E,Dθ is defined as

τ ⊧E,Dθ (∀, x,X, g).Λ′ iff for all d in D(X) if g(θ †[x↦ d]) then τ ⊧E,D
θ †[x↦d] Λ′

τ ⊧E,Dθ (∃, x,X, g).Λ′ iff for some d in D(X), g(θ †[x↦ d]) and τ ⊧E,D
θ †[x↦d] Λ′

τ ⊧E,Dθ ε iff τ ∈ L(E(θ))

We omit E and D when they are clear from context and write ⊧ for ⊧[ ].
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Finally, the language of a QEA is the set of traces it accepts.

Definition 28 (QEA Language). The language of a QEA Q = ⟨Λ,E ,D⟩ is noted and defined

as

L(Q) = {τ ∣ τ ⊧ Λ}

If τ ∈ L(Q) we say that τ satisfies Q.

3.5.6 Demonstrating non-determinism

1

2

3

4

∀x∀y

e(x)

e(y)

e(x)

f(y, a)a>0

f(y, a)a≤0

Non-deterministic QEA

We briefly consider the different ways in which a QEA

can be non-deterministic. Let the QEA on the right be

Q = ⟨∀x∀y,E , [ ]⟩ and consider the trace

τ = e(1).e(2).f(2,0)

By computing Dom(τ) = [x ↦ {1,2}, y ↦ {1,2}] we find that there are four bindings which

should be used to instantiate E and and therefore project τ :

τ ↓[x↦1,y↦1] = e(1) τ ↓[x↦2,y↦1] = e(1).e(2).f(2,0)
τ ↓[x↦1,y↦2] = e(1).e(2).f(2,0) τ ↓[x↦2,y↦2] = e(2).f(2,0)

The configurations reached by the first and last of these projections are

⟨1, [ ]⟩ e(1)ÐÐ→E([x↦1,y↦1]) ⟨2, [ ]⟩ and ⟨1, [ ]⟩ e(1)ÐÐ→E([x↦1,y↦1]) ⟨3, [ ]⟩

as both e(x) and e(y) match with e(1), and

⟨1, [ ]⟩ e(2)ÐÐ→E([x↦2,y↦2]) ⟨3, [ ]⟩ f(2,0)ÐÐÐ→E([x↦2,y↦2]) ⟨3, [a↦ 0]⟩
and

⟨1, [ ]⟩ e(2)ÐÐ→E([x↦2,y↦2]) ⟨3, [ ]⟩ f(2,0)ÐÐÐ→E([x↦2,y↦2]) ⟨2, [a↦ 0]⟩

as a > 0 and a ≤ 0 are both true for a = 0. Demonstrating two forms of non-determinism. We

can say that EA E is deterministic if at most one configuration is related to two configurations

by an event i.e.

∀c1, c2, c3 ∈ Config ,∀a ∈ ground(E) ∶ c1
aÐ→E c2 ∧ c1

aÐ→E c3 ⇒ c2 = c3

Note that non-determinism is also effected by the quantification list. If we exchange ∀x∀y for

∀x∀y ∶ x ≠ y then we eliminate the first form of non-determinism above.

3.5.7 Building relevant bindings

Let us update our definitions of constructed and relevant bindings (previously Def. 16) within

the context of type variables. A binding can be constructed from Dom(τ) if its domain is a

subset of the domain of Dom(τ) and it is consistent with Dom(τ) i.e. only maps variables to
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values given by Dom(τ).

Definition 29 (Constructed Bindings with Type Variables). Let construct be updated as follows:

construct(τ) = {θ ∈ Bind ∣ ∀(x↦ v) ∈ θ ∶ v ∈ Dom(τ)(typeOf(x))}

The notion of relevant bindings should now consider global guards. The relevant bindings

are those that give a unique ground EA after instantiation, i.e. total bindings constructed from

Dom(τ), and where bindings satisfy global guards.

Definition 30 (Relevant Bindings with Global Guards). Let relevant be updated as follows:

relevant(τ, ε) = {θ ∈ construct(τ) ∣ total(θ, vars(Λ))}
relevant(τ, ( , , g, ).Λ′) = {θ ∈ relevant(τ,Λ′) ∣ g(θ)}

3.5.8 Connectedness as a special global guard

We introduce a concept called connectedness3 and show how to construct a special global guard

that filters out bindings that are not connected, we will define what this means shortly. This

approach could also be used to introduce other special global guards that filter out sets of

bindings with certain properties. These global guards are special as they access information

about events in the trace, which seems reasonable as the domains of the quantified variables

are also reliant on this.

We begin by introducing the concept of a binding being connected for a given trace. A bind-

ing is connected if there exist events in the trace that ‘connect’ the variables it binds. For exam-

ple, if the alphabet consisted of events a(x, y) and b(y, z) and the trace was a(1,2).b(2,3).b(3,4)
then the binding [x ↦ 1, y ↦ 2, z ↦ 3] would be connected as a(1,2) connects [x ↦ 1] with

[y ↦ 2] and b(2,3) connects [y ↦ 2] with [z ↦ 4]. But [x ↦ 1, y ↦ 3, z ↦ 4] would not be

connected as there is no event connecting [x↦ 1] with [y ↦ 3] or [z ↦ 4] .

Definition 31 (Connected Binding). Given a trace τ and an QEA ⟨Λ,E ,D⟩ with alphabet A,

let the set of τ -connected bindings be the smallest set C(τ) such that:

ϕ ∈ C(τ) iff ∃a ∈ τ,∃b ∈ A.ϕ ⊑ match(a,b) ∧ dom(ϕ) ∈ vars(Λ)
ϕ1 ⊔ ϕ2 ∈ C(τ) iff ϕ1, ϕ2 ∈ C(τ) ∧ ϕ1 ∩ ϕ2 ≠ ∅

where ⊔ is the least upper bound operator on maps defined as the smallest (wrt ⊑) binding

containing ϕ1 and ϕ2.

We use this notion of connectedness to introduce a special global guard that accepts a

binding for a set of variables X iff the submap defined for X is connected.

Definition 32 (Connected Guard). Given a trace τ and set of variables X, define the guard

connected(X) as follows

connected(X)(θ) iff X ⊆ dom(θ) and [(x↦ θ(x)) ∣ x ∈X] ∈ C(τ)
3This concept is only explicitly discussed in work on JavaMOP [MJG+11] who have a special ‘connectedness

mode’ that alters the acceptance semantics.
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1 2 3

∀g∀e∀u.connected(g, e, u)

create(g)

destroy(g)

make(g, e)
add(e, u)

close(e)

1 2 3

4

∀g∀e∀u

create(g)

destroy(g)

make(g, e)
add(e, u)

close(e)

add(e, u),
close(e)

add(e, u),
close(e)

Figure 3.7: Two QEA specifying the (same) behaviour of an event planning system where users
(u) are added to an event (e) created in a group (g)

An example

Consider an online event planning system (or a social network where users can organise their

own events) which has groups, users and events. Groups can be created and destroyed, events

can be created in, and removed from, groups and users can be added to events. The property

that we consider is that an event can only be created for a group that exists and users can only

be invited to an event that is open.

The two QEA in Figure 3.7 specify the desired behaviour, let us refer to these as J and K.

Note how connectedness makes J more concise than K as we do not need to include transitions

for the case where the given event is not made in the given group. To better understand how

this works consider the following trace.

τ = create(A).create(B).make(A,M).add(M,1)

We have Dom(τ) = [g ↦ {A,B}, e ↦ {M}, u ↦ {1}] so there are two total bindings: θ1 = [g ↦
A, e↦M, u↦ 1] and θ2 = [g ↦ B, e↦ X, u↦ 1]. The projections are

τ ↓θ1= create(A).make(A,X).add(M,1) τ ↓θ2= create(B).add(X,1)

and therefore the states reached are as follows.

1
τ↓θ1ÐÐ→J .E(θ1) 3 and 1

τ↓θ2ÐÐ→J .E(θ2) q� , 1
τ↓θ1ÐÐ→K.E(θ1) 3 and 1

τ↓θ2ÐÐ→K.E(θ2) 4

To decide acceptance for J we must construct C(τ) as follows

C(τ) =
⎧⎪⎪⎨⎪⎪⎩

[g ↦ A], [g ↦ B], [e↦M], [u↦ 1], [g ↦ A, e↦M],
[e↦M,u↦ 1], [g ↦ A, e↦M,u↦ 1]

⎫⎪⎪⎬⎪⎪⎭

Both QEA accept τ , as when deciding if τ satisfies J the non-connected binding θ2 is not

considered. State 4 is required in K as without it θ2 would lead to failure.
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1 2 3

∀r∃s
send(r, s) ack(s, r)

shutdown(r)
shutdown(r)

Figure 3.8: Every rover must send a message that is acknowledged by a satellite, unless the
rover is shutdown.

3.5.9 The partial quantifier ‘trick’

We discuss a potential problem with quantification and propose a solution in the form of an

alternative kind of partial quantifier that is defined in terms of existing constructs.

As motivation consider a property (related to the acknowledgements property discussed

earlier) that states that every rover must send a message that is acknowledged by a satellite

unless the rover is shut down. The QEA in Fig. 3.8 attempts to capture this property but

the trace consisting of a single event shutdown(A) will not satisfy the QEA.If a quantified

variable’s domain is empty then the standard rules for universal or existential quantification

over an empty domain will apply. In this case, the problem is that the domain of s is empty

and an empty existential quantification is false.

The ‘trick’ is to introduce a dummy value into a domain if it is empty. In the previous

example if we added 1 to the domain of s then the QEA would accept the trace. The introduction

of the dummy value can be achieved by making the definition of a type variable’s domain

dependent on the trace. For example,

D(X) =
⎧⎪⎪⎨⎪⎪⎩

{dummy} if Dom(τ)(X) = ∅
∅ otherwise

Let us use the notation of ∀̂ and ∃̂ for this partial quantifier trick. We would therefore replace

the quantifications in Fig. 3.8 with ∀r, ∃̂s. Appendix A.1.3 gives another example.

3.5.10 A discussion of free variables

Finally, we return to the concept of free variables, which we can now discuss within the context

of QEA. As explained in Sec. 3.4, the values associated with free variables may be updated

during the processing of a trace. This might seem non-standard from a logic perspective but is

common in automata theory, although they are often called registers [NSV04].

From a temporal logic viewpoint we might consider these as constants, rather than vari-

ables, which are interpreted at each time point. However, this view struggles to account for

assignments updating and introducing new free variables.

Free variables can be viewed as existentially quantifying the variable over a limited scope.

Note that an assignment updating the variable, or another occurrence of the variable would

end this scope. To explore this notion consider the following first-order LTL specification:

∀x. ◻ (f(x)→ ∃y.◊(g(x, y) ∧ y > x))
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1 2

∀x f(x)

g(x, y)y>x

Figure 3.9: A QEA for the first-order LTL property ∀x. ◻ (f(x)→ ∃y.◊(g(x, y) ∧ y > x)).

This property is captured by the QEA in Fig. 3.9, which uses a free variable for y. This accepts

the trace

f(1).f(2).g(1,3).g(2,1).f(1).g(1,5).g(2,5)

as for each trace projection (for x = 1,2) the variable y is assigned to the relevant value. For

x = 1 we have the trace projection f(1).g(1,3).f(1).g(1,5) and y is bound to 3 first and then

5 later. For x = 2 the trace projection is f(2).g(2,1).g(2,5) and we first attempt to take the

transition from state 2 to 1 with g(2,1) but this fails to satisfy the guard y > x, which is later

satisfied by g(2,5).

3.6 Summary

In this chapter we have defined QEA by building up the notions of EA and different forms

of quantification. It should be noted that the QEA presented here are different from those

described in the published paper [BFH+12]. The differences are that the QEA introduced in

the paper did not have a notion of external domain or type variables. These were omitted for

space reasons.

There are further worked examples of QEA in Appendix A. These may be helpful in exem-

plifying how the different concepts in QEA can be used to define different kinds of properties.



Chapter 4

Properties of QEA

This chapter explores the QEA formalism. We discuss styles of writing QEA and its limitations

as well as the complexity of the trace checking process and general expressiveness.

Structure. We begin (Sec. 4.1) by discussing the stylistic choices when writing QEA and

how this relates to common notions of temporal properties, followed by a discussion of the

issues involved in specifying for different application domains (Sec. 4.1.1). We then (Sec. 4.2)

use example QEAs to discuss the limitations our approach. We follow this by discussing the

complexity of the trace checking process (Sec. 4.3) and the expressiveness of our formalism

(Sec. 4.4). Finally we review other parametric runtime monitoring approaches and how they

compare to QEA (Sec. 4.5).

4.1 Exploring specification style

In this section we explore the different styles of writing specifications.

4.1.1 Specifying for different domains

To help us understand the differences in specifying properties in different domains we have

chosen two different domains and written a range of properties in them. These can be found

in Appendix A and will be used during our evaluation in Chapter 7. Here we discuss the

specifications and what we found when writing them.

The Java API

Our first domain is that of the Java standard library, this has often been used in previous

runtime verification work. We do not attempt to be comprehensive, as in other work [LJMR12]

but select interesting properties. Appendix A.3 discusses specifications from three categories.

The communication mainly considers resource usage in terms of readers, writers and sockets.

The collections category considers the safe usage of iterators in different contexts and the per-

sistence of hashes used hashing structures. The concurrency category considers asynchronous

74
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access to synchronous collections and lock properties. The HasNext property on page 61 is part

of this domain, as is the UnsafeIter property used as an example in the next section.

To keep specifications concise we mapped sets of methods to events, selecting which param-

eters and return values should appear in the event, this process is part of the instrumentation

effort. All of these properties use only universal quantification and are safety specifications

(discussed below). Free variables were only used to implement the context-free property Close-

Files on page 342. Specifications are generally quite small, mentioning only a few events and

at most two quantified variables.

Our planetary rover case study

This is the running example first mentioned in Sec. 3.3.4. The general setting and a range of

specifications are given in Appendix A.4. The general idea is that we have a number of entities

that can communicate using messages that are either commands or acknowledgements. We also

consider the internal behaviour of the planetary rovers. These have a number of resources that

should be managed and can run tasks, which execute the received commands.

We split our properties into those about external behaviour, i.e. communication, and in-

ternal behaviour. We have already discussed some external behaviour, i.e. NestedCommands

on page 62, AcknowledgeCommands on page 62 and ExistsLeader on page 66. The internal

specifications were first presented in our published book chapter [FHR13] and were inspired by

a co-author’s experience at NASA JPL.

Some of these specifications are more complex than those used in the Java API domain.

They make extensive use of free variables, use existential quantification and in some cases have

larger alphabets. One major difference is that we do not have the notion of objects being

inherently connected to each other (a style discussed below).

4.1.2 Validation versus violation

There are generally two styles for describing trace properties. In the violation style we describe

the set of traces that we should belong to, whereas in validation style we describe the set of

traces we should not belong to. The terminology may seem backwards, but it describes when

we have detected an error i.e. have we violated our description or validated it.

To demonstrate the two different styles consider the UnsafeIter property introduced in Ap-

pendix A.3.2. This states that an iterator created from a collection should not be used after

the collection is updated. Fig. 4.1 gives two QEAs for this property. The first uses a violation

style, describing all of the safe behaviours, and the second uses a validation style, describing

the unsafe behaviour. The first returns false for an incorrect trace but the second returns true.

The style is separate from the verdict we return, although the two are related. If we negated

the second QEA we get the QEA defined in Fig. A.16 in Appendix A.3.2 where we describe

the failing behaviour but still produce a false verdict for an incorrect trace. Some systems,

such as TraceMatches only detect validations of a property and therefore the property must

evaluate to true on an incorrect trace.

We will generally write properties in either violation or validation style but return false

on an incorrect trace. However, as we separate monitoring from instrumentation a user can
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1 3 4

∀c∀i

iterator(c, i) update(c)

update(c) use(i) update(c)

1 3 4 5

∃c∃i

iterator(c, i) update(c) use(i)

Figure 4.1: Two QEAs for the safe usage of iterators created from collections.

decide what action to take on each verdict. The distinction is important when the specification

language is not closed under negation or, for example, in the case of TraceMatches where the

formalism (regular expressions) are inelegant for describing one kind of behaviour (validation).

For a discussion of QEA negation see Sec. ??.

4.1.3 Safety and Co-Safety

Here we discuss the relationship between styles of QEA and the kinds of temporal properties

that are commonly used i.e. the notions of safety and co-safety. These concepts are usually

phrased in terms of possible extensions of the trace we have seen so far. We revisit this topic

in section 6.1 where we introduce new verdict categories.

We begin by introducing the notions of good and bad prefixes. Given a language L, a word

w is a bad (good) prefix for L if for every u we have w.u ∉ L (w.u ∈ L). These concepts usually

apply to infinite traces, but in this work we consider finite traces so we take the common

approach [HR04] of assuming the status on the final state is stationary i.e. continued infinitely.

Safety. A property is a safety property if it can be violated by a finite trace i.e. every trace

not in its language has a finite bad prefix. Conceptually these properties capture the idea that

nothing bad ever happens. This is a very common kind of property and relate to a QEA with

pure universal quantification and all accepting next states. The pure universal quantification

is important, as we show in Sec. 6.1 that a property can only be violated by a finite trace if all

quantifications are universal.

Co-Safety. A property is a co-safety property if it can be satisfied with a finite trace i.e. every

trace in its language has a finite good prefix. These represent reachability properties. Co-safety

properties typically relate to a QEA with pure existential quantification and a sequence of skip

states with the last state being final. Again, the existential quantification is important.

Not all properties are safety or co-safety properties as they can be a mixture of the two. The

general notion here is that we get ’safety-like’ behaviour from universal quantification and next

states, and ’co-safety-like’ behaviour from existential quantification and skip states.

4.1.4 Special cases

We consider two special cases of behaviour involving multiple quantified variables.
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1 2 3 4 5

∀l1∀l2.l1 ≠ l2

lock(l1)

unlock(l1)

lock(l2) lock(l2)

unlock(l2)

lock(l1)

Figure 4.2: A QEA specifying that locks should be taken in a consistent order.

Connected behaviour

There is a class of properties that concerns so-called connected behaviour where the objects

in the domains of two variables have a semantic relationship. A key example of this is where,

in Object-Oriented programming, we have one object is created from another. For example,

in the UnsafeIter example above. In this case each iterator will be connected to at most one

collection. This connectedness generally goes against our notion of quantification i.e. ∀x∀y
usually means every pair of values for x and y. We introduced the connectedness global guard

to capture this relationship.

Symmetry and global guards

In contrast to connected behaviour we sometimes have symmetric behaviour where we talk

about two instances of the same object. Here we will have two instances of the same event

name i.e. lock(l1) and lock(l2). In this case we will have two instantiations of the QEA for

every pair of values v1 and v2 i.e. [l1 ↦ v1, l2 ↦ v2] and [l1 ↦ v2, l2 ↦ v1]. This may effect the

way that the specification is written and will effect efficiency as we will be checking twice as

many instantiations as we need to.

For example, consider the lock ordering property introduced in Appendix A.3.3 on page 347.

This is a property giving a guarantee of deadlock freeness that states that locks are always taken

in a consistent order, Fig. 4.2 gives the QEA. For each pair of locks each instantiation captures

the different behaviours of either lock being taken first. Note that we exclude the case where

the two locks are the same. Later (Sec. 6.3.2) we show that introducing a global guard that

selects only half the of the behaviours can considerably increase efficiency but requires us to

specify the behaviours for either lock being taken first.

4.2 Limitations

In this section we discuss the limitations of QEA as a specification language. We show that

there are some properties that QEA is not an appropriate formalism for. This is mainly because

the specification must rely too heavily on the guard and assignment language.

4.2.1 Using a stack

Here we consider a context-free property; the correct usage of a stack. This can generally be

captured by stating that ever pop has a corresponding push with the same object i.e. if we push



78 CHAPTER 4. PROPERTIES OF QEA

1 2 3

∀s∀o1∀o2 .o1 > o2

push(s, o1) push(s, o2)

pop(s, o2)pop(s, o1)

1 2

∀s

push(s, )
size∶=1

push(s, )
size++

,
pop(s, ) size>1

size−−
pop(s, ) size=1

Figure 4.3: Correct usage of a (limited) stack.

1∀s push(s, o)
add(t,o)

, pop(s, o) head(t)=o
t=tail(t)

Figure 4.4: Correct usage of a stack, using a stack.

A then B and then call pop twice we should get B then A. This also implies that we cannot

pop from an empty stack.

We can describe the limited stack property (where each object can appear at most once)

using QEA, this is captured by the QEAs in Fig 4.3. The QEA on the left says that given a

stack s and any two objects o1 and o2 if o1 is pushed onto s and then o2 is pushed onto s then

o2 must be popped from s before o1 is. This QEA does not allow an object to be pushed onto

a stack twice, hence the limited stack assumption. Also, this QEA prevents us from calling pop

on an empty stack as pop is not allowed from the initial state. However, our instrumentation

would require us to construct this event after the pop call was made as a popped object is

needed. The QEA on the right of Fig. 4.3 deals with this issue by checking the size of the stack

before calling the pop function without considering the return value.

We have described this example as a limitation because in order to specify the complete

property we must use a stack in assignments, as shown in Fig. 4.4. We could have ensured

the correct nesting using counters, but not that the objects pushed and popped agreed. This

demonstrates that in some cases the use of automata for the event language restricts what we

can do without resorting to using arbitrary code in assignments. However, as discussed later,

we could extend our approach by replacing event automata with event context-free grammars.

4.2.2 Sorting a list

Next, we consider a non-temporal property that is often used as a basic example in program

verification; sorting a list. As this is a non-temporal property we just encode the condition

in a function placed on a single transition in an EA i.e. whenever we see the given event we

should check the condition. Therefore, a QEA for checking that the sort function sorts lists

correctly is given in Fig. 4.5. This assumes a function is sorted that can check if one list is a

sorted version of another. QEA specify patterns of behaviour, so when the property is static

they are not appropriate.

1∀l sort(l, l′)
is sorted(l,l′)

Figure 4.5: A QEA for the non-temporal property of list sorting.
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1 2

∀n1∀n2.n1 ≠ n2

connect(n1, n2),
connect(n2, n1)

1 2 3

∀n1∀n2∀n3.n1 ≠ n2 ∧ n2 ≠ n3 ∧ n1 ≠ n3

connect( , )

connect(n1, n2)
connect(n2, n1)

connect(n2, n3)
connect(n3, n2)

connect(n1, n3)
connect(n3, n1)

Figure 4.6: Two QEAs for 1-hop and 2-hop graph connectedness.

1 2

∀n1∀n2.n1 ≠ n2

connect(n1, n3)A+=n3
,connect(n3, n1)A+=n3

,

connect(n2, n3)B+=n3
,connect(n3, n2)B+=n3

connect(n1, n2),connect(n2, n1)
connect(n1, n3)n3∈B ,connect(n3, n1)n3∈B

connect(n2, n3)n3∈A ,connect(n3, n2)n3∈A

Figure 4.7: A QEA for full graph connectedness.

4.2.3 Graph connectedness

Finally, consider the graph-connectedness property. As a concrete example, imagine that we

had a network of inter-communicating sensor nodes and we wanted to establish that eventually

there exists a path between every pair of nodes (assuming that, once established, paths exist

forever). If we wanted to capture the property that every pair of nodes was connected we would

state that there is a connect event for every pair events, as seen in the QEA on the left of

Fig. 4.6. We could then extend this to the property that every pair of nodes was connected by

at most one other node by quantifying over three nodes, as seen in the QEA on the right of

Fig. 4.6. However, QEA do not allow us to quantify over an arbitrary set of variables or have

an arbitrary number of transitions. This is one possible extension further work could consider.

We can specify the property by resorting to guards and assignments again. To do this we

can store the set of connected nodes per node and then transition to an accepting state if these

two sets is intersecting. This QEA is given in Fig. 4.7 but it is not elegant.

4.3 The complexity of trace checking

We consider the theoretical upper bound on the time complexity of the trace checking process

described in Def. 27 by placing bounds on the number of generated bindings and work needed

to process each binding. We also discuss how the structure of the specification effects these

bounds.
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4.3.1 Building a complexity model

In this section we consider the complexity checking acceptance (Def. 27) given a QEA Q =

⟨Λ,E ,D⟩ with E=⟨Q,A, δ, q0, F ⟩ and a trace τ . Deciding acceptance involves constructing the

bindings and then checking acceptance for each binding.

Number of bindings.

The maximum set of bindings we consider is given by relevant(τ,Λ) (Def. 29). We say maximum

as we would stop checking if failure success was found, depending on quantification. Let us

consider the size of this set. Let n = ∣Λ∣ be the number of quantified variables. Let

mx = ∣Dom(τ)(x)∣ be the number of values in the domain of x for each x ∈ vars(Λ) and let m

be the maximum such value. We place an upper bound on the number of bindings generated:

∣relevant(τ,Λ)∣ ≤ ∏
x∈vars(Λ)

mx ≤ mn

This means that the number of bindings generated is at most exponential in the number of

quantified variables. It should be noted that we expect this to be small, between 1 and 3 and

unlikely to be above 5 (see the examples in Appendix A). However, we expect that the number

of values per variable, m, could become very large, in the order of millions. For illustration

purposes imagine we have a QEA with n = 2 and a trace with m = 10M . The number of relevant

bindings constructed would be bounded by 100M .

We can also place bounds on m by relating it to the size of the trace τ . Let ka = i be the

arity of event a = e(x1, . . . , xi) ∈ A and let k be the maximum such value. Note that we expect

k to be small, again in the order of 1-5. The worst case is that every event introduces a new

value and every event in the trace has the maximum number of parameters:

m ≤ k∣τ ∣ ⇒ ∣relevant(τ,Λ)∣ ≤ (k∣τ ∣)n

Note that this is a bound on m, not mn as each of the n variables may be drawn from the same

domain. Recall that we expect k and n to be small; n and k are often 1 in previous examples,

which would give us an upper bound on m of ∣τ ∣. The example in Appendix A with the largest

k and n has k = 2 and n = 3, giving an upper bound on m of 6∣τ ∣3, but again this assumes that

every event introduces new values.

Next we consider a more realistic example where values are reused. Let us assume that

the domains of the quantified variables are disjoint i.e. each event contributes an average of k
n

values to the domain of x. Next, we introduce the concept of value reuse. Let rx be the average

number of times a value in the domain of x ∈ vars(Λ) is reused and let r be the minimum such

value. Therefore, the maximum number of objects introduced per event is given by k
rn

. Note

that we would typically expect r > k and therefore k
r
< 1 if n ≥ 1. Making these assumptions we

get:

m ≤ k∣τ ∣
rn

≤ ∣τ ∣
n

⇒ ∣relevant(τ,Λ)∣ ≤ (k∣τ ∣
rn

)
n

≤ ( ∣τ ∣
n

)
n

This captures the intuition that if we have more quantified variables then a trace of the same
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length will yield fewer bindings. Here we assumed that k
r

was less than one and therefore could

be ignored. However, it might be significant with respect to ∣τ ∣, and it is often the case that

r >> k. In fact, this relationship can quickly dominate. For example if n = 2, k = 2, r = 10k and

∣τ ∣ = 1M then ∣relevant(τ,Λ)∣ ≤ ( 2×1M
2×10k

)2 = 1k.

Work per binding.

Now we have thoroughly discussed the number of bindings generated we can briefly go through

the work required to process each binding. For a binding θ we are asking

τ ↓E(θ)∈ L(E(θ))

This will involve constructing E(θ), which will be bounded by ∣δ∣ as its main work is an iteration

of this set, constructing τ ↓E(θ) and checking if τ ↓E(θ))∈ L(E(θ)). If Q is non-deterministic this

last part will involve keeping track of a set of configurations. The second two points can be

executed at the same time and, assuming that matching and guard/assignment evaluation is

constant time, will be bounded by ∣δ∣ × ∣τ ∣, which gives an upper bound on the work required

per binding.

Note. The parameterisation of QEA with a guard and assignment language means that we

must make an assumption about the complexity of evaluating these guards and assignments.

Here we assume this is constant. This is clearly not generally true as we could encode the

entire monitoring algorithm as a single guard in a QEA and wrap a trace in an event. More

concretely, whilst most guards and assignments used in this work consider constant operations

using integers, some make use of data structures such as sets whose implementation would not

be constant in time. The additional complexity would be included here.

Summary.

Putting this together we must first construct Dom(τ), which will be Θ(∣τ ∣ × ∣A∣). The overall

complexity is therefore in the order of

Θ(∣τ ∣ × ∣A∣) +O ((k∣τ ∣
rn

)
n

∣δ∣ × ∣τ ∣)

For big ∣τ ∣ this becomes O( ∣τ ∣n+1

n
) unless r becomes significant i.e. if we reuse values frequently.

This shows that the structure of the trace is important in deciding efficiency. A similar conclu-

sion is reached by Lee et al. [LCR11], although they do not discuss reuse rate.

4.3.2 The importance of choosing the right specification

It is clear that the number of quantified variables of a QEA significantly effects efficiency. For

example, Fig. 4.8 gives two equivalent QEA that, due to their differing number of quantified

variables, have very different complexity bounds. The QEA on the left states that for every

message there exists a start and end time, with the end time being less than 100 units of time

after the start time, such that the message is sent at the start time and acknowledged at the end
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1 2 3

∀m∀start∃end .end < start + 100

send(m, start) ack(m, end) 1 2

∀m send(m, start)

ack(m, end) end<start+100

Figure 4.8: Two equivalent QEA that have very different complexity bounds.

1 2 3

∀x∃y .x ≠ y
send(x, y) ack(y, x)

1 2 3

∀x
send(x, y)x≠y ack(z, x) z=y

Figure 4.9: A simple example of quantifier stripping

time. The QEA on the right states that every message that is sent at time start is acknowledged

within 100 units of time, and can then be sent again. For large traces, the first QEA has a

complexity bound of O(∣τ ∣4), whereas the second has a bound of O(∣τ ∣2).
As the number of quantifiers is key to complexity we consider a method that can be used to

remove quantifiers. The QEA on the left of Fig. 4.9 captures the property that every node has

another node that it communicates with. We can safely remove the existential quantification

and move the global guard to a transition guard. Another example is given in Appendix A.1.4.

4.4 On the expressiveness of QEA

In this section we discuss the expressiveness of the QEA language.

4.4.1 Choice of guard and assignment language

By parameterising the definition of QEA with a guard and assignment language we have made it

trivially Turing complete as we could select some Turing complete language and encode anything

we wanted into the guards and assignments. Note that this would violate our assumption in

the previous section that the evaluation of guards and assignments is constant time.

It is likely that we do not need such an expressive guard and assignment language and that

choosing a less expressive language would give better complexity guarantees whilst potentially

decreasing expressiveness. We briefly consider the effects of choosing particular guard and

assignment languages.

• Equality guards and storing assignments. If we only allow guards to check for

equality between free variables and stored variables and assignments to store the values

of free variables then EA become register automata [NSV04].

• Counting. An interesting small guard and assignment language is one that only allows

guards to compare integers and assignments to store, increment and decrement integers.

This allows us to model some context-free properties as we seen in the CloseFiles example

in Appendix A on page 342.
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• Embedded DSL. If we embed the guard and assignment language in a programming

language, for example QEA is written as an embedded DSL, we have access to the full

functionality of the programming language.

4.4.2 Separation

The formulation of QEA only requires that EA provide a predicate function on traces. There-

fore, there is a real separation between EA and QEA as the way we define this predicate

function does not effect how QEA operates. This means that we could also consider quantified

regular expressions or grammars and the sections discussing QEA would not change substan-

tially. JavaMOP uses this approach i.e. allows the use of different propositional languages. A

formalisation of this framework remains future work.

We note that it would be relatively straightforward to define event regular expressions, i.e.

regular expressions over events, and also to include guards and assignments by extending the

definition of an event to include these. This would not give us an added expressiveness but would

give us an alternative, sometimes more concise method of presenting the same specifications.

The natural extension for context-free grammars where we allow events, guards and assignment

triples as terminal symbols is straightforward. However, we might consider allowing variables

to label non-terminal symbols, similar to the rules of RuleR.

Finally, we might question why we would want to introduce more expressive ‘event languages’

when EA are trivially Turing-complete. The answer is that we introduce a specification language

to allow us to write elegant and analysable specifications but by coding a specification mainly

in the assignments of an EA we depart from this.

4.4.3 The effects of quantification

As mentioned at the beginning of this chapter, we can construct a ground SEA from an SEA

given the domains of variables. This is true of QEA also, given the (finite) domains of all

quantified and free variables we can construct a ground EA that accepts the same traces as the

QEA (with an enormous state explosion). Therefore, it might be argued that quantification

adds no real expressive power. However, this considers QEA given the domains of all of its

variables, perhaps within the context of a trace. A QEA therefore represents an infinite family

of sets of ground EA. For example, consider the following restricted bracketing problem. Given

a string of different coloured brackets, where brackets of the same colour cannot nest, do all

brackets match? This can be captured in a QEA (i.e. NestedCommands on page 62) but not

in a ground EA without specifying the number of different coloured brackets beforehand.

4.5 Comparing with other specification languages

We now compare QEA with other specification languages, focusing mainly on those used in

runtime verification tools. We limit our discussion to expressiveness (and in some cases elegance)

and leave the issue of efficiency to later. Some of these were discussed briefly in Sec. 2.3.5.
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4.5.1 A note on embedded DSLs

Some specification languages are embedded in another language, or produce code that is, and

can therefore make use of this language to extend their specifications. The question is then

whether we consider this language as part of the specification language.

For example, TraceMatches is an extension of AspectJ. The language definition has no

support for free variables, but we can define variables within the aspect file and refer to them

within the code to execute on a match and can therefore simulate some notion of free variables.

Furthermore, JavaMOP allows us to execute arbitrary code whenever an event is created. Some

languages, such as TraceContract are designed as internal DSLs, in this case the design of

the specification language uses the original language to capture certain features. We consider

the specification language, and not what can be achieved through additional programming.

4.5.2 Dealing with parameters using slicing

QEA is closely related to techniques that take a slicing view. However, all of the existing

techniques make use of universal quantification only and do not capture free-variables in their

specification language

Typestate

Introduced in 1986, typestate [SY86] is a refinement of the concept of type. An objects type

determines what operations it can participate in. Typestate introduces the notion of an object

being in different states (contexts) and therefore having a restricted set of operations it can

participate in. Original examples focus on the issue of initialization where an object is either

in an initialized state or not and can only be used when initialised.

Typestate checking can be presented with a slicing view. To check that each object obeys its

typestate specification we only consider events relevant to that single object. This is straight-

forward as typestates are about single types, not collections of types.

Larva

Larva [CPS09] allows one to specify real-time propositional properties using the Dynamic Au-

tomata with Events and Timers (DATE) specification formalism. There is a focus on real-time

properties, hence the inclusion of timers. We place Larva here, rather than in the propositional

section, as it allows propositional monitors to be replicated for each object of a given type.

This is the idea behind slicing viewed from the opposite direction. Furthermore, this replication

mechanism can be nested, introducing a connectedness semantics for multiple quantifications.

This can be captured in QEA using the connected global guard.

LarvaStat [CGP10] is an extension to Larva that allows the collection of trace statistics, for

example the frequency an event occurs between two other events.

Tracematches

TraceMatches [AAC+05, BHL+07] is an extension of the AspectJ language, implemented

in the abc compiler [TMs]. Properties are written as regular expressions over pointcuts with
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variables, which are implicitly universally quantified. Like in AspectJ, we can attach advice to

tracematches to be executed on a match.

Again, the semantics are specified using slicing i.e. propositional trace is generated for

each binding of quantified variables. Here, the regular expression matches if any suffix of the

trace matches the expression, we say TraceMatches is suffix-matching. TraceMatches

therefore catches validations and specifications describe incorrect behaviour. This is the reason

for suffix-matching, it is often easier to describe failure in terms of the few error causing events.

For multithreaded program we can either consider the trace of each single thread separately, or

the interleaved trace of all threads.

In QEA the suffix-matching semantics can be simulated using non-determinism.

JavaMOP

JavaMOP [MJG+11, CR09] is a tool and an associated specification language from the Monitoring-

Oriented Programming (MOP) approach, an attempt to formalise the process of monitoring

programs as a programming methodology. JavaMOP is packaged as a stand-alone tool that

compiles specifications into AspectJ aspects. Aspects can then be directly weaved into the

monitored system. JavaMOP allows a user to embed code (actions) into the specification,

making feedback part of the system. JavaMOP is therefore mainly an inline tool, but could

be used outline given additional effort. The RV System [MR10] is a commercial extension of

JavaMOP.

JavaMOP separates the monitoring and specification activities using a framework that

utilizes multiple logic plugins. All of these logics are propositional and parametric monitoring is

achieved through slicing. Logics currently implemented include finite state machines, extended

regular expressions, context free grammars, linear temporal logic (future and past) and string

rewriting systems. Quantified variables are declared upfront, events are defined using AspectJ

pointcuts referring to these variables, and the property is then declared using these events. Like

TraceMatches, JavaMOP can also be run in suffix-matching and per-thread modes.

JavaMOP is often shown to be the most efficient existing parametric runtime verification

tool. This is largely due to extensive engineering effort and complex indexing mechanisms. We

mention these later where relevant.

JavaMOP assumes that for every parametric event e(x) we can construct a pair ⟨e, θ⟩
i.e. every event has an implicit list of variable parameters. This means that we cannot have

an event name occurring in a specification more than once i.e. we cannot have both lock(l1)

and lock(l2). Therefore, if we consider only the regular propositional plugins for JavaMOP

then it is less expressive than TraceMatches. JavaMOP has non-regular propositional

plugins for context-free grammars and string rewriting. Both can be simulated using guards

and assignments, although elegance would significantly deteriorate in some places. As discussed

earlier, we could also use non-regular event languages. JavaMOP also has two modes that

allow us to match on any partial binding, or any partial but maximal binding. These modes

can be simulated by a conjunction of QEAs i.e. producing a QEA for each subset of quantified

variables, removing transitions with removed variables.
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Difference with other parametric approaches

Trace slicing is only one way in which data parameters are dealt with in runtime monitoring.

Other approaches typically only consider the whole specification on each event (unlike the local

view of trace slicing), we call these approaches global.

The difference between global and slicing approaches can be seen in their treatment of the

notion of next. For example, if we consider the statement ‘For all x if f(x) then on the next

step g(x)’ a slicing interpretation would allow the trace f(1).f(2).g(1).g(2), whereas a global

approach would not.

Summary

Both Larva and TraceMatches have a regular propositional language, therefore they are

equivalent in expressive power to QEA without free variables. Also note that whilst Trace-

Matches and JavaMOP do not define free variables in their specification languages they can

make use of additional programming to capture some free behaviour.

In conclusion, QEA is more expressive than Larva, JavaMOP and TraceMatches, al-

though some of their modes may lead to more elegant specifications.

4.5.3 Rule-based approaches

Here we consider approaches that specify properties using rewrite rules.

Eagle and RuleR

EAGLE [BGHS04] [BRH08] is a rule-based framework for defining and implementing finite trace

monitoring logics. The EAGLE logic is a restricted first order, fixed-point, linear-time temporal

logic with chop over finite traces. The monitoring algorithm operates on a state-by-state basis,

as opposed to storing the execution trace, avoiding the need for backtracking. Hawk [dH05] is

a monitoring framework for EAGLE.

EAGLE is a very expressive and powerful logic, however it is not necessarily that efficient.

The RuleR [BGHS04, BRH08, BHRG09] tool has been been developed as a practically useful

and more efficiently executable subset of EAGLE. RuleR specifications are written using pa-

rameterised conditional rules. The general semantics can be summarised as updating a set of

states, each containing a set of rule activations, which themselves consist of a rule name and a

binding for that rule’s parameters. Each state is updated using the next event by attempting

to fire each of its rule activations. A rule definition takes the form

modifier name(x1 ∶ τ1, x2 ∶ τ2...) ∶ antecedent→ consequent;

The modifier determines the rule persistence i.e. whether it stays in the state if it has not fired.

The variables are simply typed and can be used in the antecedent and consequent. A rule is fired

if its antecedent evaluates to true and firing a rule consists of applying its consequent, which

might create new states, or add or remove rule activations from the current state. Antecedents

can contain free variables to be matched against the rest of the state (i.e. we ask if another
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rule activation exists with a suitable binding) and computations such as comparing and adding

integers. Notably, rule activations can be given as parameters to other rules, allowing us to

save some state of execution.

The multiple states represent a breadth-first non-deterministic exploration of all possible

states the rule system could be in given the trace. A specification will give acceptance or

failure conditions. RuleR uses a five-valued verdict domain (true, false, still true, still false

and unknown) and acceptance conditions might, for example, forbid a particular rule activation

leading to still false if that rule activation is in all states.

It should be noted that RuleR struggles with efficiency in some cases due to its expres-

siveness. The ability of rule antecedents to refer to other rule activations using free variables

means that a general indexing strategy is difficult to define.

Rule systems that reflect universally quantified state machines can be straightforwardly

encoded in QEA and vice versa. However, there are properties in both languages that are

difficult to specify in others. Rule systems that make use of global facts about a system require

a QEA to store these facts in assignments. QEA that rely heavily on the notion of maximality

(i.e. have many quantified variables bound at separate points) require rule systems that keep

track of the current maximal binding, which can become complicated.

Due to its ability to parameterise rules with rule activations, RuleR is Turing-complete.

Logscope

LogScope [BGHS10] is a restriction of RuleR to automata i.e. a rule’s antecedent is an

event. It also introduces a pattern language. LogScope was developed in response to a

need at NASA’s Jet Propulsion Laboratory, so many of the decisions were based on usability

considerations. LogScope [BGHS10]’s parametrised automata can be simulated in EA using

non-determinism.

Tracecontract

TraceContract [BH11b] is an internal DSL (an API in Scala) for writing monitors. It offers

an experimental combination of parameterized state machines with anonymous states, referred

to as state logic, future time linear temporal logic, and rule-based programming; as well as

free combinations of these forms. Logfire [Hav13b] is a recent development that is based on

the Rete algorithm [For82] borrowed from the field of Artificial Intelligence. Logfire attempts

to achieve an efficient checking mechanism for the rule-based approach. As these are internal

DSLs they are technically Turing-complete.

Summary

The main difference between these techniques and QEA is the matter of elegance. There are

properties that are straightforward to capture in these rule-based systems which are awkward

to express with QEA, and vice versa.
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4.5.4 Temporal logic

We consider extensions of LTL within the context of runtime verification and first-order LTL

in general.

Extending LTL

There have been efforts that extend LTL, taking a finite path semantics.

J-Lo [Bod05, SB06] uses a parameterised LTL with AspectJ pointcuts as propositions.

These pointcuts may define and access variables, which are implicitly universally quantified.

Checking is performed by rewriting the formula for each new event by splitting it into a now

and next part. The domains of quantified variables are captured by the rewritten formula and

are therefore collected over the trace.

Stolz introduced temporal assertions with parametrized propositions [Sto10], which adds

parametric events to next-free LTL. The domains of quantified variables are taken from the

current state and quantifiers must be associated with a constructing event, i.e. one that in-

troduces the binding. Therefore, unlike J-LO, quantifiers can be nested. Parametrized LTL

formulas are checked at runtime by translation to a form of alternating automaton that con-

structs and passes bindings through the transition function.

J-LO’s quantifications are global (like QEA), whereas Volker’s work considers nested quan-

tifications where the domain of quantification is taken at the current state. As both approaches

include a global notion of next the translation into QEA would not be completely straightfor-

ward, but would be possible.

First Order LTL

There are different formulations of first order LTL and in runtime verification we would usually

consider a restricted form where, in each frame, only one predicate is true (representing the event

occurring on that step) and give a finite-path semantics. We do not yet fully understand the

relationship between first order LTL and QEA, but in the following we discuss the relationship.

We can automatically translate certain forms of FO-LTL formulas into QEA. Any FO-LTL

Q.F where Q is a list of quantifiers and F is a quantifier-free next-free1 formula can be translated

into QEA by applying the standard automata translation to F . The next-free requirement is

due to the local-only interpretation of next in QEA i.e. we cannot assert anything about the

next event in the trace, only in the trace slice. We note that not every FO-LTL formula can be

put into prenex normal form.

However, the next-free restriction is not universal. For example, the FO-LTL formula ∀x ∶
◻(f(x) → ◯g(x) ∧ g(x) → ◯f(x)) can be represented as a QEA by observing that any trace

satisfying the formula is an alternation of f and g. We can also translate QEA using free-

variables into FO-LTL, although we do not have a general procedure. For example the QEA

that asserts that c must always be incremented by one can be captured by the FO-LTL formula

∀c ∶ count(c) → ◯count(c + 1). However some QEA are less straightforward to phrase as an

FO-LTL formula due to the interaction between quantified and free variables.

1We state this requirement informally. A formula is next-free if it never places any requirements on what
must come next e.g. does not use the next operator and only uses Until with negation on the left.
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4.5.5 Other approaches

We consider approaches that do not belong to the previous categorisations.

UML state charts

The state chart part of the Unified Modeling Language (UML) [Obj09] is a form of extended

finite state machine that includes parametric events, state variables, transition guards and ac-

tions. They, therefore, closely resemble our Event Automata. There are a number of differences,

for example nested states, orthogonal regions, internal transitions, but due to the expressiveness

of UML statecharts and EA it would be straightforward to directly move between the two. As

QEA are strictly more expressive than EA (before fixing domains), QEA are more expressive

than UML state charts.

Query languages

Program Query Language (PQL) [MLL05] captures properties about sequences of events as-

sociated with a set of related objects. Queries are written in a context free language and can

refer to field accesses as well as method calls. Queries can be statically evaluated to reduce the

number of dynamic checks. Queries are checked at runtime via translation to a state machine.

Program Trace Query Language (PTQL) [GOA05] poses SQL-like relational queries over

program traces, which are viewed as sets of timestamped records where events are modeled as

relations. Event parameters are captured as fields and can be used arbitrarily in queries.

This approach takes a different view from QEA and has shown to be less efficient for moni-

toring at runtime.

Using Register Automata

A recent technique [GDPT13] makes use of Register Automata [NSV04] for parametric run-

time verification. Specifications are given in the Temporal Object Property Language (TOPL)

[GPD11], which allows the user to describe an automata view of their property. The underlying

idea of this approach is that values can be saved to, and compared with, registers. Quantifi-

cation is achieved by non-determinism i.e. by staying in the same state (without creating the

new binding) and transitioning to the new state (creating the new binding). As acceptance is

determined by not reaching an error state quantification is implicitly universal.

Register Automata can be captured by EA so this approach is strictly less expressive than

QEA. To simulate TOPL we would replicate the idea of capturing quantification using non-

determinism.

Specification mining

Let us compare QEA to the languages targeted by the specification mining techniques we iden-

tified in Chapter 2. In terms of quantifications, the specifications mined by JMiner [LCR11]

are closed to QEA as they employ a (connected) slicing semantics. The binary rules of Tark

[LCH+09, LRRV12] represent very simple (two-state) automata that can easily be represented
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by QEA. Neither approach considers existential quantification. TzuYu [XSL+13] extracts state-

ful typestates i.e. singularly quantified state machines with free variables. All of the active

techniques extract some form of extended finite state machine that could be captured by EA.

However, in this work we will be focusing on mining QEA without free variables.

4.6 Summary

In this chapter we have discussed different styles that can be used when specifying QEA and

have discussed the complexity of the trace checking process and the expressiveness of QEA in

relation to alternative specification languages.

4.6.1 The missing pieces

Now that we have introduced QEA and explored their properties we consider some final lin-

guistic concerns required to make QEA a well-rounded specification language. There are some

questions we have not asked including:

• Is the problem of deciding whether the language of a QEA is empty decidable? If so, how

does one compute this?

• Are QEA closed under negation? If so, how do you compute the negation?

• Are QEA closed under union or intersection? If so, how do you compute these?

In each case we can consider these questions for QEA generally and for syntactic restrictions

of QEA. For example, considering the class of QEA without free variables would simplify the

exploration. Where free variables are included the answers to these questions will be dependent

on the chosen guard/assignment language.

We do not attempt to address these questions here. However, we note that that our method

for defining the domain of quantification in terms of the trace will complicate the issue. We

would only be able to take the intersection and union of QEA that have the same domains for

quantified variables. Having the same alphabet and quantification list (up to variable renaming)

would be sufficient for this, however not necessary.

Whilst these issues are of some interest they are not directly concerned with the runtime

verification or specification mining applications explored in this work, which are only concerned

with the word problem i.e. is a given trace in the language of a given QEA.
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Chapter 5

Incremental Monitoring

In the previous chapter we introduced QEA with a big-step semantics i.e. the acceptance of

a trace was based on analysing the whole trace. This approach is unsuitable for monitoring

at runtime as events are received one at a time, therefore this chapter introduces a small-step

semantics that processes traces incrementally, giving the status of the monitored QEA after

processing each event. This small-step semantics will be equivalent to the big-step semantics

for each prefix of the trace.

Outline. We will begin in Section 5.1 by exploring what makes the incremental monitoring

process difficult and outline the work that needs to be done. Based on some constructions

related to bindings (Sec 5.2) we then build a small-step semantics (Sec. 5.3) and discuss its

complexity (Sec. 5.4). Next we prove that this new semantics is equivalent with that given

previously (Sec. 5.5). Finally, we present an algorithm for carrying out monitoring and show

that this implements the small-step semantics (Sec. 5.6).

5.1 The problem of monitoring

We use the UnsafeIter example, given in Fig. 5.1, to demonstrate the challenges involved in

incremental monitoring and illustrate how we will solve them.

Imagine we begin monitoring and receive the event create(A). We need to record the

information this contains; that c maps to A and the trace slice for this binding. We then

receive the event create(B). We have two values for c and two trace slices, so we construct the

map

[c↦ A] ↦ create(A)
[c↦ B] ↦ create(B)

However, we note that storing these trace slices directly will soon become inefficient. Instead,

we can replace the trace slice with the configurations reached in the EA. So our map becomes

[c↦ A] ↦ {⟨2, [ ]⟩}
[c↦ B] ↦ {⟨2, [ ]⟩}

92
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1 2 3 4 5

∀c∀i

create(c) iterator(c, i) update(c) use(i)

Figure 5.1: A version of the UnsafeIter property from Appendix A.3.2.

This gives the domain of c and the status of the associated (partially) instantiated EA.

At this point the domain of i is empty and the verdict is true as universal quantification over

an empty domain is always true. We now receive the event iterator(A,1), which introduces

an iterator object, leading to the new binding [c↦ A, i↦ 1].
When adding this new entry we have to associate it with a set of configurations. From our

knowledge of the big-step semantics we can see that the projected trace so far for this binding

is create(A).iterator(A,1) and therefore the configuration should be ⟨3, [ ]⟩. So the question

is how do we get to this based only on the information available i.e. our map from bindings to

configurations. There are three bindings in the domain of our map in the following (partial)

order:

[ ]

[c↦ A] [c↦ B]

Two bindings are consistent with the binding we want to add, [c ↦ A, i ↦ 1], but the biggest

of these, [c ↦ A], stores the most information about relevant events. In fact, if [c ↦ A, i ↦ 1],
is not in our domain then the biggest consistent binding stores all of the information about the

relevant events seen so far. Therefore, when adding [c ↦ A, i ↦ 1] we look for transitions out

of the configuration associated with [c↦ A]. In this case 2
iterator(i,c)ÐÐÐÐÐÐÐ→ 3 matches. We will call

the biggest consistent binding the maximal binding. For completeness we must also add the

binding [c↦ B, i↦ 1] using [ ] as it is the maximal binding.

If we then receive iterator(B,2) we would carry out the same process, leaving us with the

following map:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[c↦ A] ↦ {⟨2, [ ]⟩}
[c↦ B] ↦ {⟨2, [ ]⟩}
[c↦ A, i↦ 1] ↦ {⟨3, [ ]⟩}
[c↦ B, i↦ 1] ↦ {⟨1, [ ]⟩}
[c↦ A, i↦ 2] ↦ {⟨1, [ ]⟩}
[c↦ B, i↦ 2] ↦ {⟨3, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we then receive update(A) we generate the binding [c↦ A]. This binding already exists in

our map, so we do not create it. The binding is also relevant to [c↦ A, i↦ 1] and [c↦ A, i↦ 2]
as it is a submap of both bindings. This means that the event will belong to the trace slice of

each binding. In the case of [c↦ A, i↦ 1] this updates the configuration to state 4.

Finally, if we observe use(1) we will create the binding [i ↦ 1]. This is a new binding, so

we can add it to our map using the maximal binding [ ], so it remains in the initial trace. This

binding is also relevant to [c ↦ A, i ↦ 1] and [c ↦ B, i ↦ 1]. In the case of [c ↦ A, i ↦ 2] this
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means that the state is update to the non-final state 5. The trace slice for this binding is

create(A).iterator(A,1).update(A).use(1)

As one entry for a total binding is now in a non-accepting state the false verdict is returned for

the first time, at the point where the error occurs.

Let us now summarise what we have learned. To avoid having to iterate over the trace twice

we must build the derived domain and keep track of the status of each instantiated EA on the fly.

We can capture the derived domain in the bindings that can be built from it, instead of storing

this separately, and capture the status of each instantiated EA by the reachable configurations.

Most importantly, when introducing a new binding we need to use the configurations associated

with maximal existing binding as the start set of configurations as these contain all information

pertaining to the trace slice for the new binding.

5.2 Bindings

In this section we discuss bindings and their properties relevant to this work. Some of these

definitions and properties have been discussed elsewhere [RC12] in relation to runtime moni-

toring, and this other work gives a more thorough discussion. We introduced the concept of

bindings in Sec. 3.1.2.

Firstly, to help us separate quantified and free variables in bindings we introduce the function

quantifiedQ(θ) = [(x↦ v) ∈ θ ∣ x ∈ vars(Q.Λ)]

Where Q is omitted if clear from context.

5.2.1 Least upper bounds

Two bindings are compatible iff they define the same value for every variable they share. A set

of bindings is (pairwise) consistent if each pair is compatible:

compatible(θ1, θ2) = ∀x ∈ dom(θ1) ∩ dom(θ2) ∶ θ1(x) = θ2(x)
consistent(Θ) = ∀θ1, θ2 ∈ Θ ∶ compatible(θ1, θ2)

The least upper bound (lub) of two compatible bindings θ1 and θ2, written θ1 ⊔ θ2, is the

smallest binding that contains θ1 and θ2 i.e. satisfying

dom(θ1 ⊔ θ2) = dom(θ1) ∪ dom(θ2) and (θ1 ⊔ θ2)(x) = θ1(x) or θ2(x).

For a set of bindings Θ we define upper bounds, least upper bounds and maximums:

• Binding θ′ is an upper bound of Θ iff ∀θ ∈ Θ ∶ θ ⊑ θ′. Note that, by definition of ⊑, Θ only

has upper bounds if it is consistent.

• Binding θ′ is a least upper bound (lub) of Θ iff it is an upper bound and θ′ ⊑ θ′′ for any

upper bound θ′′ of Θ. Again, Θ only has lubs if it is consistent, furthermore it has at
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most one lub ⊔Θ as if there existed another lub θ2 we would necessarily have ⊔Θ ⊑ θ2

and θ2 ⊑ ⊔Θ and both lubs would be equal. For consistent set of bindings Θ = {θ1, . . . θn}
it is the case that the lub of Θ is the smallest binding that contains all bindings in Θ i.e.,

⊔Θ = θ1 ⊔ . . . ⊔ θn

• Binding θ′ is a maximum of Θ iff it is in Θ and is a lub of Θ. As lubs are unique,

maximums are unique and again only exist if Θ is consistent. Let us write the maximum

of Θ as maxΘ.

A set of bindings Θ is lub-closed iff

∀Θ′ ⊆ Θ ∶ consistent(Θ′)⇒⊔Θ′ ∈ Θ

We write close⊔(Θ) for the lub-closure1 of Θ i.e., the smallest lub-closed superset of Θ. Note

that this must exist as the set of all bindings is lub-closed. Given a set of bindings Θ and a

binding θ let below(Θ, θ) be the set of bindings in Θ ‘below’ θ i.e.,

below(Θ, θ) = {θ′ ∈ Θ ∣ θ′ ⊑ θ}

Note that θ is not necessarily in Θ.

We now define an important property about lub-closed sets of bindings:

Lemma 1. If Θ is lub-closed then below(Θ, θ) has a maximum element.

Proof. As below(Θ, θ) ⊑ Θ and Θ is lub-closed we know that ⊔below(Θ, θ) ∈ Θ. If θ ∈ Θ then

θ = ⊔below(Θ, θ) as θ is larger than all bindings in below(Θ, θ) by definition, and therefore

θ = max below(Θ, θ). If θ /∈ Θ then ⊔below(Θ, θ) ⊑ θ and therefore, by definition of below(Θ, θ),
we know that ⊔below(Θ, θ) ∈ below(Θ, θ), and ⊔below(Θ, θ) = max below(Θ, θ).

We saw earlier that when adding a new binding we want to extend the most informative

(maximal) binding. Therefore, when adding a binding θ we will be taking the lub-closed set of

existing bindings Θ and want to find the maximum element of below(Θ, θ) i.e.,

max below(Θ, θ)

From the above proof we pick out another important property which we will also use later.

Lemma 2. If θ ∈ Θ and Θ is lub-closed then max below(Θ, θ) = θ.

The proof of this property is given in the proof above. To summarise, for all sets of bindings

Θ and bindings θ:

1. max below(close⊔(Θ), θ) always exists

2. θ ∈ Θ ⇒ θ = max below(close⊔(Θ), θ)
1Note that we do not use the ambiguous syntax employed in previous work [RC12] to write ⊔Θ for the

lub-closure of Θ as well as the lub of Θ.
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5.2.2 Dealing with partial bindings

As we only have partial information about the trace we will be creating partial bindings i.e.,

bindings that do not capture all quantified variables. To deal with partial bindings we introduce

the concept of event relevance, which defines when a ground event is relevant to a binding within

the context of a QEA.

Definition 33 (Event Relevance). For a QEA with a quantification list Λ and EA with alphabet

A, a ground event a is relevant to a binding θ if it matches with an event in A without capturing

new quantified variables:

relevant(a, θ,A) iff ∃b ∈ A(θ) ∶ matches(a,b) ∧ quantified(match(a,b),Λ) = [ ]

The first part of the intuition behind this definition is straightforward; an event is relevant

to a binding if it it matches with an event in the alphabet. The second part is important as

we are dealing with partial bindings; if the resulting (quantified) binding is not included in

the original binding then it is relevant to a more informative binding i.e. one that binds more

quantified variables.

Previously, we checked whether an event a was relevant to a binding θ by checking if a ∈
ground(E(θ)). When θ is total this is equivalent to event relevance.

Lemma 3. For any EA E with alphabet A, list of quantifications Λ, and event a

∀θ ∈ Bind ∶ total(θ,Λ)⇒ (relevant(a, θ,E .A)⇔ a ∈ ground(E(θ)))

Proof. As θ is total, by definition there are no quantified variables in A(θ) and therefore for all

b ∈ A(θ) we have that quantified(match(a,b)) = [ ]. This means that event relevance reduces

to the following for total θ:

relevant(a, θ,A) iff ∃b ∈ A(θ) ∶ matches(a,b)

Which is equivalent to the definition of ground(E(θ)) in Def. 21.

5.2.3 Extending bindings

The next concept we introduce is that of binding extensions, which construct the set of bindings

that extend a given binding using a given event. It is important that we capture all information

that can be extracted from an event, which requires a number of steps.

The extensions of binding θ based on the event a are the consistent combinations of the

bindings we get when we match a with any binding in alphabet A. To define this set we must

first introduce from(θ,a,A), the set of bindings that can be built from a, and all from(θ,a,A),
the lub-closure of these bindings and their submaps.

Definition 34 (Extending a Binding). Let the bindings extending θ for an event a be defined

as follows

extensions(θ,a,A) = {θ † θ′ ∣ θ′ ∈ all from(θ,a,A) ∧ θ′ ≠ [ ]}
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where

from(θ,a,A) = {quantified(match(a,b)) ∣ b ∈ A(θ) ∧matches(a,b)}
all from(θ,a,A) = close⊔ {θ′ ∣ ∃θ′′ ∈ from(θ,a).θ′ ⊑ θ′′}

The set A is omitted if clear from context.

Therefore, the set of binding extensions is given by adding to θ any (non-empty) binding

that can be built from the incoming event (i.e. is in all from).

Let us use the lock ordering property, discussed in Sec. 4.1.4 and defined in Appendix A.3.3

on page 347, to show why we must close the set of bindings we extract from the event. This

specification has events in the alphabet of the EA that lead to multiple bindings of quantified

variables that interact. Consider the event lock(1). The big step semantics tells us that we

must consider the total binding [l1 ↦ 1, l2 ↦ 1]. To create this we need to match lock(1) with

lock(l1) and lock(l2) to construct the bindings [l1 ↦ 1] and [l2 ↦ 1] and then combine these,

hence taking the least upper bound closure. Appendix A.2.1 gives a further example motivating

the need for this definition of binding extensions.

A note on the relation between event relevance and binding extensions

Our initial intuition might be that if an event a is relevant to a binding θ then there are no

extensions, as we can see that

relevant(a, θ,A)⇒ from(θ,a) ⊆ {[ ]}

as quantified(match(a,b)) = [ ] in the definition of relevance. Recall that event relevance is

based on the idea that θ is the most informative binding that is consistent with the event.

However, note that both definitions rely on the existence of an event in the alphabet and it is

possible that there may be different events that make an event relevant and populate from(θ,a).
If they were the same event we would have a contradiction as the definition of relevance says

that matching with b binds no new quantified variables, whereas from(θ,a) selects only new

quantified variables.

Event relevance and binding extensions will serve two different purposes; event relevance

will be used to decide whether an event should be used to update a binding’s configurations,

and binding extensions will be used to construct new bindings.

5.3 A small step semantics for QEA

In this section we introduce an alternative semantics for QEA that updates the information it

holds about the trace seen so far with a new event to produce a new verdict. As mentioned

previously, this semantics will be equivalent to the big-step semantics for each trace prefix, we

prove this later. Appendix A.2.2 gives a thorough worked example of this semantics.
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5.3.1 Semantics with projections

Firstly, we show how bindings of quantified variables can be created on-the-fly and associated

with their relevant projections. To do this we construct a monitoring state that associates

bindings with projected traces.

MonitoringState = Binding ⇁ Trace

To update a monitoring state we use the binding extensions introduced in the previous

section. When adding a binding extension we must also associate it with a projection; whether

the new event is associated with a binding extension is decided by event relevance.

Given a binding θ associated with trace σ we construct a monitoring state mapping exten-

sions of θ to appropriate extensions of σ.

Definition 35 (Extending Projections). Let the projection extensions be defined as:

extendp(a, θ, σ) =
⎡⎢⎢⎢⎢⎣
θ′ ↦ σ′ ∣ θ′ ∈ extensions(θ,a) ∧ σ′=

⎧⎪⎪⎨⎪⎪⎩

σ.a if relevant(a, θ′)
σ otherwise

⎤⎥⎥⎥⎥⎦

As outlined earlier, it is important that new bindings are added using the maximal existing

binding. The following construction achieves this by iterating through existing bindings from

largest to smallest (with respect to ⊑) and only adding bindings if they do not already exist.

Therefore we will only be able to add a new binding if it is extending the maximal existing

binding.

Definition 36 (Single Step Monitoring Construction). Given ground event a and monitoring

state M . Let θ1, . . . , θm be a linearisation of the domain of M i.e. if θj ⊏ θk then j > k and

every element in the domain of M is present once in the sequence, hence m = ∣M ∣. We define

(a ∗M) = Nm ∈ MonitoringState where Nm is iteratively defined as follows for i ∈ [1,m].

N0 = [ ]

Ni = Ni−1 † Addi †
⎧⎪⎪⎨⎪⎪⎩

[θi ↦M(θi).a] if a is relevant to θi

[θi ↦M(θi)] otherwise

where Addi = [(θ′ ↦ σ′) ∈ extendp(a, θi,M(θi)) ∣ θ′ ∉ dom(Ni−1)]

This builds up a new monitoring state from an old monitoring state, adding any binding

extensions and appending the event to a projected trace if it is relevant. It is the linearisation of

the domain ofM with respect to ⊑ that ensures maximality. Note that, trivially, the linearisation

used does not matter; if two bindings are not related by ⊑ they are inconsistent and cannot

have the same extending binding.

This single step construction can then be used to give a monitoring state for a trace, typically

the trace seen so far.

Definition 37 (Stepwise Monitoring). For a trace τ = a0.a1 . . .an we define the final monitoring

state Mτ as an ∗ (. . . ∗ (a0 ∗ [ [ ]↦ ε ]) . . .).
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As is noted in Section 5.1 storing projections directly is inefficient and cumbersome. Instead

we want to store the set of configurations that those projections reach. Next we extend the

notions of extension to deal with configurations instead of projections.

5.3.2 Semantics with configurations

To deal with configurations instead of projections we replace monitoring states with monitor

lookups, which map bindings to sets of configurations

MonitorLookup = Binding ⇁ P(Config)

a set of configurations is necessary as a QEA can be non-deterministic.

To update a monitor lookup we update the set of configurations associated with a binding.

We build up the next configurations by first constructing those configurations that are the result

of taking a transition and then those that remain as no transition can be taken (recall we use

a skip-style semantics).

Definition 38 (Next). For EA E = ⟨Q,A, δ, q0, F ⟩ define the next configurations for binding θ,

configurations C and a ground event a as follows:

next(θ,a,C) = move(θ,a,C) ∪ stay(θ,a,C)

where the sets move and stay are defined as

⟨q2, γ(ϕ † match(a,b(θ)))⟩ ∈ move(θ,a,C) if

∃q1 ∈ Q,∃g ∈ Guard ∶
⟨q1, ϕ⟩ ∈ C ∧ (q1,b, g, γ, q2) ∈ δ∧
okay(a,b, θ, ϕ, g)

⟨q1, ϕ⟩ ∈ stay(θ,a,C) if
/∃ b ∈ A ∶ ∃q2 ∈ Q,∃g ∈ Guard ,∃γ ∈ Assign ∶
⟨q1, ϕ⟩ ∈ C ∧ (q1,b, g, γ, q2) ∈ E.δ ∧ okay(a,b, θ, ϕ, g)

in terms of the okay function, defined as

okay(a,b, θ, ϕ, g) = matches(a,b(θ)) ∧ quantified(match(a,b(θ))) = [ ]
∧g(ϕ † match(a,b(θ))

A configuration ⟨q2, ϕ
′⟩ is the result of a move if there is a configuration ⟨q1, ϕ⟩ in C such

that a transition starts in q1 and ends in q2, the guard is satisfied and ϕ′ is the result of applying

the assignment appropriately. Note that we make use of a function okay to check matching, the

guard and, importantly, relevance. A configuration is said to stay if it was not used to construct

a configuration that is the result of a move i.e. there is no appropriate transition in δ.

This declarative presentation of the next function may not be completely transparent, so

for added clarity it is also captured as the Next function in Algorithm 1. To see that these are

equivalent note that the algorithm considers each possible transition and adds a new configura-

tion for each transition that can be made (relating to the move set) and retains the configuration
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if no transitions can be made (relating to the stay set). The checks and operations carried out

for each transition can be directly mapped to those used in the definition of next.

Algorithm 1 Finding the next configurations when adding an event to a projection.

function next(θ : Binding, a : GEvent, C : Set[Config]) :Set[Config]
next ← ∅
for ⟨q,ϕ⟩ in C do

for (q1,b, g, γ, q2) ∈ E.δ do
if q1=q ∧ matches(a,b(θ)) then

ϕ′ ← ϕ†match(a,b(θ))
if quantified(ϕ′)=[ ] and g(ϕ′) then

next ← next + ⟨q2, γ(ϕ′)⟩
if no transitions are taken then

next ← next ∪⟨q,ϕ⟩
return next

An important property of next is that if an event is not relevant to a binding then its next

configurations remain unchanged.

Lemma 4. If a is not relevant to θ then next(θ,a,C) = C.

Proof. We show that if a is not relevant to θ then

move(θ,a,C) = {} stay(θ,a,C) = C

and therefore next(θ,a,C) = C. We begin by noting that by the definition of event relevance

(Def. 33) if a is not relevant to θ then

∀b ∈ A(θ) ∶ ¬matches(a,b) ∨ quantified(match(a,b)) ≠ [ ]

and we can expand out the application of θ to A to write the equivalent

∀b ∈ A ∶ ¬matches(a,b(θ)) ∨ quantified(match(a,b(θ))) ≠ [ ]

This implies that

∀b ∈ A ∶ ¬okay(a,b, θ, ).

This gives the result that move(θ,a,C) = {} as the condition for a configuration based on event

b being in move(θ,a,C) is dependent on okay(a,b, θ, ). Similarly, a configuration in C is

included in stay(θ,a,C) if and only if there is no b such that okay(a,b, θ, ) holds and there

is a transition from that configuration involving b. As okay(a,b, θ, ) does not hold for any b

every configuration in C is included in stay(θ,a,C).

An updated extend function can now be given that computes associated configurations for

all extending bindings. Note that using Proposition 4 we can combine the two cases for when

a is relevant or not.
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Definition 39 (Extending Configurations). Let the configuration extensions be defined as:

extendc(θ,a,C) = [θ′ ↦ next(θ′,a,C) ∣ θ′ ∈ extensions(θ,a)]

We now update the single step monitoring construction given in Def. 36. This previous

definition updated a monitoring state (map from bindings to projections) by stepping over a

linearisation of its domain. We now replace this monitoring state with a monitoring lookup

(map from bindings to sets of configurations). This requires us to make two other replacements.

Firstly, the extendp function is replaced by the extendc function defined above. Secondly, the

next function is used to compute the result of extending a projection. Note that the next

function preserves configurations if an event is not relevant, as captured by Lemma 4. The single

step monitoring constructions for configurations can be given as the construction in Def. 36 with

these changes; we replicate it here with the described modifications for completeness.

Definition 40 (Single Step Monitoring Construction). Given ground event a and monitoring

lookup L. Let θ1, . . . , θm be a linearisation of the domain of L i.e. if θj ⊏ θk then j > k and

every element in the domain of L is present once in the sequence, hence m = ∣L∣. We define

(a ∗L) = Nm ∈ MonitoringLookup where Nm is iteratively defined as follows for i ∈ [1,m].

N0 = [ ]
Ni = Ni−1 † Addi † [θi ↦ next(θi,a, L(θi))]

where Addi = [(θ′ ↦ C ′) ∈ extendc(a, θi, L(θi)) ∣ θ′ ∉ dom(Ni−1)]

This is lifted to traces in the same way as before. In this case a set of configurations

capturing an empty projection is used.

Definition 41 (Stepwise Monitoring). For a trace τ = a0.a1 . . .an we define the final monitoring

lookup Lτ as an ∗ (. . . ∗ (a0 ∗ [ [ ]↦ {⟨q0, [ ]⟩ ]) . . .).

5.3.3 Type variable adjustment

Rather than deal with type variables in our construction, and add additional data structures, we

will augment the alphabet to ensure that the domains are combined, as suggested in Sec. 3.5.2.

We present a function on QEAs that achieves this. We present an implicit function we will

often assume has been applied to a QEA.

Definition 42 (Type Variable Adjustment). Given the QEA Q = ⟨Λ, ⟨Q,A, δ, q0, F ⟩,D⟩ let

the type variable adjusted version be adjusted(Q) = ⟨Λ, ⟨Q,A′, δ, q0, F ⟩,D⟩ where if Λ = Q1x1 ∶
X1.g1, . . . ,Qnxn ∶Xn.gn for Q ∈ {∀,∃} we have

A′ = A ∪ {e(y1, . . . , yn) ∣ ∃e(x1, . . . , xn) ∈ A,∀i ∈ [1, n] ∶ yi ∈ varsOf(typeOf(xi))}

using the definitions of varsOf and typeOf given in Def. 26.

This may lead to a much larger alphabet but no bindings will be created that would not have

been in the big-step semantics. Adjusting the alphabet in this way ensures that all relevant

bindings are contained in the domain of the monitor lookup.
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5.3.4 Acceptance

As a monitor lookup contains all our information about the trace we can give acceptance as a

predicate on monitor lookups.

Definition 43 (Monitor Lookup Acceptance). For QEA Q = ⟨Λ,E ,D⟩ and trace τ let Lτ be

the final monitor lookup for trace τ and QEA adjustedQ. Let

DL(x) =
D(typeOf(x)) if typeOf(x) ∈ dom(D)
{θ(x) ∣ θ ∈ dom(L) ∧ x ∈ dom(θ)} otherwise

give the domain of a variable in a monitor lookup L. Q accepts τ if and only if Lτ ⊧θ Λ, defined

as

L ⊧θ (∀x ∶ g)Λ′ iff for all d in DL(x) if g(θ † [x↦ d]) then L ⊧θ †[x↦d] Λ′

L ⊧θ (∃x ∶ g)Λ′ iff for some d in DL(x), g(θ † [x↦ d]) and L ⊧θ †[x↦d] Λ′

L ⊧θ ε iff

⎧⎪⎪⎨⎪⎪⎩

∃⟨q,ϕ⟩ ∈ L(θ) ∶ q ∈ E .F if θ ∈ dom(L)
E .q0 ∈ E .F if θ ∉ dom(L)

The check for θ ∈ dom(L) deals with the case where θ binds a quantified variable in D but

not in Dom(τ). In this case the projected trace is necessarily empty and therefore in the initial

state. Later we show that all relevant bindings are generated in the monitor lookup.

5.4 Complexity of small step semantics

We consider the time complexity of the trace checking process as defined by the small-step

semantics. We discuss this in terms of the size of monitor lookup with respect to the trace seen

so far and the complexity of each step with respect to the size of monitor lookup. We assume a

trace τ and a QEA Q = ⟨Λ,E ,D⟩ where E = ⟨Q,A, δ, q0, F ⟩. We recall the structural properties

introduced in Sec. 4.3 i.e. k, the maximum arity of an event, and r, the minimum number of

times a value is reused.

The size of a monitor lookup

When considering the size of the monitor lookup we should consider the number of entries and

the size of each entry.

Number of entries. Let us consider the size of dom(Lτ.a) by examining the process by which

new bindings are added to Lτ . The set of new bindings given a are:

⋃
θ∈dom(Lτ )

{θ′ ∈ extensions(a, θ) ∣ θ′ ∉ dom(Lτ)}

If we have seen a before then this set is empty as we will already have added all extensions.

Otherwise, let b be the number of new values in a. A given binding of size l can be extended

in a maximum ∑ki=(k−l) (bi) ways. Therefore, the number of bindings introduced depends on the
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structure of dom(Lτ) i.e. the average size of bindings. Note that b will typically be small and

less than k.

The ratio between these two cases is controlled by k and r i.e. the number of values in an

event combined with the number of times a value is reused. That is the second case (where new

bindings are introduced) will happen ∣τ ∣k
r

times. Note that later (Lemma. 16) we show that

dom(Lτ) = construct(τ).

Size of entries. The number of configurations for each binding. If Q is deterministic then

this is 1, otherwise it is bounded by the maximum branching possible i.e. the maximum number

of paths that could be followed by τ in Q. As an upper bound this is ∣τ ∣. To see this imagine an

EA with no quantified variables and a single looping transition labelled with f(x) and a trace

of events with different values for x. Without free variables, the number of configurations is

bounded by the number of states.

The size of DL. Assuming D = [ ], DL gives the values for each quantified variable. In the

worst case, every parameter of every event could introduce a new value. If we assume that each

event is repeated on average r times and on average contributes only one value to the domain

of each variable then the size of each domain would be ∣τ ∣
r

.

Complexity of a step

For each step of the single step monitoring construction (Def. 40) we compute a linearisation

of the monitor lookup and for each entry we construct next and extend, after combining these

into a new monitor lookup we then decide acceptance. Let us consider the complexity of each

of these steps.

Let us assume our monitor lookup is of size m (i.e. contains m bindings).

• Computing linearisation. This requires sorting of the monitor lookup, which has a

bound of O(m log m).

• Computing next. This requires iterating over the configurations C and δ. If we take

matching, quantifying a binding and deciding guards to be constant time then this has a

bound of O(∣C ∣∣δ∣). Note the above bound on C.

• Computing extend. This first computes the extending bindings and then calls next for

each binding. Binding extensions are computed by first iterating over A and then taking

all submaps of produced bindings, which will be bounded by A2k. We then take the

lub-closure of this set and then iterate over it once more. This gives a total upper bound

of O(2k2), with k being small.

• Deciding acceptance. This requires us to first construct DL by iterating over the mon-

itor lookup and then stepping over the tree-like structure given by ⊧, therefore deciding

acceptance is bounded by

O(∣Lτ ∣ +
i=∣Λ∣

∏
i=0

∣DLτ (Λ(i))∣)
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Putting this together, the complexity of each step is

O(m log m +m(∣C ∣∣δ∣ + 2k
2

) + ∣Lτ ∣ +
i=∣Λ∣

∏
i=0

∣DLτ (Λ(i))∣)

Note that a large portion of this involves computing a verdict on each step. An optimisation

we introduce in Sec. 6.2 addresses this.

Summary

It is difficult to compare this with the complexity of the big-step semantics in Sec. 4.3 as so

much is dependent on the structure of the trace and QEA. However, in the worst case, the

small step approach is more complex as we need to keep track of intermediate information. In

the next chapter we see optimisations that alleviate much of this complexity, i.e. introducing

incremental checking and reducing the size of Lτ .

5.5 Proving equivalence of semantics

We want to prove that the big step semantics introduced in Chapter 3 and small step semantics

introduced earlier in this chapter coincide. To do this we show that the acceptance relations in

both semantics are equivalent.

Theorem 1 (Equivalence of Acceptance Relations). For all QEA Q = ⟨Λ,E ,D⟩ and traces τ

τ ⊧ Λ⇔ Lτ ⊧ Q.Λ (5.1)

Where the left-hand-side acceptance relation is taken from Def. 27 on page 68 and the right-

hand-side acceptance relation is taken from Def. 43 on page 102.

The proof of this theorem will take the following steps. To begin with (Sec. 5.5.1) we

introduce an intermediate big-step semantics for partial bindings and show that this is equivalent

to big-step semantics for total bindings. We then (Sec. 5.5.2) show that the small-step and big-

step semantics construct the same set of bindings from a trace. We then (Sec. 5.5.3) establish

that the trace projections in monitoring states coincide with those given by the partial big-

step semantics, and then (Sec. 5.5.4) that monitor lookups contain configurations that agree

with these trace projections. Therefore, by going via the partial big-step semantics we finally

(Sec. 5.5.5) show that the verdict produced by the big-step and small-step semantics are the

same and finally prove Theorem 1.

5.5.1 A big-step semantics for partial bindings

The big-step constructions introduced in Chapter 3 assumed that we were dealing exclusively

with total bindings. To deal with partial bindings we introduce partial versions of an EA’s

general language and the transition relation.

We begin by using the notion of event relevance to define a notion of partial ground alphabet

to replace (total) ground alphabet in Def. 24.
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Definition 44 (Partial Ground Alphabet). Let the partial ground alphabet of EA E with al-

phabet A be

partial ground(E , θ) = {a ∈ GEvent ∣ relevant(a, θ)}

We relate this to the ground alphabet for total bindings.

Lemma 5. For total bindings projection with respect to a partial ground alphabet is equivalent

to projection with respect to a ground alphabet.

Proof. Lemma 3 shows that for total bindings θ, ground(E(θ)) = partial ground(E , θ), as the set

of relevant events is equivalent to the ground alphabet.

An EA’s partial general language is then defined as before (in Def. 24) using the partial

ground alphabet i.e.

Lpartial G(E ,B) = {τ ∈ B∗ ∣ τ ↓partial ground(E)∈ L(E)}

Again, by Lemma 3 this is equivalent to total general language when θ is total.

Next we introduce the partial transition relation that adds the notion of event relevance to

the previous definition of transition relation for EA (Def. 22) i.e. we ensure that no quantified

variables are bound. As before we assume that an EA is (partially) instantiated.

Definition 45 (Partial Transition Relation). Consider an EA E = ⟨Q,A, δ, q0, F ⟩. Let ⟨q,ϕ⟩ a↝
⟨q′, ϕ′⟩ hold if

∃b ∈ A,∃g ∈ Guard,∃γ ∈ Assign ∶ (q,b, g, γ, q′) ∈ δ ∧
matches(a,b) ∧ g(ϕ † match(a,b)) ∧ ϕ′ = γ(ϕ † match(a,b)) ∧
quantified(match(a,b)) = [ ]

We lift this relation to ↝E as we did before.

Again it is necessary to show that the partial transition relation coincides with the total

transition relation for total bindings.

Lemma 6. For all traces τ and QEA ⟨Λ,E ,D⟩

∀θ ∈ Bind ∶ total(θ,Λ)⇒ {c ∣ ⟨q0, [ ]⟩ τ↝E(θ) c} = {c ∣ ⟨q0, [ ]⟩ τ→E(θ) c}

Proof. The difference between the total and partial transition relations is that the partial rela-

tion contains the condition quantified(match(a,b)) = [ ]. If this condition does not hold then

there must be some quantified variables (in Λ) which θ is not defined for. But as total(θ,Λ)
this cannot be the case and therefore this condition must always be true, and the two transition

relations are equivalent.

Note. The condition in Lemma 6 is sufficient because of the skip semantics of EA. If we were

to change this to a next semantics then it would be necessary to add the additional constraint

that all events in τ are relevant to the binding used to instantiate the EA. Note that where we

use this Lemma later (Lemma 19) this condition holds, so it would be possible to weaken this

statement without altering the proof.
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5.5.2 Computing the same bindings

Next we show that the two semantics construct the same set of total bindings. We begin by

discussing some properties of the constructed and relevant bindings for the big-step semantics

as captured by construct(τ) in Def. 29. As a reminder these are defined as follows:

construct(τ) = {θ ∈ Bind ∣ ∀(x↦ v) ∈ θ ∶ v ∈ Dom(τ)(typeOf(x))}
relevant(τ,Λ) = {θ ∈ construct(τ) ∣ total(θ, vars(Λ))}

Lemma 7. construct(τ) is lub-closed

Proof. For any Θ ⊆ construct(τ) assume that ⊔Θ exists but ⊔Θ ∉ construct(τ). As ⊔Θ ∉
construct(τ) there must be an x such that (⊔Θ)(x) = v and v ∉ Dom(τ)(typeOf(x)) and

therefore by definition of ⊔Θ there must be a θ ∈ Θ such that θ(x) = v but as θ ∈ construct(τ)
we know that v ∈ Dom(τ)(typeOf(x)) and we get a contradiction.

Furthermore, construct(τ) is the lub-closure of all single bindings in Dom(τ) i.e.

construct(τ) = close⊔({[x↦ v] ∣ x ∈ vars(Λ) ∧ v ∈ Dom(τ)(x)})

Next we consider the bindings that are built using the small-step semantics. On each step

we add the extensions of all bindings present on the previous step. This can be captured using

the following inductive definition.

Definition 46 (Build). We organise the construction of build in an iterative fashion.

build(ε) = {[ ]}
build(τa) = build(τ) ∪⋃θ∈build(τ) extensions(θ,a)

It is important to establish the equivalence between build(τ) and construct(τ) as this will

demonstrate that the small-step semantics builds all the same bindings (later we show that

this is the domain of a monitoring state). Importantly, build(τ) is computed against a QEA

modified to compensate for type variables as defined in Def. 42 on page 101, so we first show

that this modification preserves construct(τ).

Lemma 8. Given QEA Q = ⟨Λ,E ,D⟩ and trace τ let adjusted(Q) = ⟨Λ,E ′,D⟩ then

∀x ∈ vars(Λ) ∶ x ∉ dom(D)⇒ DomE(τ)(typeOf(x)) =DLτ (x)

where Lτ is based on adjusted(Q).

The proof is straightforward and is given in Appendix B.1. We can now show that build(τ)
and construct(τ) are equivalent.

Lemma 9. For all traces τ and all QEA ⟨Λ,E ,D⟩

build(τ) = construct(τ)
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The proof is straightforward and is given in Appendix B.1. We have shown that the bindings

needed for acceptance i.e. relevant(τ,Λ) are produced as they are a subset of construct(τ).

Note. At this point it should be noted that we do not need to construct all of construct(τ), only

those bindings necessary for the creation of relevant(τ,Λ). In the next chapter we will see some

optimisations that take advantage of this.

5.5.3 Computing the same projections

In this section we show that the projection associated with a binding in a monitoring state for

a given binding is the same as that given in the big-step semantics for the same binding. We

do this in 3 steps by showing that

1. Every binding with a non-empty projection is considered

2. When extending a projection the maximal existing bindings is used

3. This means that the recorded projections are correct

We first establish that the domain of Mτ builds all relevant bindings by showing that the

domain of Mτ is equivalent to build(τ).

Lemma 10. For all traces τ and QEA ⟨Λ,E⟩

build(τ) = dom(Mτ)

Proof. By structural induction on τ .

Base Step. For τ = ε, build(ε) = {[ ]} and dom(Mε) = {[ ]}.

Inductive Step. Consider the trace τ.a We show that

build(τ.a) = dom(a ∗Mτ) (5.2)

by showing that the additions to build(τ) and dom(Mτ) are equal.

In the construction of (a ∗Mτ) (Def. 36) new bindings are introduced through the extend

function applied to each binding in Mτ . The bindings introduced by the extend function are

captured by the extensions function (Def. 34). Therefore,

dom(a ∗Mτ) = dom(Mτ) ∪ ⋃
θ∈dom(Mτ )

extensions(θ,a) (5.3)

By using (5.3) and expanding out build(τ.a) (Def. 46) equation (5.2) becomes

build(τ) ∪ ⋃
θ∈build(τ)

extensions(θ,a) = dom(Mτ) ∪ ⋃
θ∈dom(Mτ )

extensions(θ,a) (5.4)

Using the induction hypothesis build(τ) = dom(Mτ) equation (5.4) holds.
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We have shown that the bindings generated in big and small step semantics are equivalent.

Next we show that the domain of Mτ grows monotonically.

Lemma 11. For all traces τ.a and QEA ⟨Λ,E ,D⟩

dom(Mτ) ⊆ dom(Mτa)

Proof. By definition build(τ) ⊆ build(τa). By Lemma, 10 build(τ) = dom(Mτ) and build(τa) =
dom(Mτa) so we have dom(Mτ) ⊆ dom(Mτa)

So that we can use max below(dom(Mτ), θ) later we must first show that the domain of Mτ

is lub-closed.

Lemma 12. For all traces τ and QEA ⟨Λ,E⟩ the set of bindings dom(Mτ) is least-upper-bound

closed

Proof. By Lemmas 7, 9 and 10, construct(τ) is lub-closed and construct(τ) = build(τ) = dom(Mτ)

We now show that when a binding θ is added to the monitoring state the entry for the

maximum existing consistent binding (max below(dom(Mτ), θ)) is used. This ensures that no

information is lost as otherwise events from that binding’s trace slice would be lost. Therefore

this result is important in establishing our later result that partial projections are preserved in

the monitoring state.

Lemma 13. For all traces τ.a and QEA ⟨Λ,E⟩

∀θ ∶ θ ∉ dom(Mτ) ∧ θ ∈ dom(Mτa)⇒Mτa(θ) = extend(max below(dom(Mτ), θ),a)(θ)

Proof. By contradiction. Let us assume that for some θ that θ ∉ dom(Mτ) and θ ∈ dom(Mτa)
but that Mτa ≠ extend(max below(dom(Mτ), θ),a)(θ).

By Def 36 (single step monitoring on page 98) the binding θ was introduced into Mτa by

extend(θ′,a) for some binding θ′. By our assumption θ′ ≠ max below(dom(Mτ), θ). By the

definition of extend it is necessarily the case that θ′ ⊑ θ. As Mτ is linearised with respect

to ⊑ and due to the order in which maps are combined in Def. 36 it must be the case that

max below(dom(Mτ), θ) ⊏ θ′. As θ′ ∈ dom(Mτ) and Mτ is lub-closed, Lemma 2 tells us that

max below(dom(Mτ), θ′) = θ′ and therefore θ ⊏ θ′. We have a contradiction and no such θ′ can

exist.

Therefore, this property is ensured by iterating over the linearisation of the monitoring state

with respect to ⊑.

Next we show that if a binding θ is not in the monitoring state then there exists a binding

θ′ in the monitoring state such that θ and θ′ have the same partial projections, and that

θ′ = max below(dom(Mτ), θ). This means that the monitoring state implicitly contains the

trace projection for every possible binding. This fact is used later to show that when we add a

binding we use this implicit information.
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Lemma 14. For all traces τ.a and QEA ⟨Λ,E⟩

∀θ ∶ θ ∉ dom(Mτ)⇒ τ ↓partial ground(E(θ))= τ ↓partial ground(E((max below(dom(Mτ ),θ))))

Proof. Using the definition of partial ground alphabet (Def. 44), we can restate this as:

∀θ ∉ dom(Mτ),∀a ∈ τ ∶ relevant(a, θ)⇒ relevant(a,max below(dom(Mτ), θ))

We continue by contradiction. Let θm = max below(dom(Mτ), θ). Consider an a ∈ τ such that

relevant(a, θ) but ¬relevant(a, θm). By considering the definition of relevant (Def. 33) we have

that

¬relevant(a, θm) = ¬(∃b ∈ A(θm) ∶ matches(a,b) ∧ quantified(match(a,b)) = [ ])
= ¬(∃b ∈ A ∶ matches(a,b) ∧ quantified(match(a,b)) ⊑ θm)

Combining this with the fact that θm ⊑ θ (from the definition of max below) gives us

¬(∃b ∈ A ∶ matches(a,b) ∧ quantified(match(a,b)) ⊑ θ)

But as relevant(a, θ) we know that

∃b ∈ A ∶ matches(a,b) ∧ quantified(match(a,b)) ⊑ θ

Leading to a contradiction, thus such an event a ∈ τ cannot exist.

Finally, we show that the projections given by a monitoring state are those given by pro-

jecting the trace with respect to the partial ground alphabet. Combined with Lemma 5 this

shows that for all total bindings a monitoring state contains the same projections as produced

in the big-step semantics.

Lemma 15. For all traces τ and QEA ⟨Λ,E⟩

∀(θ ↦ σ) ∈Mτ ∶ σ = τ ↓partial ground(E(θ))

Proof. By structural induction on τ .

Base Step. Let τ = ε. By definition, Mε = [[ ]↦ ε] and ε ↓partial ground(E([ ]))= ε

Inductive Step. Consider the trace τ.a. By using our inductive hypothesis

∀(θ ↦ σ) ∈Mτ ∶ σ = τ ↓partial ground(E(θ))

we show that

∀(θ ↦ σ) ∈ (a ∗Mτ) ∶ σ = τa ↓partial ground(E(θ))

by considering two cases: when θ is in dom(Mτ) and when it is not.
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• If θ ∈ dom(Mτ) then by Def. 36 (single step monitoring) a is added to Mτ(θ) to give σ

iff relevant(a, θ), the same condition used in the definition of partial ground alphabet 44.

• If θ ∉ dom(Mτ) then by Lemma 13 the projection for θ is given by extend(θm,a) where

θm = max below(dom(Mτ), θ). By Lemma 14

σ ↓partial ground(E(θ))= σ ↓partial ground(E(θm))

and therefore to show that (a ∗Mτ)(θ) = τa ↓partial ground(E(θ)) it is sufficient to show that

a is added to τ ↓partial ground(E(θm)) under the same conditions as when projecting with

the partial ground alphabet. The extension of projections in the definition of extend

(Def. 34) is dependent on event relevance; the same condition used when projecting with

the partial ground alphabet.

In both cases, a is only added to the projection for θ under the same condition used when

projecting with the partial ground alphabet, event relevance.

5.5.4 Computed configurations match computed projections

Now let us consider how configurations are constructed in monitor lookup Lτ . We first show

that the bindings created in the construction of Lτ are exactly those created in the construction

of Mτ .

Lemma 16. For all traces τ and QEA ⟨Λ,E ,D⟩

dom(Mτ) = dom(Lτ)

Proof. By structural induction on τ . For τ = ε the domains of Mε and Lε are equal by definition.

For τ = σ.a the bindings added to Mτ and Lτ are

⋃
θ∈dom(Mτ )

extensions(θ,a) and ⋃
θ∈dom(Lτ )

extensions(θ,a)

respectively. So, by our inductive hypothesis, bindings added on each step are equal.

We now consider the next function (Def. 38) used in the construction of Lτ and relate this

to the partial transition function introduced in Sec. 5.5.1 in Def. 45.

Lemma 17. For binding θ, event a relevant to θ, and set of configurations C

next(a, θ,C) = {c′ ∣ ∃c ∈ C ∶ c a↝θ,E(θ) c′}

The proof is straightforward and is given in Appendix B.2. We now relate the construction

of configurations in the small-step semantics to that in the big-step semantics by showing that

the configurations in Lτ are exactly those that satisfy the partial transition relation.
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Lemma 18. For all traces τ and QEA ⟨Λ,E ,D⟩

∀(θ ↦ C) ∈ Lτ ∶ C = {c ∣ ⟨q, [ ]⟩ Mτ (θ)↝ θ,E c}

Proof. By structural induction on τ .

Base Case. Let τ = ε. By definition, Lε = [[ ]↦ {⟨q0, [ ]⟩}] and ⟨q0, [ ]⟩ ε↝θ,E ⟨q0, [ ]⟩.

Inductive Step. Consider trace τ.a. We show that for a given θ ∈ dom(Lτa)

Lτa(θ) = {c ∣ ⟨q, [ ]⟩ Mτa(θ)↝ θ,E c} (5.5)

by considering two cases: when a is relevant to θ and when it is not. Firstly, if a is not relevant

to θ then by Def. 40 the binding θ must have existed in Lτ and Lτa(θ) = Lτ(θ). By considering

Def. 36 we see that in this case Mτa(θ) = Mτ(θ) and therefore, by our inductive hypothesis,

(5.5) holds.

In the case where a is relevant to θ there are two further cases to consider: where θ is in

dom(Lτ) and when it is not. We show that in each case there is a set of configurations C such

that

C = {c ∣ ⟨q0, [ ]⟩ Mτ↝ E(θ) c} and Lτa(θ) = next(a, θ,C) (5.6)

and therefore by Lemma 17, the definition of ↝ (Def. 45) and Lemma 15 combined with the

definition projection with respect to a partial ground alphabet we have that

Lτa(θ) = {c ∣ ∃c′ ∈ Config ∶ ⟨q, [ ]⟩ Mτ (θ)↝ θ,E c
′ a↝E(θ) c}

= {c ∣ ⟨q, [ ]⟩ Mτ (θ)a↝ E(θ) c}
= {c ∣ ⟨q, [ ]⟩ Mτa(θ)↝ E(θ) c}

We now show that in each case there exists a C in Lτ such that (5.6) holds.

• If θ ∈ dom(Lτ) then by our inductive hypothesis

∀c ∈ Lτ(θ) ∶ ⟨q, [ ]⟩ Mτ (θ)↝ θ,E c

we have a C satisfying the left-hand side of (5.6). By Def. 40 the configurations Lτa(θ)
are given by next(a, θ,Lτ(θ)) (recall that a is relevant to θ), thus giving us the right-hand

side of (5.6).

• If θ ∉ dom(Lτ) then by Lemma 14, Lemma 16 and our inductive hypothesis

Lτ(max below(dom(Lτ), θ)) = {c ∣ ⟨q0, [ ]⟩ Mτ↝ θ,E c}

Due to the linearisation of dom(Lτ) in Def 40 max below(dom(Lτ), θ) will be encountered

first (i.e. will appear before any other bindings consistent with θ in the linearisation). The
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binding θ is then introduced and initialised using next(a, θ,Lτ(max below(dom(Lτ), θ)).
Therefore (5.6) is satisfied in this case.

Therefore, (5.5) holds when a is relevant to θ.

This allows us to state an important lemma that brings together the statements proved in

the last few sections.

Lemma 19. For all traces τ and QEA ⟨Λ,E ,D⟩

∀θ ∈ construct(τ) ∶ total(θ,Λ)⇒ (∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶ q ∈ F⇔ τ ↓ground(E(θ))∈ L(E(θ)))

i.e. Every total constructed binding appears in Lτ with an accepting configuration if and only

if the trace is in the general language of the instantiated EA.

Proof. Firstly we show that Lτ contains the correct configurations for every binding:

1 construct(τ) = build(τ) = dom(Mτ) = dom(Lτ) Lemma 9,10,16

2 ∀(θ ↦ σ) ∈Mτ ∶ σ = τ ↓partial ground(E(θ)) Lemma 15

3 ∀(θ ↦ C) ∈ Lτ ∶ C = {c ∣ ⟨q, [ ]⟩ Mτ (θ)
//
E(θ)c} Lemma 18

4 ∀θ ∈ dom(Lτ) ∶ Lτ(θ) = {c ∣ ⟨q, [ ]⟩
τ↓partial ground(E(θ))ÐÐÐÐÐÐÐÐÐ→ c} 2, 3

5 ∀θ ∈ Bind ∶ total(θ,Λ)⇒ {c ∣ ⟨q0, [ ] τ↝θ,E c} = {c ∣ ⟨q0, [ ] τÐ→E(θ) c} Lemma 6

6 total(θ,Λ)⇒ τ ↓ground(E(θ))= τ ↓partial ground(E(θ)) Lemma 5

7 ∀θ ∈ construct(τ) ∶ total(θ,Λ)⇒∶ Lτ(θ) = {c ∣ ⟨q, [ ]⟩
τ↓ground(E(θ))ÐÐÐÐÐÐÐ→E(θ) c} 1, 4, 5, 6

By using the definitions of projection (Def. 6) and an EA language (Def. 23) we show that if

we reach a final state with a trace projection then we are in an EA’s language, which combines

with what we showed previously to prove our lemma.

8 ∀θ ∶ τ ↓ground(E(θ))∈ ground(E(θ))∗ Def. 6

9 ∀θ ∶ (∃⟨q,ϕ⟩ ∶ ⟨q0, [ ]⟩
τ↓ground(E(θ))ÐÐÐÐÐÐÐ→E(θ) ⟨q,ϕ⟩ ∧ q ∈ F)⇔

(τ ↓ground(E(θ))∈ L(E(θ))) 8, Def. 23

10 ∀θ ∈ construct(τ) ∶ total(θ,Λ)⇒ (∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶ q ∈ F⇔
τ ↓ground(E(θ))∈ L(E(θ))) 7,9
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We now show that the definition of DLτ in Def. 43 coincides with the use of Dom(τ)†D in

Def. 27.

Lemma 20. For all QEA ⟨Λ,E ,D⟩ and trace τ

∀x ∈ vars(Λ) ∶DLτ (x) = (Dom(τ) †D)(x)

Proof. From Def 16 and Lemmas 9, 10 and 18 we have that

{θ ∈ Bind ∣ ∀(x↦ v) ∈ θ ∶ v ∈ Dom(τ)(x)} = construct(τ) = build(τ) = dom(Mτ) = dom(Lτ)

and therefore if typeof(x) ∈ dom(D) then DLτ = D(x) and otherwise

DLτ (x) = {θ(x) ∣ ∀(y ↦ v) ∶ v ∈ Dom(τ)(y) ∧ x ∈ dom(θ)} = {v ∣ v ∈ Dom(τ)(x)} = Dom(τ)(x)

5.5.5 Completing the proof

We can now prove Theorem 1.

Theorem 1 (Equivalence of Acceptance Relations). For all QEA Q = ⟨Λ,E ,D⟩ and traces τ

τ ⊧ Λ⇔ Lτ ⊧ Q.Λ (5.7)

Proof. By structural induction on Λ for τ ⊧θ Λ.E in Def. 27 and Lτ ⊧θ Λ in Def. 43.

Base Case. Λ = ε. The condition for τ ⊧θ ε is

τ ↓E(θ)∈ L(E(θ)) (5.8)

and the condition for Lτ ⊧θ Λ is

∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶ q ∈ F if θ ∈ dom(Lτ)
q0 ∈ F otherwise

(5.9)

By construction, θ is in construct(θ) and total, and therefore either by Lemma 19 equations

(5.8) and (5.9) are equivalent or τ ↓ground(θ)= ε.

Inductive Step. Λ = (Q,x, g,X).Λ′ for Q ∈ {∃,∀}. The cases for each Q are symmetric so

we take Q = ∀. This case in Def. 27 on page 68 is

for all d in D(X) if g(θ†[x↦ d]) then τ ⊧θ†[x↦d] Λ′

and in Def. 43 on page 102 it is

for all d in DL(x) if g(θ† [x↦ d]) then L ⊧θ†[x↦d] Λ′
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By Lemma 20 (stating that the domains of x used in each definition are equivalent) and our in-

ductive hypothesis that the two definitions are equivalent for Λ′ we see that these two conditions

are equal.

5.6 Basic Algorithm

In this section we introduce a basic (i.e. unoptimized) incremental monitoring algorithm based

on the small-step semantics presented in Section 5.3. A worked example of this algorithm is

given in Appendix A.2.3.

5.6.1 The algorithm

The algorithm has four parts, thus allowing future optimisations to replace individual parts.

These are

1. Initialisation. Called once at the start of the trace

2. Step. Callled for each event (step of the process) and returns a verdict

3. Update. Uses the event to update the data structures

4. Check. Uses the data structures to reach a verdict

and are captured in Algorithms 2 to 5.

A note on types. The types referred to in this chapter have been introduced in Chapter 3.

Recall that here the Verdict type is the boolean domain (later we will replace this). We use the

following (Scala-like) syntax for collection types:

• Set[T] or List[T] for a set or list of things of type T

• Map[S,T] for a map from things of type S to things of type T

An overview

The functions given in Algorithms 2 to 5 operate as follows. The initialisation in Algorithm 2

creates an initial monitor lookup (see Section 5.3.2). The step function in Algorithm 3 calls the

update and check functions to update the monitor lookup and compute a verdict from it. The

update and check functions are separated so that they can be optimized separately. Note that

they share the state defined in Algorithm 2, here the QEA Q and the monitor lookup L.

The update function in Algorithm 4 captures the single step monitor construction given in

Definition 40 on page 101, making use of the Next function given in Algorithm 1 introduced

in Section 5.3.2 on page 100. Note that the order (biggest to smallest) is used to enforce

maximality, see Section 5.3 for a full discussion of this and the example in Appendix A.2.3 for

a demonstration.

Finally the check function in Algorithm 5 computes the verdict. To do this it first computes

the domain by examining L and then steps through the quantifier list to compute the verdict as



5.6. BASIC ALGORITHM 115

Algorithm 2 The data structures and initialisation function for the basic algorithm.

Q : QEA
L : Map[Binding, Set[Config]] ← [ ]

function init(Q: QEA)
L ← ([ ]↦ {⟨Q.E .q0, [ ]⟩})
Q ← Q

Algorithm 3 The step function for the basic algorithm.

function step(a : GEvent) : Verdict
Update(a)
return Check

set out in Definition 27. Note that this algorithm returns a result as soon as possible, preventing

unnecessary recursive calls.

Understanding the update function

Let us consider the steps of the update function in Algorithm 4.

We begin by making a call to the Matching function, which constructs the closed set of

bindings that matches the incoming event with events in the alphabet of the EA. It considers

each event in the alphabet and extracts the quantified matching binding (if it exists) and

maintains a lub-closed set.

We then iterate through M from biggest to smallest updating bindings as we did in Defini-

tion 40. To enable us to sort through the domain of L from biggest to smallest efficiently we

can maintain a sorted set that tracks the domain of L. The set B′ is the set of extensions used

by the extend function. Note that we must create B′ separately before iterating over it. If we

iterated over B only then we might count an event twice as a binding may be added to B′ more

than once. We avoid this by letting B′ be a set, thus removing duplicates.

Understanding the check function

The check function in Algorithm 5 is a relatively straightforward implementation of Def. 43

that first computes the domain of quantification and then evaluates the monitor lookup with

respect to this domain.

The recursively defined Checking function steps through the quantification list building

up bindings and checks the configurations associated with them. If the quantifier list is empty

then all quantifications have been expanded and the monitor lookup should be inspected. If

the quantifier list is not empty then we pick the next quantified variable and step through the

possible values for that variable updating our results as we go. This enables us to return early

if an early value causes a ∀ to become false or an ∃ to become true.
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Algorithm 4 The update function for the basic algorithm.

function update(a : GEvent)
B : Set[Binding] ← matching(a)
for θ ∈ dom(L) sorted from biggest to smallest do

B′ : Set[Binding] ← {}
for θ′ ∈ B do

if θ is compatible with θ′ then B′+=θ†θ′

for θN ∈ B′ do
if θ = θN or θN ∉ dom(L) then

L ← L † (θN ↦ Next(θN ,a,L(θ)))

function matching(a : GEvent) : Set[Binding]
B : Set[Binding] ← [ ]
for b ∈ Q.E .A do

if matches(a,b) then
θ ← quantified(match(a,b))
for θ1 ⊑ θ do

for θ2 ∈ B do
if θ1 compatible with θ2 then B += θ1†θ2

B += θ1

return B

5.6.2 Correctness

For this algorithm to be correct it should implement the small-step semantics introduced in

Section 5.3. We show this by relating functions of the basic algorithm to definitions of the

small-step semantics. Firstly, we show that the expected bindings are generated using the

Matching function.

Proposition 1. When processing event a for each binding θ ∈ dom(M) the computed set B′ is

equivalent to the set extensions(θ,a) ∪ {θ ∣ relevant(θ,a)} i.e. it adds θ to the set of extensions

if and only if θ is relevant to a.

The proof is given in Appendix B.3. The next step is to show that the update function of

the basic algorithm coincides with that of the small-step semantics..

Proposition 2. The Update function updates the monitor lookup in the same way as the step

function of Def. 40 i.e. if we let L1 be the monitor lookup prior to a call of Update(a) and L2

be the monitor lookup after the call then L2 = a ∗L1.

Proof. Firstly, ordering bindings from largest to smallest is a linearisation of the kind described

in Def. 40. Therefore, the Update function iterates over the domain of L1 in the same way.

The actions taken on each step are also the same. In Def. 40 for each entry θ we use next to

update the entry for θ if a is relevant and add new bindings in extend(θ,a,C) if they do not

already exist. Recall that extend is defined as

extend(θ,a, c) = [θ′ ↦ next(θ′,a,C) ∣ θ′ ∈ extensions(θ,a)]
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Algorithm 5 The check function for the basic algorithm.

D : Map[Var,Set[Val]] ← [ ]
function check : Verdict

D ← [var ↦ {} ∣ var ∈ vars(Q.Λ) ]
for θ ∈ dom(L) do

for (var ↦ val)∈ θ do
D ← D † (var ↦ D(var) ∪ val)

D ← D † Q.D ▷ Overwrite with given domain
return Checking(Q.Λ, [ ])

function Checking(qlist : List[({∃,∀},Guard,Var)], θ : Binding) : Boolean
if qlist is empty then

if θ ∉ dom(L) then ▷ θ includes values from D
return Q.E .q0 ∈ Q.E .F

for (q,Γ) ∈ L(θ) do
if q ∈ Q.E .F then return True

return False
else

(quantifier,var,guard)::rest ← qlist
result ← True if quantifier is ∀ and False otherwise
for val ∈ D(var) do

g ← guard(θ † [var ↦ val])
r ← Checking(rest,θ † [var ↦ val])
if quantifier is ∀ then

result ← result ∧ (r ∨¬ g)
if result is false then return false

else ▷ quantifier is ∃
result ← result ∨ (r ∧ g)
if result is true then return true

return result

As we previously showed that

B′ = extensions(θ,a) ∪ {θ ∣ relevant(θ,a)}

we can see that in Update we use Next to update the entry for θ if it is relevant to a and add

any bindings in extend(θ,a,C) that do not already exist.

Finally, in Section 5.3.2 we argued for the equivalence of next and Next.

Next, we show that the Check function implements the acceptance judgement for QEA.

Note the assumption that type variable adjustment has occurred and therefore, type variables

can be ignored.

Proposition 3. The Check function produces the same output as the judgement given in

Def. 43.

The proof is given in Appendix B.3. Therefore, we can conclude that a trace is accepted by

the small-step semantics if and only if it is also accepted by the basic monitoring algorithm. This

can be seen by replacing the appropriate functions of the basic algorithm with the corresponding
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equivalent definitions.

5.7 Summary

In this chapter we have introduced an algorithm for monitoring QEA and have shown that

this preserves the semantics presented in the previous chapter by introducing an equivalent

small-step semantics.



Chapter 6

Optimising Monitoring

The last chapter introduced a stepwise monitoring construction for QEA and an associated

monitoring algorithm. However, we did not consider efficiency in this presentation. In this

chapter we consider improvements to the monitoring algorithm; partly to maximise the utility

of the produced result, but mainly to increase the efficiency of monitoring. This chapter explores

the following:

Verdicts. We motivate and introduce a fine-grained acceptance criteria utilising a five-valued

verdict domain (Sec. 6.1) and present a method for carrying out this checking incrementally

(Sec. 6.2).

Global Guards. Global guards can exclude many bindings from consideration, which can

significantly reduce the amount of work that needs to be done. We first consider how to filter

the bindings created (Sec. 6.3). We then focus on how to optimise checking the previously

defined connectedness global guard (Sec. 6.3.3).

Eliminating Redundancies. We identify a number of redundancies in the basic algorithm

and describe methods for eliminating such redundancies (Sec. 6.4).

Indexing. Next we identify an important property of the monitoring process, that only certain

bindings are inspected when processing an event. This leads us to develop indexing strategies

that look up these bindings directly (Sec. 6.5).

Reference values. Finally we discuss mechanisms introduced to deal with a common issues

that arise when monitoring programs with reference objects at runtime, the notions of equality

and garbage (Sec. 6.6).

6.1 More informative verdicts

In this section we explore how a five-valued verdict domain can give more informative results

than a two-valued verdict domain. Recall our initial discussion about many-valued verdict

119
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1 2 3

∀t start(t) stop(t)

(a) Threads End QEA

1 2 3

∀p ∃s
pub(p) sub(p, s)

(b) Publisher has Subscriber QEA

1

2

3

4

∃p

arrive(p) leave(p)

dest(p)
dest(q)[ q≠p ]

dest(p)

arrive(p)

(c) At Destination QEA

1 2

∀f open(f)

close(f)

(d) Simple File Usage QEA

Figure 6.1: QEAs demonstrating the utility of a four-valued verdict domain.

domains in runtime monitoring in Section 2.3.2. The verdict domain we introduce is not new

but we motivate it using concepts from QEA.

6.1.1 Defining the verdicts

Using the four QEAs in Figure 6.1 we address the question what can be concluded about past

and future behaviour of the system from a finite trace?

Firstly let us take the QEA in Figure 6.1a which captures how threads should start and

stop. The following table gives traces with their verdicts.

Trace Verdict

start(A) false

stop(A).start(A) false

start(A).stop(A) true

The first verdict is different from the second verdict as the first indicates that the property

has not yet been satisfied, whilst the second indicates that the property can never be satisfied.

We would like to be able to differentiate between these two. Importantly, the second verdict

violates the property with a finite trace.

Next consider the QEA PS in Figure 6.1b capturing the property that every publisher has

at least one subscriber. Given a trace τ that satisfies PS we can always construct a trace τ.a

that does not by letting a be an event introducing a new publisher. Similarly given a trace τ

that does not satisfy PS we can always construct a trace τ.σ that does by letting σ be a list

of subscribe events for each observed publisher. We can see that no finite trace can validate

or violate this property but we can always tell if the current trace (the events received so far)

satisfy the property or not.

The QEA in Figure 6.1c captures the property there is a location p that we have arrived at

and is the desired destination. Consider the trace dest(A).arrive(B).dest(B). After the first

two events the verdict is false but after the third event the verdict is true and can never become

false again. In fact, if the verdict ever becomes true it will remain true for any subsequent
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events. Finally, if the QEA in Figure 6.1d, capturing proper file usage, ever reaches the implicit

failure state for any file it will remain there for all subsequent events and will return the false

verdict from then on.

The following table summarises the possible verdicts returned by each of these QEAs divided

into two different interpretations.

Possible verdicts

true false

QEA not yet false cannot be false not yet true cannot be true

Fig. 6.1a ✓ ✓ ✓
Fig. 6.1b ✓ ✓
Fig. 6.1c ✓ ✓
Fig. 6.1d ✓ ✓

To capture these four different possible verdicts we introduce a five-valued verdict domain

as used before in the RuleR tool [BRH08]. We include an unknown verdict for use where the

status of the current trace is unknown. This cannot happen in our current approach, but we

keep the option for possible extensions. For example, if we were to use asynchronous monitoring

(where a result is not returned immediately) then we might return unknown as the unprocessed

event could potentially alter the verdict.

Definition 47 (Five Value Verdict Domain). Let B5 = {⊺W ,�W ,⊺S ,�S , ?}.

The verdicts in B5 have the following intuitions and names. We use the term weak to mean

that the verdict could change in the future and call a verdict ultimate or strong if it cannot

change.

Current Trace Future Extensions Name

⊺W holds unknown weak success

�W does not hold unknown weak failure

⊺S holds holds (strong) success

�S does not hold does not hold (strong) failure

? unknown unknown unknown

Strong verdicts imply their weak versions, giving a partial order on verdicts. We can also

relate these verdicts to the notions of safety and co-safety (Sec. 4.1.3), a safety property can

lead to �S or ⊺W , whereas a co-safety property can lead to ⊺S or �W .

6.1.2 Producing verdicts

We now consider how these verdicts can be produced by introducing a Check function for

monitor lookups. The first step is introducing the concept of strong states. These are states

from which you cannot reach a state with a different acceptance condition.

Definition 48 (Strong Success and Failure States). Given EA E = ⟨Q,A, δ, q0, F ⟩, let reach(q)
be the set of reachable states of q ∈ Q using δ. Define

strongS = {q ∈ F ∣ reach(q) ⊆ F}
strongF = {q ∈ Q/F ∣ reach(q) ∩ F = ∅}
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Note that it is not necessarily the case that (strongS ∪ strongF) = Q.

State p is reachable from state q if there is a finite sequence of transitions starting at q and

ending at p. For example, let us identify the strong states in the QEAs in Fig. 6.1 where we

use q� as the implicit failure state introduced for next states (note that this is always a strong

failure state).

Fig. 6.1a Fig. 6.1b Fig. 6.1c Fig. 6.1d

strongS {} {3} {3} {}
strongF {q�} {} {} {q�}

We now update our notion of monitor lookup classification (previously Def. 43) to make use

of these strong states to give one of the four new verdicts. We write pure(Λ,Q) if quantifier list

Λ only uses the quantifier Q and pure(Λ) if Q does not matter.

Definition 49 (Monitor Lookup Classification). Let G be the combination of all guards in Q.Λ,

i.e, G(θ) iff ∀( , , g) ∈ Λ ∶ g(θ). Then Check(L,Q) is defined as

⊺S iff pure(Λ,∃) ∧ ∃θ ∈ dom(L) ∶ G(θ) ∧ ∃⟨q,ϕ⟩ ∈ L(θ) ∶ q ∈ StrongS
�S iff pure(Λ,∀) ∧ ∃θ ∈ dom(L) ∶ G(θ) ∧ ∀⟨q,ϕ⟩ ∈ L(θ) ∶ q ∈ StrongF
⊺W iff not a strong result and L ⊧ Q.Λ
�W iff not a strong result and and L /⊧ Q.Λ

where L ⊧ Q.Λ is as given in Def. 43.

6.1.3 A brief example

Let us demonstrate the verdicts returned for the QEA Q in Fig. 6.1a when processing τ =
start(1).stop(1).start(2).start(2). The monitor lookups and verdicts are given below. The

first event gives weak failure as we have not yet satisfied the property. After the second event

we have weak success as the property is currently true but it may not be in the future. The

third event introduces a new thread that is in a non-final state and the property is not satisfied

again. The final event ultimately violates the property and monitoring can stop as no further

events can change the verdict.

Lτ1 = [ [t↦ 1] ↦ ⟨2, [ ]⟩ ] Check(Lτ1 ,Q) = �W
Lτ2 = [ [t↦ 1] ↦ ⟨3, [ ]⟩ ] Check(Lτ2 ,Q) = ⊺W

Lτ3 =
⎡⎢⎢⎢⎢⎣

[t↦ 1] ↦ ⟨2, [ ]⟩
[t↦ 2] ↦ ⟨2, [ ]⟩

⎤⎥⎥⎥⎥⎦
Check(Lτ3 ,Q) = �W

Lτ4 =
⎡⎢⎢⎢⎢⎣

[t↦ 1] ↦ ⟨2, [ ]⟩
[t↦ 2] ↦ ⟨q�, [ ]⟩

⎤⎥⎥⎥⎥⎦
Check(Lτ4 ,Q) = �S

6.1.4 Properties of strong states

Let us consider the properties of strong states. We first show that all states reachable from a

strong state are themselves strong.
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Lemma 21. For EA E

∀q ∈ StrongS ∶ reach(q) ⊆ StrongS (6.1)

∀q ∈ StrongF ∶ reach(q) ⊆ StrongF (6.2)

Proof. Let us consider (6.1) first. Assume there is a q ∈ StrongS such that reach(q) /⊆ StrongS.

There must therefore exist a q′ and q′′ such that q′ ∈ reach(q), q′′ ∈ reach(q′) and q′′ ∉ F but

due to the transitivity of reach we know that q′′ ∈ reach(q) and as q′′ ∉ F the state q cannot

be a strong success state. Therefore, such a state q cannot exist. Our argument for (6.2) is

symmetrical.

Now let us show that the act of collating guards together in Def. 49 is sound

Lemma 22. It is sound to write a pure quantifier list Λ = Qx1 ∶ g1 . . .Qx ∶ n ∶ gn (Q = ∀ or

Q = ∃) as Λ′ = Qx1 ∶ True . . .Qxn ∶ g1 ∧ . . .∧ gn i.e. replace all global guards except the last with

the true guard and the last guard with all guards conjoined.

Proof. We show that for all traces and QEA Q = ⟨Λ,E ,D⟩.

τ ⊧E,D Λ⇔ τ ⊧E,D Λ′ (6.3)

As Λ is pure the evaluation of τ ⊧E,D Λ is the equivalent of collecting the relevant bind-

ings (Def. 30) and either checking if all bindings hold (if Q = ∀) or if at least one holds (if

Q = ∃). Global guards restrict the set of relevant bindings as described in Def. 30. Every

binding in relevant(τ,Λ) must satisfy all guards g1, . . . gn to be in relevant(τ,Λ) and therefore

relevant(τ,Λ) = relevant(τ,Λ′) and equation (6.3) holds.

Now we show that only pure quantification lists can lead to an ultimate result.

Lemma 23. If a quantifier list is not pure then we cannot have ultimate success or failure i.e.

for any QEA Q = ⟨Λ,E ,D⟩ and any trace τ :

¬pure(Λ)⇒ ∃τ ′ ∶ (Lτ ⊧ Λ) ≠ (Lττ ′ ⊧ Λ)

i.e. if the quantifier list is not pure there always exists a trace extension that gives a different

verdict. (We assume a non-trivial E i.e. ∃τ1, τ2.τ1 ∈ L(E) ∧ τ2 ∉ L(E)).

Proof. Intuitively this holds as universal quantification can be made false by adding to the

domain and existential quantification can be made true by adding to the domain.

We show that given τ we can always construct a trace τ ′. There are two cases: if τ is

accepted or not. Firstly assume that Lτ ⊧ Λ let τ ′ be a minimal trace containing only new

values such that ∃θ ∈ relevant(τ ′,Λ) ∶ τ ′ ∉ L(E(θ)) i.e. it reaches a non-accepting trace in a

new instantiation of E . Such a trace will exist unless E is trivial. Then as Λ contains at least

one universal quantification and τ ′ necessarily extends the domain of the universally quantified

variable we have that Lτ.τ ′ /⊧ Λ. A symmetric case holds for Lτ /⊧ Λ i.e. we construct τ ′ as

a minimal trace containing new values such that enough new total bindings are introduced in

final states.
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Next we show that entries in a monitor lookup Lτ in a strong state will remain in that

strong state for all extensions of τ .

Lemma 24. For QEA ⟨Λ,E ,D⟩ and traces τ and τ ′

∀θ ∈ dom(Lτ) ∶ ∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶ q ∈ StrongS⇒ ∃⟨q,ϕ⟩ ∈ Lττ ′(θ) ∶ q ∈ StrongS (6.4)

∀θ ∈ dom(Lτ) ∶ ∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶ q ∈ StrongF⇒ ∃⟨q,ϕ⟩ ∈ Lττ ′(θ) ∶ q ∈ StrongF (6.5)

Proof. By Lemma 21 all states reachable from strong states are themselves strong success states.

By Lemmas 10 and 18 for a given θ ∈ dom(Lτ)

∀c ∈ Lτ(θ),∀c′ ∈ Lτ.τ ′(θ) ∶ c
τ↓partial ground(E,θ)

//
E(θ)c

′

and as ↝ is based on reachability in δ, if c is in a strong state then c′ must be in the same kind

of strong state.

We now consider the relation between this new and old acceptance conditions for the small-

step semantics. Let us call the previous acceptance condition the 2-verdict condition, and this

new acceptance condition the 4-verdict condition.

A trivial result is that a weak result returned by the 4-verdict condition implies the corre-

sponding result from the 2-verdict condition.

Corollary 1 (Weak Results). For all QEA Q = ⟨Λ,E ,D⟩ and all traces τ

Check(Lτ ,Q) = ⊺W ⇒ Lτ ⊧ Λ (6.6)

Check(Lτ ,Q) = �W ⇒ Lτ /⊧ Λ (6.7)

Furthermore, for all non-pure Λ this is an equivalence.

Proof. By the definition of Check (Def. 49) and the fact that ⊺S ⇒ ⊺W and �S ⇒ �W .

The claims we can make about strong results are more complex; it is not the case that

strong success in the 4-verdict condition necessarily implies success in the 2-verdict condition

directly. Instead, strong success in the 4-verdict condition implies that all possible (potentially

empty) extensions of the trace which lead to the creation of a total binding satisfy the 2-verdict

condition. A similar claim can be made for strong failure. This means that the 4-verdict

condition will detect strong success (or failure) in certain conditions earlier than the 2-verdict

condition, we give an example of this shortly.

Theorem 2 (Strong Results). For all QEA Q = ⟨Λ,E ,D⟩ and all traces τ :

Check(Lτ ,Q) = ⊺S ⇔ ∀τ ′ ∈ Trace ∶ relevant(ττ ′,Λ) ≠ ∅⇒ Lττ ′ ⊧ Λ (6.8)

Check(Lτ ,Q) = �S ⇔ ∀τ ′ ∈ Trace ∶ relevant(ττ ′,Λ) ≠ ∅⇒ Lττ ′ /⊧ Λ (6.9)

Proof. As the cases are symmetric let us consider case (6.8) only.
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Let us consider the ⇒ direction first. From the definition of Check we know that Λ is

existentially pure and there exists a binding θ in dom(Lτ) such that G(τ) and ∃⟨q,ϕ⟩ ∈ Lτ(θ) ∶
q ∈ StrongS. Let us consider an extension τ ′. If relevant(τ.τ ′,Λ) = ∅ then the right-hand side

holds trivially. If relevant(ττ ′,Λ) ≠ ∅ then either θ is relevant or there is some relevant binding

θ′ such that θ ⊑ θ′ as dom(Lτ.τ ′) is lub-closed. In either case we know that, by Lemma 24 there

exists a configuration in Lττ ′(θ) or Lττ(θ′) with a strong success state. Therefore, Lττ ′ ⊧ Λ.

Let us now consider the⇐ direction. Firstly, by Lemma 23 we know that Λ is pure, otherwise

we would be able to find a non-accepting extension. Furthermore, from the proof of Lemma 23,

we can see that Λ must be existentially pure as we are considering acceptance. Additionally,

there must exist a binding in Lτ with a strong state, otherwise there would be an extension of

τ that would be non-accepting, this follows from Lemma 24. Therefore, Check(Lτ ,Q).

Therefore, the 4-verdict acceptance condition gives a more refined verdict than the 2-verdict

acceptance condition.

An example of where the 2 and 4 verdict conditions diverge

Let us consider an example where the 4-verdict condition returns an ultimate verdict contrary

to the 2-verdict condition. As we can see from above, this only occurs when there are no

relevant bindings (i.e. no total bindings have been constructed). Note that this is a peculiar

edge case.

Let us consider the QEA EP introduced in Fig. 3.7(left) on page 71 and the monitoring of

the following trace:

τ = create(G).create(G).make(G,E).add(E,U).close(E).destroy(G)

This trace is not accepted as the group G is created twice and, as expected Lτ /⊧ ∀g∀e∀u.

However, if we consider the subtrace τ ′ = create(G).create(G) we have a monitor lookup of

Lτ ′ =
⎡⎢⎢⎢⎢⎣

[ ] ↦ {⟨1, [ ]⟩}
[g ↦ G] ↦ {⟨q�, [ ]⟩}

⎤⎥⎥⎥⎥⎦

where q� is the implicit failure state (in StrongF). Therefore Check(τ ′,EP) = �S but as there are

no relevant bindings and empty universal quantification is true we have τ ′ ⊧ Λ. The 2-verdict

condition would not detect a problem until the next two events occur and a relevant binding

is constructed. This does not mean that the 2-verdict condition is incorrect, but demonstrates

why we need a non-empty set of relevant bindings for the two conditions to agree.

6.2 Incremental Checking

In this section we present a method for incremental checking that introduces and maintains a

data structure to track the projection acceptance of total bindings. We note that this checking
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Algorithm 6 Additions to initialisation.

strong reached ← false
Γ ← Node of q0 ∈ F and [ ] and 0

procedure is required because of quantifier alternation and we discuss the special case of pure

quantification at the end of this section.

6.2.1 Checking data structure

We introduce a tree data structure to store the total bindings of a monitor lookup in quantifier-

list order. Each node stores the current verdict of the subtree below it so that when a single

binding is updated only a small portion of the tree is updated.

A checking structure is a tree with nodes labelled with boolean values and integers and

edges labelled with values taken from Val .

Definition 50 (Checking Structure).

CheckingStructure = Node of B ×Map[Val ,Node] × Integer

= Leaf of B

A checking structure for a quantifier list Λ has at most depth ∣Λ∣ and level i is implicitly

labelled with the ith quantified variable. The value of a checking structure is its boolean value,

written value(Γ) for checking structure Γ. The integer at each node counts the number of

non-accepting values in its map and is accessed using count(Γ).
As outlined in Algorithm 6, during initialization we construct an empty checking structure

and a boolean variable indicating whether a strong state has been reached.

On each step, we update the checking structure so that the current status of the trace is

given by the boolean value of the root node. Algorithm 7 gives the procedure for updating the

checking structure, which should be called every time we update the states associated with a

total binding. To achieve this we include the statement Γ ← update check(Γ,0, θ, S) at the

appropriate point in the monitoring algorithm.

The update check function constructs a new checking structure by recursively updating

the branch consistent with the given binding. For the base case, we create a leaf with the

acceptance of the set of configurations. At each level we update the count variable to ensure it

reflects the number of non-accepting branches at that node.

At the base level we also check strong states. For the purposes of this algorithm we collect

all strong success and failure states together in a set Strong and if a strong state is encountered

we update the strong reached variable appropriately. Note how global guards are dealt with; if

a global guard is false then we trim the tree at that point, effectively removing it from the set

of bindings considered.

This leads to an updated Check function as given in Algorithm 8 which uses the root of

the checking structure and the strong reached variable to return one of four verdicts. If the

checking structure has not been updated then no total bindings have been added and the verdict

for empty domains is given.
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Algorithm 7 The checking structure update function.

function update check(Γ,i,θ, S) : CheckingStructure
(Q,x, g, ) ← Λ(i)
if i = ∣Λ∣ then

if (S ∩ Strong) ≠ ∅ then
strong reached ← true

return Leaf of (F ∩ S) ≠ ∅
if ¬g(θ) then ▷ Trim the tree here

return Γ
Node of b and M and count ← Γ ▷ Cannot be a leaf

Γ′ ←
M(θ(x)) if θ(x) ∈ dom(M)
Node of false and [ ] and 0 if θ(x) ∉ dom(M) ∧ i < ∣Λ∣
Leaf of (q0 ∈ F ) otherwise

prev ← value(Γ′)
if θ(x) ∉M and q0 ∉ F then count+=1

Γ′ ← update(Γ′, i + 1, θ, S)
M ← M†[θ(x)↦ Γ′]

count ←
count + 1 if prev ∧ ¬value(Γ′)
count − 1 if ¬prev ∧ value(Γ′)
count otherwise

if (Q = ∀ ∧ count > 0) ∨ (Q = ∃ ∧ count = ∣Γ∣) then
return Node of false and M and count

else
return Node of true and M and count

Algorithm 8 The incremental check function.

function check : Verdict

if Γ has not been updated then return

q0 ∈ F if Λ = ε
�W if Λ begins with ∃
⊺W otherwise

if strong reached then

if all quantifiers are ∀ and ¬value(Γ) then return �S
if all quantifiers are ∃ and value(Γ) then return ⊺S

if value(Γ) then return ⊺W
else return �W

An example of this algorithm is given in Appendix A.2.4.

Dealing with given domain

If we have a given domain we need to include this information in the checking structure to ensure

that the relevant total bindings are constructed. To achieve this, we initialise the monitor lookup

with the given domain and add any resulting total bindings to the checking structure. This

ensures that the necessary total bindings will be created when updating the monitor lookup.

To initialise the monitor lookup we add all bindings of the form [x1 ↦ v1, . . . , xn ↦ vn] where

xi ∈ vars of(X) and vi ∈ D(X).
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6.2.2 Special case

There are three special cases. The first two are when we have zero or one quantifier and are

discussed later in Sec. 6.5. The third is where the quantifier list is pure. Instead of the complex

checking structure we only need to maintain counts of accepting and non-accepting bindings,

or a flag indicating the previous status that could be updated when this changes, as is done in

JavaMOP. Whilst the majority of properties in this thesis use pure quantification, and can use

this special case, it is important that we introduce a reasonably efficient method for checking

in the general case.

6.2.3 Analysis

We consider the correctness and time complexity of this incremental algorithm.

Correctness

We can think of this incremental approach as keeping in memory the evaluation structure of

the acceptance relation; when we evaluate Lτ ⊧ Λ we implicitly explore this tree structure.

Therefore, we can map each step of this incremental approach back to the evaluation of ⊧ and

we produce the same results. Note that the treatment of global guards is equivalent as in ⊧ we

exclude from consideration all bindings where the associated global guard fails to hold.

Complexity

Previously to check a verdict it was necessary to compute the domains of quantified variables,

build possible bindings and then check them until we had a result. Here we store much of this

computation from step to step. The time complexity of the previous approach was

O(∣Lτ ∣ +
i=∣Λ∣

∏
i=0

∣DLτ (Λ(i))∣)

as we needed to process the monitor lookup and then step through our implicit checking tree.

In this approach we have ∣Λ∣ calls to the Update function, each of which carries out a constant

number of operations. Therefore, complexity is O(∣Λ∣). and we have vastly increased the

efficiency of our approach. However, we should note that the ∣Lτ ∣ element of the previous

approach can be easily removed by storing the domain separately.

Let us consider the additional space requirements of this approach. We are now storing a

checking structure so we will place an upper bound on the size of this structure. Note that a

checking structure has a fixed height of ∣Λ∣ and its branching at level i is given by the size of

the domain of xi i.e. the ith quantified variable. Let di by the size of the domain of quantified

variable xi. Without global guard trimming the checking structure will be

1 + d1 + d1(d2 + d2(d3 + d3(. . . dn))

which is potentially exponential in the length of Λ.
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[]

[x↦ 2][y ↦ 1] [y ↦ 3] . . .

[x↦ 2, y ↦ 3][x↦ 2, y ↦ 1] . . .

. . . . . . . . .

Figure 6.2: Global guards can be used to trim the search space. This demonstrates the effects
of filtering based on the global guard y > x. Not only do we trim bindings where y ≤ x but also
any bindings that might be constructed from them.

6.3 Filtering with global guards

We introduce the mechanisms used to trim the search space when using global guards. We

begin by introducing the basic additions used for global guards in general before focussing on

connectedness.

6.3.1 Filtering for global guards

Global guards exclude some total bindings from being considered in acceptance. When updating

the checking structure (Algorithm 7) we use global guards to trim branches of the structure,

but do not consider the bindings generated.

Here we apply the same technique to binding generation. If a newly generated binding

does not satisfy the global guards it is not added to the monitor lookup. This can drastically

reduce the number of bindings that are generated, as illustrated in Figure 6.2. To deal with

partial bindings we only evaluate global guards for the variables that are defined in a binding,

therefore given a quantification list Λ = Q1x1.g1 ∶ X1 . . .Qnxn.gn ∶ Xn we define the composite

global guard:

GΛ(θ) = ∀i.1 ≤ i ≤ n⇒ gi(θ) ∨ (∃j.j < i ∧ xj ∉ dom(θ))

The global guard filtering extension then adds the check GΛ(θ) to the addition of bindings

to the monitor lookup. We show that this approach preserves the verdicts returned .

Proposition 4. The global guard filtering extension preserves verdicts, i.e. for a given trace

and QEA the same verdict is given with and without the extension.

Proof. As we demonstrated in Section 6.2.3, bindings that do not pass global guards are ignored

when deciding acceptance, and therefore removing them from the monitor lookup has no effect.

Note that we cannot build a binding that passes global guards from one that does not.

Let us consider the effect this filtering can have on the number of bindings generated given



130 CHAPTER 6. OPTIMISING MONITORING

1 2 3 4 5

∀l1∀l2.l1 ≠ l2

LO1

lock(l1)

unlock(l1)

lock(l2) lock(l2)

unlock(l2)

lock(l1)

1

2 3 4 5

6 7 8 9

∀l1∀l2.l1 > l2

LO2

lock(l1)

unlock(l1)

lock(l2) lock(l2)

unlock(l2)

lock(l1)

lock(l2)

unlock(l2) lock(l1) lock(l1)

unlock(l1)

lock(l2)

Figure 6.3: Two QEAs for the lock ordering problem.

a trace τ and a QEA Q = ⟨Λ,E ,D⟩. Let xd = ∣(Dom(τ)†D)(x)∣ be the size of the domain of

x. Let Λ = Q1x1.g1 ∶ X1 . . .Qnxn.gn ∶ Xn. Let ei be the proportion of values in the domain

of xi excluded by global guards. The number of bindings generated in total (i.e. the size of

dom(Lτ)) and the number of bindings generated with the global guard filtering extension are

then give as

1 + ∑
X⊆vars(Λ)

( ∏
x∈X

xd) 1 + ∑
X⊂vars(Λ)

( ∏
x∈X

xd − ei)

respectively. Therefore, reducing the size of the domain of a variable has a polynomial effect

on the number of bindings produced.

For example, consider the quantification list ∀x.x > 0∀y.y > x. Given domains [x ↦
{−99, . . . ,100}, y ↦ {1, . . . ,100}] the number of generated bindings would be (200∗100)+200+
100 + 1 = 20,301. The number of bindings generated with the global guard filtering extension

would be 100∗101
2

+ 100 + 100 + 1 = 5251.

As a second example consider the quantification list ∀l1∀l2 ∶ l1 > l2 where the domains of

l1 and l2 are the natural numbers up to n. The number of bindings excluded by l1 > l2 is

n2− n(n−1)
2

and therefore the total number of bindings is 1+2n+ n(n−1)
2

, compared to 1+2n+n2

without the global guard filtering.

6.3.2 Evaluating the global guard filter

Here we briefly demonstrate how trimming the search space by filtering using a global guard

can improve performance. We consider the lock ordering property given first on page 346 and
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Table 6.1: The results of evaluating the global filtering extension using the LockOrdering ex-
ample.

Locks Time (seconds) Configurations ∣τ ∣ Time Configuration
LO1 LO2 LO1 LO2 speedup decrease

15 0.35 0.22 341 136 310 1.60 2.50
30 10.6 6.2 931 496 2220 1.70 1.87
45 88.2 52.5 2071 1081 7230 1.67 1.91
60 420.3 231.8 3661 1891 16840 1.81 1.94
75 1255.9 692.6 5701 2926 32550 1.81 1.95
90 2872.2 1561.2 8191 4186 55860 1.84 1.96

reproduced in Fig. 6.3. This figure also gives an equivalent alternative formulation of the lock

ordering problem, assuming some ordering on locks. The second QEA works by selecting only

one instance of any pair of locks and considers the case where either lock is taken first.

To evaluate the global filtering extension we include this filtering technique in the basic

monitoring algorithm. We generate a set of traces of the following form for a given i:

τ = lock(1).τ1.unlock(1). . . . .lock(i).τ1.unlock(i)
τ1 = lock(i).τ2.unlock(i). . . . .lock(2i).τ2.unlock(2i)
τ2 = lock(2i + 1).unlock(2i + 1). . . . .lock(3i).unlock(3i)

This generates a correct trace with 3i locks with a nesting of 3 deep. This reflects what might

occur when iterating over a data structure where each node has an individual lock.

Table 6.1 presents the results. In this case, global filtering allows us to almost half the size

of the search space, and therefore almost half the running times. This demonstrates an obvious

correlation between the number of bindings produced and the running time.

6.3.3 Special case: Connectedness

We now focus on connectedness as an example of a complex global guard that requires special

machinery. Connectedness was explained in Section 3.5.8. To recap, this guard only accepts

‘connected’ bindings, and a binding is connected if there is a set of events in the trace whose

extracted bindings have non-empty intersections and connect together to form the binding.

The connectedness guard represents a special set of global guards that we will call trace-

predicate global guards as they are predicated on the whole trace. These global guards need to

be treated differently from standard global guards as they cannot necessarily be used to trim

the search space as trace extensions might cause the global guard to become true. We might be

able to analyse a trace-predicate global guard to find instances where no trace extensions can

make it true, and therefore trim the search space, but this is not the case with connectedness,

so we do not consider it here.

To apply the connectedness filter we maintain a special data structure that records the

connectedness status of generated bindings. This is then used as a global guard when deciding

acceptance. As the status of this guard can change from step to step we must keep track of

which parts of the checking structure are effected.
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Data structure

To track connectedness information at runtime we use a union-find data structure [CLRS01].

Let us call a set of bindings a partition. A union-find datastructure is a set of partitions

implemented such that two operations are efficient: the union of two partitions and finding

whether two bindings are in the same partition. Here, two bindings are in the same partition if

they are connected. We include a third operation add, which adds a new partition containing

a binding.

When we observe a new event a we generate the set of bindings B = {θ ∣ ∃b ∈ A ∶ θ ⊑
match(a,b) ∧ θ ≠ []}, add all bindings in B to the data structure, and then for all pairs of

bindings b1 and b2 in B we call union(b1, b2); recording that these bindings are connected and

causing the new bindings to become connected to any existing partitions they intersect with.

Note that b1 and b2 may already occur in the data structure and the point of this step is to

connect any bindings that are already connected to them.

As an example consider the alphabet {f(w,x),g(y, z),h(w, z)} and trace τ = f(1,2).g(3,4).
h(1,4). After receiving f(1,2) we add [w ↦ 1], [x ↦ 2] and [w ↦ 1, x ↦ 2] and union their

partition together to get:

{{[w ↦ 1], [x↦ 2], [w ↦ 1, x↦ 2]}}

We repeat the same process with g(3,4), leading to two partitions:

{{[w ↦ 1], [x↦ 2], [w ↦ 1, x↦ 2]},{[y ↦ 3], [z ↦ 4], [y ↦ 3, z ↦ 4]}}

When we receiving h(1,4) we carry out the same process but this time the two partitions

collapse as we call union([w ↦ 1], [z ↦ 3]):

{{[w ↦ 1], [x↦ 2], [w ↦ 1, x↦ 2], [y ↦ 3], [z ↦ 4], [y ↦ 3, z ↦ 4]}}

Acceptance

Bindings begin unconnected and can become connected, after which they will always be con-

nected. Therefore, we can begin by assuming that all total bindings in the checking structure

are unconnected and therefore ignored. A binding is connected if it can be built entirely from

bindings in a partition of the data structure. Therefore, whenever we update a partition in

the data structure we compute all total bindings that can be built from bindings in that par-

tition, and update the status of all such total bindings in the checking structure. Note that

we still need to track non-connected bindings in the monitor lookup as they may later become

connected. Therefore, the connectedness global guard does not restrict the search space.

6.3.4 Evaluating the connectedness global guard

Let us consider the UnsafeMapIter example introduced in Appendix A.3.2 on page 344 and

replicated in Fig. 6.4, along with a version using the connected guard. Consider a trace that

has two maps (c1) and from each produces two collections (c2), such as sets of values or keys,
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1 2 3 4 5

∀c1∀c2∀i

UMI1

connect(c1, c2) iterator(c2, i) update(c1) use(i)

1 2 3 4 5

∀c1∀c2∀i .connected(c1, c2, i)

UMI2

connect(c1, c2) iterator(c2, i) update(c1) use(i)

Figure 6.4: Two QEAs for UnsafeMapIter: one using the connected guard and one not.

Table 6.2: Results of connectedness experiment.

c1 c2 i Bindings Events Times (millisecs) Speedup
Standard Connected

1 1 1 8 5 8.3 10.6 0.78
2 2 2 135 24 258.6 244 1.06
3 3 3 1120 69 4850 3664 1.32
4 4 4 5525 152 48874 34456.6 1.42
5 5 5 19656 285 318679.3 217705.7 1.46

and creates 2 iterators (i) for each of these. In total we have two maps, six collections and

twelve iterators giving 144 total bindings, but only 12 connected ones.

We briefly evaluate the effects of using the connectedness guard. We do not expect the

connectedness guard to significantly effect performance as we have the added cost of computing

connectedness, but remove a large number of updates to the checking structure. We create

artificial traces which create sequences of collections, sub-collections and iterators and then

exercise these. We monitor different lengths of traces with different values using the basic

algorithm for both the standard and connected QEAs.

Table 6.2 gives the results of our experiment, with times taken as the average over three

runs. It is clear that using the connectedness global guard improves efficiency. This is due to

the decrease in bindings that are considered for deciding the verdict. The more bindings we

have the greater the speedup, as the percentage of bindings that are non-connected increases.

We carried out this experiment for relatively few collections and iterators as the number of

bindings produced increases dramatically, although the majority of these are redundant. We

consider redundancy elimination in the next section.

6.4 Redundancy Elimination

In this section we consider the elimination of redundancies in the basic algorithm. We are

mainly concerned with bindings that are created or become redundant in the sense that they

can be removed without altering the outcome. As the complexity of our approach is polynomial

in the number of bindings created, we want to remove any redundant bindings. We begin by
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introducing a condition on QEAs that allows us to apply later optimisations before considering

different binding redundancies.

6.4.1 Normal QEAs

The optimisations given in this section and later (Sec. 6.5) rely on a certain quality of a QEA,

which we will call normality. A QEA is normal if we could add or remove bindings with empty

projections without changing the outcome.

For example, consider the case where we have a QEA with an alphabet consisting of a single

event f(x, y) and then observe the trace f(1,2).f(1,4).f(3,4). The binding [x↦ 3, y ↦ 2] will

have an empty projection. Let us consider the following checking structure where we have two

quantifiers for x and y, Qx and Qy, and four acceptance values, A,B,C,D, where D is the

acceptance value associated with the empty projection.

Qx

Qy Qy

A B C D

1

3

2 4 2 4

The truth of this checking structure relies on Qx and Qy. Let us consider the effects of the

empty projection acceptance value for different values of Qx and Qy.

Qx Qy truth q0 ∈ F q0 ∉ F
∀ ∀ (A ∧B) ∧ (C ∧D) (A ∧B) ∧C (A ∧B) ∧ �
∀ ∃ (A ∨B) ∧ (C ∨D) (A ∨B) ∧ ⊺ (A ∨B) ∧C
∃ ∀ (A ∧B) ∨ (C ∧D) (A ∧B) ∨C (A ∧B) ∨ �
∃ ∃ (A ∨B) ∨ (C ∨D) (A ∨B) ∨ ⊺ (A ∨B) ∨C

We can see that when Qy = ∀ and q0 ∈ F the empty projection verdict can be safely removed

and that the same goes for when Qy = ∃ and q0 ∉ F . Therefore, under these conditions we

can omit total bindings mapped to the empty projection. We use this observation to give our

definition of a normal QEA.

Definition 51 (Normal QEA). A QEA is normal if the initial state is final when the innermost

quantification is universal and non-final when the innermost quantification is existential. A

QEA with no quantifications is always normal.

Note that all QEA defined so far are normal, except for the ExistsLeader property from the

rovers case study first given in Fig. A.36 on page 354.

6.4.2 Empty projection redundancy

This first form of redundancy we consider is where a total binding would be associated with

an empty projection. Note that we only consider total bindings as partial bindings with empty

projections might be needed to create new bindings as they store information about the domains

of quantified variables.
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1 2 3

∀x∀y
f(x),g(y, y) g(x, y)

Figure 6.5: A QEA demonstrating why empty redundancy cannot be applied to partial bindings.

We show that for normal QEA’s we do not need to store total bindings associated with the

initial configuration (i.e. empty projection) in a monitor lookup.

Lemma 25. Given a monitor lookup Lτ for a normal QEA we have

Check(Lτ) = Check([(θ ↦ C) ∈ Lτ ∣ ¬(total(θ) ∧C = ⟨q, [ ]⟩)])

Proof. Let us consider the checking structure in each case. As the QEA is normal we know that

at the bottom level of the checking structure, removing a total binding with an empty projection

will not effect the truth of that node (as demonstrated earlier). Therefore, the overall truth of

the checking structure will be unaffected. Additionally, due to the QEA being normal it is not

possible for the initial state to be a strong state that would lead to a strong verdict. Finally, if

an event occurs later to create the total binding with a non-empty projection then not including

earlier does not prevent this.

Therefore, if a QEA is normal then when we do not create total bindings in the monitor

lookup or checking structure if they have an empty projection.

Finally, to note whey this optimisation can only apply to total bindings consider the QEA

in Fig. 6.5 and the trace τ = g(1,2).f(1). We have two total bindings: [x ↦ 1, y ↦ 1] and

[x ↦ 1, y ↦ 2]. However, if we did not record the partial binding [y ↦ 1] after the first event,

which would have an empty projection, we would not create the total binding [x ↦ 1, y ↦ 1]
and would return the incorrect verdict (weak success rather than weak failure).

6.4.3 Trivial binding redundancy

Let us now extend our previous discussion. We have identified the conditions for excluding

total bindings with empty projections but we want to identify a larger set of bindings, i.e.

those whose contribution is trivial.

Definition 52 (Trivial binding). Given a QEA Q with alphabet A, a trace τ and a binding θ,

θ is trivial for Q on τ if τ ↓A(θ) does not take any transitions in Q. Let trivialQτ (θ) indicate

that θ is trivial for Q on τ where Q and τ are omitted if obvious from context.

If a total binding is trivial then it can be omitted, as we saw above. For the case of partial

bindings we need to ensure that removing the binding would not mean we fail to create a

necessary binding, as we saw in the previous example.

We cannot remove a binding θ if there is an event a and an event b ∈ A such that θ extended

with match(a,b) is non-trivial and match(a,b) does not contain θ. The second condition states

that θ is necessary to construct the new non-trivial binding. The first condition requires b to

label a transition out of the initial state. Let us define trivial redundancy.
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Definition 53 (Trivial-redundant binding). Given a QEA Q with alphabet A, a trace τ and a

binding θ, θ is trivial-redundant for Q on τ if it is trivial and

∀a ∈ Event ,∀b ∈ A ∶ trivial(θ ⊔match(a,b))⇒ θ ⊑ match(a,b)

in which case we say that trivial red(θ) holds.

We can therefore remove all trivial-redundant bindings without effecting the verdict com-

puted (we show this later).

Elimination method

Let us now define a method for trivial-redundant binding elimination. We will do this at the

source i.e. where new bindings are introduced (as the redundancy of a binding does not change).

New bindings are introduced by the extensions function, so we consider this.

A binding is non-trivial if there is an event in A that causes a transition from the initial

state or can contribute to the creation of a necessary binding when taking a transition from the

initial state. Therefore, we define this set of non-trivial events for an EA.

An event a ∈ A is nontrivial if it either labels a transition (in δ) from q0 or there is an event

b labelling a transition from q0 such that the variables of a are not contained in the variables

of b.

Definition 54 (Nontrivial events). Given an EA ⟨Q,A, q0, δ, F ⟩ we define the set

nontrivial(E) = {a ∈ A ∣ ∃(q0,b, , , ) ∈ δ ∶ vars(a) ⊂ vars(b)⇒ b = a}

Therefore, when adding a new binding θ that was created from a trivial binding we apply

the following check for trivial-redundancy.

check(θ,a) = ∀b ∈ nontrivial(E) ∶ match(b,a) /⊑ θ ∧ dom(θ) ⊂ vars(b)

If a check(θ,a) is true then we do not add θ to the monitor lookup or checking structure.

Correctness

Let us demonstrate that this approach preserves verdicts.

Lemma 26. Given a normal QEA Q and a trace τ let Lτ be a monitor lookup computed using

the standard semantics and Kτ be a monitor lookup computed when applying the above check.

We have that

∀θ ∈ dom(Lτ) ∶ (total(θ) ∧ θ ∉ dom(Kτ))⇒ ⟨q0, [ ]⟩
τ↓A(θ)ÐÐÐ→ ⟨q0, [ ]⟩

i.e. every total binding in Lτ not computed in Kτ is trivial.

Proof. Let θ be a total binding in Lτ but not in Kτ . Let σ = τ ↓A(θ) be the sequence of events

relevant to θ and therefore those events that caused θ to be created in Lτ . As θ is not in Kτ it
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must be the case that

∀a ∈ σ,∀b ∈ A ∶ matches(b,a)⇒ ¬check(match(b,a),a)

and no events in σ label a transition out of an initial state and we have ⟨q0, [ ]⟩ σÐ→ ⟨q0, [ ]⟩.

Therefore, by the argument in the previous section (for total bindings with empty projec-

tions) we have that the verdicts are preserved by this optimisation.

An example

Consider the UnsafeIter example discussed previously (page 92) and the trace

iterator(A,1).iterator(B,2).use(1).update(B)

Firstly, when we process iterator(A,1) the bindings [c ↦ A] and [i ↦ 1] are redundant

as both have empty projections, and the only event that would lead to a non-trivial binding

is another iterator event which would reintroduce the bindings. So we only produce the

binding [c ↦ A, i ↦ 1]. Therefore, on the second event we do not produce the total bindings

[c ↦ A, i ↦ 2] or [c ↦ B, i ↦ 1], as they are both trivial. Finally, for the last two events, we

do not introduce the bindings [i↦ 1] or [c↦ B] as they are trivial. Therefore, when we would

have previously constructed eight bindings, we only construct two. For this property in general

if we have c collections and i iterators the standard approach would create ci + c + i bindings,

whereas the new approach would construct i bindings, as each iterator can only be connected

to one collection.

Relation to creation events

This check for triviality achieves the same effect as the creation events used in JavaMOP. The

main difference is that creation events are manually identified, whereas we have an automated

procedure for identifying non-trivial events. However, JavaMOP allows the user to label non-

trivial events as non-creation events, and therefore break the semantics of which bindings should

be created. Although usually this is accompanied by some user knowledge that those bindings

will be in some way redundant. To achieve the same flexibility we could also allow the user to

label events as trivial.

6.4.4 Given domain redundancy

Currently if a domain is given it is only considered during checking and bindings that will not

be considered (i.e. have values not in the given domain) are still created. We can use the given

domain to restrict the created bindings to only those considered for acceptance i.e. introduce

a further form of redundancy.

The global guard we introduce is

g(θ) = ∀X ∈ dom(D),∀x ∈ vars of(X) ∶ x ∈ dom(θ)⇒ θ(x) ∈ D(X)
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this is trivially true if D = [ ] and is omitted in this case.

6.4.5 Redundant processing

This is a simple optimisation that attempts to use a quick check to remove a lot of event

processing. The idea is that until we see a nontrivial event then all bindings created would be

trivial and could be omitted. Therefore, we do not start monitoring until we see such an event.

6.4.6 Summary

The main redundancy elimination method introduced in this section identified bindings that

did not need to be created as their contribution would be trivial i.e. they would not effect the

verdict. Later (Sec. 7.1.5) we show that where this elimination method is applicable it can

improve performance, but that applicability can be limited.

6.5 Indexing Strategies

In this section we consider methods for using an event to lookup the bindings necessary for

monitoring, we call this indexing. We begin by discussing the indexing problem and identifying

the issues we will need to address. Particular structural properties of the specification QEA

can lead to special cases of indexing and we present algorithms for these cases. We then

introduce two alternative indexing techniques: one based on a previous approach using data

values in an event and a new approach using the event itself. Finally, we discuss a mechanism

for automatically selecting an indexing strategy.

6.5.1 The problem

To help us introduce the indexing problem we first introduce the concept of event consistency.

Definition 55 (Event consistency). A binding θ is consistent with an event a iff it is consistent

with a binding that can be constructed from a i.e.

consistent(a, θ) = ∃b ∈ A ∶ matches(b,a) ∧ consistent(θ,match(b,a))

Note that relevance implies consistency. It can easily be observed that when iterating over

a monitoring lookup only the entries related to consistent bindings are used.

Lemma 27. For QEA ⟨Λ,E,D⟩ and trace τ.a we have

1. ∀θ ∈ dom(Lτ) ∶ ¬consistent(a, θ)⇒ Lτ(θ) = Lτ.a(θ)

2. ∀θ ∈ dom(Lτ.a) ∶ θ ∉ dom(Lτ)⇒ consistent(a,max below(dom(Lτ), θ))

i.e. if a binding is not consistent with an event the associated entry remains unchanged, and

all new bindings are added using a consistent binding.
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Algorithm 9 All parts for the zero quantifiers algorithm.

Q : QEA
C : Set[Config] ← {}

function init(Q: QEA)
C ← {⟨Q.q0, [ ]⟩}
Q ← Q

function update(a : GEvent)
C ← Next([ ], a, C)

function check : Verdict
S ← states in C
if StrongS ∩ S ≠ ∅ then return ⊺S
if S ⊆ StrongF then return �S
if F ∩ S ≠ ∅ then return ⊺W
else return �W

Proof. The first point above is straightforward as, by the definition of Next, if there is no event

b in A such that consistent(θ,match(b,a)) then there will be no transitions that can be taken,

and therefore the configurations will remain unchanged.

To establish the second point we note that

¬consistent(a, θ)⇒ extensions(a, θ) = ∅ (6.10)

and therefore, as bindings are only added via extensions it is necessarily the case that a binding

is added using a consistent binding. Again, it is straightforward to establish equation (6.10) by

noting that if θ is not consistent with a then the from set (in the construction of extensions)

will be empty.

The indexing problem can therefore be phrased as follows. Given a monitor lookup Lτ and

ground event a identify the set

{θ ∈ dom(Lτ) ∣ consistent(a, θ)}

i.e. the bindings in the domain of Lτ consistent with a.

6.5.2 Specific cases

We consider specific cases of the indexing problem given assumptions about the QEA specifi-

cation Q = ⟨Λ,E ,D⟩.

Zero quantifiers

In this case where Λ = ε, i.e. there are no quantifications, we do not need to use a monitor lookup

as we have a single set of configurations. The monitoring algorithm can then be trivially given

using the Next function as seen in Algorithm 9, which gives all three stages of the algorithm

i.e. Init, Update and Check. We could optimise this even further if we knew that the QEA

were deterministic.
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Algorithm 10 Init, update and check functions for the single quantifier algorithm.

Q : QEA
(q, x, g) : ({∀,∃}, Var, Guard)
C : Set[Config] ← {}
M : Map[Value,Set[Config]] ← [ ]
collapse,count ← false,0

function init(Q: QEA)
C ← {⟨Q.q0, [ ]⟩}
Q ← Q
q, x, g ← Q.Λ

function update(a : GEvent)
B ← {match(a,b) ∣ b ∈ Q.A}
if ∃θ ∈B ∶ x ∉ dom(θ) then

process([ ])
for v ∈ dom(M)} do

process([x↦ v])
else

for θ ∈B do
if g(θ) then process(θ)

function check : Verdict
if collapse then return ⊺S if q = ∀ and �S otherwise
else return ⊺W if q = ∀ ∧ count = 0 and �W otherwise

function process(θ:Binding)

Old ← { C if θ = [ ] or θ(x) ∉ dom(M)
M(θ(x)) otherwise

New ← Next(θ,a, Old)
if θ = [ ] then C ← New
else

(prev ,new) ← (∃⟨q,ϕ⟩ ∈ Old .q ∈ F ,∃⟨q,ϕ⟩ ∈ New .q ∈ F )
if θ(x) ∉M and ¬ prev then count+=1

count ←
count + 1 if prev ∧ ¬this
count − 1 if ¬prev ∧ this
count otherwise

M ← M † [ θ(x)↦ New]
if (q = ∀ and ∃⟨q,ϕ⟩ ∈New ∶ q ∈ StrongS) then collapse ← true

if (q = ∃ and ∀⟨q,ϕ⟩ ∈New ∶ q ∈ StrongF) then collapse ← true

Single quantifier

In the case where there is a single quantified variable we can use a map from values to sets

of configurations as an index. Furthermore, in this case the process of checking can be made

simpler and we can replace the Check function appropriately.

An algorithm for this special case is given in Algorithm 10. This algorithm incorporates

the ideas from incremental checking and global filtering but not redundancy elimination. The

algorithm works by first constructing the set of bindings that can be built from the event, and

then iterating over these to update their associated configurations. This works as the maximal

binding for every bindings is either itself or the empty binding.

The process function updates the configurations associated with the given binding and

then uses the previous and new acceptance values for the binding to update count. Finally, we

check the strong states to decide whether an ultimate verdict has been reached. The updated

check function uses the collapse and count variables to return a verdict.
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Algorithm 11 The update part for the disjoint alphabet algorithm.

Q : QEA
C : Set[Config] ← {}
M : Map[Bind,Set[Config]] ← [ ]
strong reached ← false
Γ ← Node of q0 ∈ F and [ ] and 0

function init(Q: QEA)
C ← {⟨Q.q0, [ ]⟩}
Q ← Q

function update(a : GEvent)

B ← {match(a,b) ∣ b ∈ Q.A}
for θ ∈ B do

Old ← { C if θ ∉ dom(M)
M(θ) otherwise

New ← Next(θ,a, Old)
if θ = [ ] then

C ← New
else

M ← M † [ θ ↦ New]
S ← {q ∣ ∃⟨q,ϕ⟩ ∈ New}
Γ← update check(Γ,0, θ, S)

Disjoint alphabet indexing

The reason that the previous indexing approach is possible is that all created bindings are

disjoint. We can extend this notion to the case where all bindings with a non-empty projection

are disjoint.

If we can define a property of QEA that captures this then we can apply the single indexing

strategy to QEAs with more than one quantified variable.

Definition 56 (Disjoint alphabet). Given a set of quantified variables X, an alphabet A is

disjoint if and only if

∀⟨e, x⟩ ∈ A ∶X ⊆ x

We assume a normal QEA as we omit bindings with empty projections.

The update function in Algorithm 11 is similar to that for single quantifier indexing, except

here we have multiple co-occurring values to index on. We can adapt the previous algorithm to

use a binding wherever we saw a value. As we might have multiple quantifiers we use the stan-

dard checking function, hence the addition of Γ to initialisation and the call of update check.

Note that θ is necessarily total.

Another way of viewing this approach is to view the set of quantified variables X as a single

variable x and using the single quantifier approach and if we have a pure quantifier list we can

do exactly this.

6.5.3 Value-based indexing

This technique is based on a method previously developed for JavaMOP (see [MJG+11]) but

needs to extended to our setting, we also formalise the approach for the first time. This strategy

is called value-based as it looks up consistent bindings using the values in an event.

The general idea

The idea behind this approach is that we map bindings that can be extracted from events to

consistent bindings in the domain of the monitor lookup. This can be used to directly lookup
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the consistent bindings given an event.

The previous work assumed that given a ground event a we could construct a unique binding

θ that captures the values in a, let us write this unique binding as match(a). We can then note

the following relationship:

{θ ∈ dom(L) ∣ consistent(a, θ)} ⊆ {θ ∈ dom(L) ∣ ∃θ′ ∶ θ′ ⊑ θ ∧ θ′ ⊑ match(a)}

Note that the set on the right can only contain a few inconsistent bindings and will be sig-

nificantly smaller than dom(L). The map described above captures the θ′ ⊑ θ relationship,

allowing us to iterate over θ′ ⊑ match(a) to construct our set.

Our approach does not restrict the alphabet so that only a single binding can be created

from an event. This does not restrict the idea, but does require us to adapt the techniques

previously used for creating and updating the map.

The theory

Let us describe the properties that we want our lookup map to have, we shall call this map

U ∶ Bind → 2Bind as it points up to the desired bindings. U should have two properties given a

monitor lookup L:

1. U should be ‘submap-closed’ i.e. contain every submap of a binding in L:

∀θ ∈ dom(L),∀θ′ ∈ Bind ∶ θ′ ⊏ θ⇒ θ′ ∈ dom(U)

2. U should be ‘supermap-closed’ i.e. every entry in U should point to the larger, consistent

bindings in L:

∀θ ∈ dom(U),∀θ′ ∈ dom(L) ∶ θ ⊑ θ′ ⇒ θ′ ∈ U(θ)

Given these two properties it is guaranteed that U can be used to lookup all relevant bindings

as previously discussed. However, we note that these properties are stronger than necessary as

we do not need every submap of a binding in L to appear in U, only those that could be created

by matching with an event in A.

The algorithm

We present the replacement parts for the value-indexing algorithm. This extends the method

of JavaMOP [MJG+11] by removing the assumption that every ground event has a unique

binding.

Initialisation. The initialisation given in Algorithm 12 declares the monitor lookup L and

two ‘up’ maps, one for storing the main U map and the other to be used as a temporary

structure to store the bindings created on each step, we will see why this is necessary later. We

also declare the components necessary for incremental checking.

Update. The update function given in Algorithm 13 performs two steps to update L. Firstly

we extract the bindings B from the incoming event as before. Then we
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Algorithm 12 The data structures and initialisation function for the value-based algorithm.

Q : QEA
L : Map[Binding, Set[Config]] ← [ ]
U : Map[Binding, Set[Binding]] ← [ ]
U′ : Map[Binding, Set[Binding]] ← [ ]
strong reached ← false

Γ ← Node of q0 ∈ F and [ ] and 0

function init(Q : QEA)
M ← M † ([ ] ↦ {(Q.E .q0, [ ])})
Q ← Q

1. Extend L using the bindings in B, and ensure that U is submap and supermap closed.

2. Update the entries in L given by U

To extend L appropriately we first find the maximal binding in L for θ and use that binding to

create a new entry in U′ for θ. We then find all consistent bindings in dom(L) that could be

extended using θ to add a new binding. This is achieved by iterating over submaps of θ and

using U to lookup the bindings in dom(L) consistent with that submap.

Our two closure properties above are preserved by the Add function, used to add a new

binding. This first adds the binding to L with the appropriate configurations (i.e. those of the

maximal binding) and then updates U′ with each submap of θ. This second activity preserves

submap-closure and super-map closure as it adds all submaps to U and ensures that they point

to the consistent, larger bindings in L. Note that we need to be careful to ensure that elements

added to U′ are correctly inserted into U. We use U′ as otherwise a binding added on the

current step might be identified as the maximal binding for a binding in B processed later.

Redundancy elimination (see the previous section) would occur in the add function i.e.

check for redundancy of θ and add it only if it is not redundant.

Because we have updated L with new bindings we now only need to update the configurations

associated with relevant bindings i.e. those whose projection the event should be added to.

These are given by the following set:

{θ ∈ dom(L) ∣ relevant(a, θ)}

Relevance can be defined as those bindings consistent with and larger than any binding that

can be extracted from an event as follows:

{θ ∈ dom(L) ∣ ∃b ∈ A ∶ match(b,a) ⊑ θ}

As U has been updated we can use it to straightforwardly lookup the relevant bindings as

follows:

{θ ∈ dom(L) ∣ ∃b ∈ A ∶ θ ∈ {match(b,a} ∪U(match(b,a))}

If we update a total binding we update the checking structure as appropriate.
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Algorithm 13 The update function for the value-based algorithm.

function update(a : GEvent)
B : Set[Binding] ← matching(a)
U′ ← [ ]
for θ ∈ B do

if θ ∉ dom(L) then
θM ← [ ]
for θ′ less than θ from biggest to smallest do

if θ′ ∈ dom(L) then θM ← θ′

add(θM , θ)
for θ1 less than θ from biggest to smallest do

for θ2 ∈ U(θ1) do
if consistent(θ1, θ2) and (θ1†θ2) ∉ dom(L) then

add(θ2, θ1†θ2)

for (θ ↦ C) ∈ U′ do
U ← U † [θ ↦(get(θ,U)∪C)]

U′ ← [ ]
from ← {match(b,a ∣ b ∈ A(θ) ∶ matches(b,a)}
for θ ∈ from ∪⋃θ′∈from get(θ′, U) do

C ← Next(θ,a,L(θ))
L ← L † (θ ↦ C)
if total(θ) then Γ← update check(Γ,0, θ,{q ∣ ∃⟨q,ϕ⟩ ∈ C})

function add(θM : Binding, θ : Binding)
L ← L † (θ ↦ L(θM ))
for θ′ less than θ do

U′ ← U′ † [θ′ ↦ (get(θ′,U′) ∪ {θ})]

function get(θ : Binding, A : Map[Binding,Set[Binding]])
if θ ∈ dom(A) then return A(θ)
else return {}

An example

Let us demonstrate the usage of this indexing approach using the LockOdering property, first

introduced in Fig. 4.2 on page 77, and the short trace

τ = lock(1).lock(2).unlock(2)

We only consider in detail the events that add new bindings, as we are interested in how U is

updated. We do not consider redundancy elimination here. As there are no free variables we

replace configurations by the states that they contain for conciseness.

We begin with empty structures as given by the Init function. On receiving lock(1) we

compute

B = {[l1 ↦ 1], [l2 ↦ 1], [l1 ↦ 1, l2 ↦ 1]}

and as none of these bindings exist in L we go through the process of adding them. In this case,

for each θ ∈ B we find θM to be [ ] and add θ using this. As we start with U empty, the set
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returned by get(θ1,U) will be empty and no bindings will be considered here. After updating

U we find the relevant bindings, in this case this is all of B, and process them appropriately.

At the end of this step we have the following for M and U:

M U
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {1}
[l1 ↦ 1] ↦ {2}
[l2 ↦ 1] ↦ {1}
[l1 ↦ 1, l2 ↦ 1] ↦ {2}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {[l1 ↦ 1], [l2 ↦ 1], [l1 ↦ 1, l2 ↦ 1]}
[l1 ↦ 1] ↦ {[l1 ↦ 1, l2 ↦ 1]}
[l2 ↦ 1] ↦ {[l1 ↦ 1, l2 ↦ 1]}

⎤⎥⎥⎥⎥⎥⎥⎦

Let us now consider what is done when receiving lock(2). We begin by computing

B = {[l1 ↦ 2], [l2 ↦ 2], [l1 ↦ 2, l2 ↦ 2]}

and again add each binding using [ ]. Now we also consider the bindings in U consistent with

each θ in B, leading us to add [l1 ↦ 2, l2 ↦ 1] as an extension of [l2 ↦ 1] and [l1 ↦ 1, l2 ↦ 2] as

an extension of [l1 ↦ 1].

M U
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {1}
[l1 ↦ 1] ↦ {2}
[l2 ↦ 1] ↦ {1}
[l1 ↦ 2] ↦ {2}
[l2 ↦ 2] ↦ {1}
[l1 ↦ 1, l2 ↦ 1] ↦ {2}
[l1 ↦ 2, l2 ↦ 2] ↦ {2}
[l1 ↦ 1, l2 ↦ 2] ↦ {3}
[l1 ↦ 2, l2 ↦ 1] ↦ {2}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[l1 ↦ 1][l1 ↦ 1, l2 ↦ 1],
[l1 ↦ 2], [l1 ↦ 2, l2 ↦ 2],
[l2 ↦ 1], [l1 ↦ 1, l2 ↦ 2],
[l2 ↦ 2], [l1 ↦ 2, l2 ↦ 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
[l1 ↦ 1] ↦ { [l1 ↦ 1, l2 ↦ 1], [l1 ↦ 1, l2 ↦ 2] }
[l2 ↦ 1] ↦ { [l1 ↦ 1, l2 ↦ 1, [l1 ↦ 2, l2 ↦ 1] }
[l1 ↦ 2] ↦ { [l1 ↦ 2, l2 ↦ 2], [l1 ↦ 2, l2 ↦ 1] }
[l2 ↦ 2] ↦ { [l1 ↦ 2, l2 ↦ 2], [l1 ↦ 1, l2 ↦ 2] }

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now on receiving unlock(2) all bindings in B are present in M and therefore we do not

add any new bindings and proceed straight to retrieving all relevant events and updating them

using Next.

Analysis

Let us discuss the correctness and time complexity of this indexing algorithm.

Correctness. To determine the correctness of this approach note that the same bindings

are added to L as in the basic approach, and the relevant bindings in L are used to update

configurations. To see that the same bindings are added to L assume that there is a binding θ

that is not. As θ should be in L then there is an event a in τ that causes its addition and another

binding θ′ in the monitor lookup at that stage that it extends (possibly [ ]). In our approach we

attempt to add all possible combinations of bindings extracted from a and consistent bindings

in the monitor lookup, therefore either θ is added or a and θ′ do not exist.
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Complexity. Let us consider two cases when processing an event a:

• The event a is new. In this case we need to go through the process of adding all bindings

that can be generated from a and the domain of L, and ensure that U is correctly updated.

As we iterate over all bindings in L when we consider compatibility with the bindings in

U([ ]) it is easy to see that this step is linear in the number of bindings.

• We have seen a before. In this case we just look up the relevant bindings directly and

iterate through them calling Next. Therefore, the complexity is bounded by the cost of

computing matching bindings, the lookup calls and the Next calls. We can take all three

processes as constant time, assuming a reasonably sized QEA.

Therefore this approach performs best when the common case is where events are seen multiple

times. As we see in the next chapter, this is often the case in real world programs.

6.5.4 Symbol-based indexing

We now introduce an alternative indexing technique that uses the symbols of an instantiated

EA as an index, rather than the values associated with it. The overall idea is similar to tree-

based term-indexing methods used in automated theorem proving [SRV01, Gra95], an idea we

explore further in further work (Sec. 12.2.3). As before, we give an overview of the idea before

presenting and discussing an updated algorithm.

The general idea

The general idea behind this approach is to use the alphabet of an instantiated event automa-

ton to lookup the configurations associated with that instantiation. We note the following

straightforward relationship for total bindings:

{θ ∈ dom(L) ∣ consistent(a, θ)} = {θ ∈ dom(L) ∣ ∃b ∈ A(θ) ∶ matches(a,b)}

This tells us that if have a map from the alphabets of instantiated EAs to the instantiating

binding then we can lookup consistent bindings. However, as we have seen previously, we need

to deal with partial bindings and therefore some events in the alphabet of an instantiated EA

will contain variables. For example, we need to identify f(1, y) using the event f(1,2). To do

this we replace y with a special symbol and consider all versions of f(1,2) with values replaced

by , therefore simplifying the approach of matching the events by ignoring the variables used.

We introduce ≺ as a relationship on events where b ≺ a if a and b have the same event name

and b has the same parameters as a, except that some parameters may be replaced with the

special symbol . For example, f( , ) ≺ f(1, ) ≺ f(1,2). If a ≺ b we say that b is more specific

than a. Let ver(a) be the smallest event such that ver(a) ≺ a i.e. replacing all parameters by .

Our relationship now needs to be refined to become:

{θ ∈ dom(L) ∣ consistent(a, θ)} ⊆ {θ ∈ dom(L) ∣ ∃b ∈ A(θ) ∶ ver(b) ≺ a}
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Algorithm 14 The data structures and initialisation function for the symbol-based algorithm.

Q : QEA
L : Map[Binding,Set[Config]] ← [ ]
Index : Map[Event,List[Binding]] ← [ ]
strong reached ← false
Γ ← Node of q0 ∈ F and [ ] and 0

function init(Q : QEA)
M ← M † ([ ] ↦ {⟨q0, [ ]⟩})
for b ∈ A do

Index ← Index † (ver(b)↦ ε)

Q ← Q

To understand why this is no longer equality note that ver(f(x,x)) = f( , ), which matches

with f(1,2). This over-approximation is due to our choice to ignore variable names and is small

(usually empty) and easily filtered.

We note that an event is only relevant to a binding if it appears in the instantiated alphabet

(or suitably updated to take into account free variables):

relevant(a, θ)⇔ a ∈ A(θ)

This comes from the definition of relevance; if θ is not relevant then some quantified variables

are captured in matching, and therefore there would be some symbols in the instantiated

alphabet event. Furthermore we note that if a appears in our index from events to bindings

then no bindings associated with less specific versions of a can lead to new bindings. This is

simply because any extensions to bindings associated with a less specific versions of a would

also be extensions to bindings associated with a, with the exception of extensions which were

already bindings associated with a.

The algorithm

We present the two replacement parts for the symbol-indexing algorithm.

Initialisation. As well as introducing the normal monitor lookup and checking structure, the

instantiation given in Algorithm 14 declares an index that maps events to lists of bindings.

The fact that we have a list of bindings is important as it preserves our notion of maximality.

Bindings will be added to the front of the list and therefore bindings created most recently

are at the beginning. It is the case that if one binding is created before another then the first

binding is necessarily smaller than or inconsistent with the second binding. Therefore, the lists

of bindings in the index are linearised with respect to ⊑.

Update. The replacement Update function in Algorithm 15 uses the index to find consistent

bindings. This consists of first computing the compatible bindings using different versions

of the event, and then iterating through these bindings adding new bindings and updating

configurations.

The Compatible function uses the process described above to find all consistent bindings

i.e. we generate all versions of a and use this to lookup the bindings whose instantiated alphabets

those version-events belong to. The different versions are created by considering subsets of the
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Algorithm 15 The update function for the symbol-based algorithm.

function update(a : GEvent)
B ← Matching(a)
for θ in Compatible(a) (in order) do

C ← L(θ)
if θ ∈get(a) then Add(θ,Next(θ,C,a),false)

for θ′ in B from largest to smallest, where θ′ is consistent with θ do
if θ′ and θ†θ′ not in L then Add(θ†θ′,Next(θ†θ′,C,a),true)

function Compatible(a : GEvent) : List[Binding]
if Index contains a then return a
B ← ε
for X ⊆ vals(a) from smallest to largest do

version ← a with values in X replaced by
for θ in get(a) do

if θ not in B then B = B.θ
return B

function Add(θ : Binding,C : Set[Config], new : boolean)
L ← L † (θ ↦ C)
if total(θ) then Γ← update check(Γ,0, θ,{q ∣ ∃⟨q,ϕ⟩ ∈ C})
if new then

for a in A(θ) do
version ← ver(a)
Index ← Index † [version ↦ (θ.get(a)) ]

function get(a:Event)
if Index contains a then return Index(a)
else return ε

values in a and replacing these with our special symbol. It is important that we generate these

versions from most to least specific i.e. we first consider X = {} and generate the version of a

with no replacements. This is because of the following simple observation for any two bindings

θ and θ′ and any two events a and b:

(a ≺ b ∧ (∃a′ ∈ A(θ) ∶ ver(a′) ≺ a(∧(∃b′ ∈ A(θ′) ∶ ver(b′) ≺ b))⇒ θ ⊑ θ′

This says that if a is more specific than b then any binding that matches with a in its alphabet

is no larger than any binding that matches with b in its alphabet. Therefore, as each list of

bindings in the index is a linearisation, the list of compatible bindings is a linearisation with

respect to ⊑.

We optimise the Compatible function so that if a is in Index then we do not return any

smaller versions of a. This breaks our contract that we will consider all consistent bindings,

however, as noted above the bindings mapped to by any smaller versions would be redundant

i.e. not be relevant nor lead to new bindings.

For each compatible binding we first update the configurations if the binding is relevant i.e.

a ∈ A(θ). We then add the binding and then attempt to extend it using bindings in B (the
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bindings matching a). As the compatible bindings are linearised this is the same process we go

through in the basic algorithm, only we do not consider inconsistent bindings. The check for

consistency and the fact that Next only updates configurations for relevant bindings ensures

that we do not create any incorrect bindings or configurations.

The Add function simply updates L and the checking structure if appropriate and then if

the binding is new it updates the index appropriately i.e. adds the variable-free versions of the

events in the instantiated alphabet. Note that bindings are added to the front of the list of

bindings, as we discussed earlier.

An example

Let us demonstrate this approach using the UnsafeMapIter example previously given in Fig. 6.4

on page. 133 and the following short trace:

τ = connect(A,B).iterator(B,1).use(1)

We are interested in how the index is used and updated. Again we replace configurations by

the states that they contain for conciseness. We begin with the index populated with the empty

binding:

Index =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

connect( , ) ↦ [ ]
iterator( , ) ↦ [ ]
update( ) ↦ [ ]
use( ) ↦ [ ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
On receiving connect(A,B) we firstly compute

B = {[c1 ↦ A], [c2 ↦ B], [c1 ↦ A, c2 ↦ B]}

and then compute

Compatible(connect(A,B)) = [ ]

by attempting to access the index with connect(A,B), connect(A, ), connect( ,B) and connect( , ).

The last event returns [ ]. We do not update the configurations associated with [ ] as it is not

relevant. We then add the three new bindings from B and update Index as follows:

Index =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

connect( , ) ↦ [ ]
iterator( , ) ↦ [c1 ↦ A].[ ]
update( ) ↦ [c2 ↦ B].[ ]
use( ) ↦ [c1 ↦ A, c2 ↦ B].[c1 ↦ A].[c2 ↦ B].[ ]
connect(A, ) ↦ [c1 ↦ A]
connect( ,B) ↦ [c2 ↦ B]
connect(A,B) ↦ [c1 ↦ A, c2 ↦ B]
iterator(B, ) ↦ [c1 ↦ A, c2 ↦ B].[c2 ↦ B]
update(A) ↦ [c1 ↦ A, c2 ↦ B].[c1 ↦ A]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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On receiving iterator(B,1) we compute

Compatible(iterator(B,1)) = [c1 ↦ A, c2 ↦ B].[c2 ↦ B].[c1 ↦ A].[ ]

by attempting to access the index with the different versions of iterator(B,1) i.e. iterator(B,1),

iterator(B, ), iterator( ,1) and iterator( , ). It is with the second and last events that we

build our list of bindings. We update the configurations and extend each binding with bindings

in B where appropriate.

It is here we see that the ordering of consistent bindings is important. If we had processed [

] before [c2 ↦ B] then we would have added [c2 ↦ B, i↦ 1] using the incorrect configurations.

The resulting index is as follows:

Index =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

connect( , ) ↦ [i↦ 1].[ ]
iterator( , ) ↦ [c1 ↦ A]..[ ]
update( ) ↦ [c2 ↦ B, i↦ 1].[c2 ↦ B].[ ]
use( ) ↦ [c1 ↦ A, c2 ↦ B].[c1 ↦ A].[c2 ↦ B].[ ]
connect(A, ) ↦ [c1 ↦ A, i↦ 1].[c1 ↦ A]
connect( ,B) ↦ [c2 ↦ B, i↦ 1].[c2 ↦ B]
connect(A,B) ↦ [c1 ↦ A, c2 ↦ B, i↦ 1].[c1 ↦ A, c2 ↦ B]
iterator(B, ) ↦ [c1 ↦ A, c2 ↦ B].[c2 ↦ B]
update(A) ↦ [c1 ↦ A, c2 ↦ B, i↦ 1].[c1 ↦ A, c2 ↦ B].[c1 ↦ A]
iterator( ,1) ↦ [c1 ↦ A, i↦ 1].[i↦ 1]
iterator(B,1) ↦ [c1 ↦ A, c2 ↦ B, i↦ 1].[c2 ↦ B, i↦ 1]
use(1) ↦ [c1 ↦ A, c2 ↦ B, i↦ 1].[c2 ↦ B, i↦ 1].

[c1 ↦ A, i↦ 1].[i↦ 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When processing use(1) we will consider only the bindings in Index(use(1)) as the event

appears in Index, therefore we have:

Compatible(use(1)) = [c1 ↦ A, c2 ↦ B, i↦ 1].[c2 ↦ B, i↦ 1].[c1 ↦ A, i↦ 1].[i↦ 1]

The event is relevant to all of these bindings and does not lead to any extensions, and therefore

no new additions to Index.

Analysis

Let us consider the correctness and time complexity of this indexing algorithm.

Correctness. To determine the correctness of this approach note that our iteration over

Compatible(a) performs the same actions as the monitor lookup step construction (Def. 40 on

page 101). Importantly, every binding in the domain of L not in Compatible(a) is not relevant

and does not lead to new bindings being added. This is the key idea behind this approach.

Complexity. Let us consider two cases when processing an event a:
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• The event a is new. In this case, we will consider all versions of a, which is bounded by 2k

if a has k parameters, and lookup all bindings associated with each version. Then for each

binding we will call Next and consider all extensions with B. The number of consistent

bindings is determined by the alphabet of the QEA and, of course, the number of values

for each quantified variable. The number of consistent bindings should be significantly

smaller than the set of all bindings.

• We have seen a before. In this case we look up the relevant bindings directly and iterate

through them. The complexity here is minimal, and for a reasonably sized QEA we can

take this as constant time.

Again, this approach performs best when the common case is where events are seen multiple

times. However, here we see that the work to be completed when adding a new binding is

effected by the alphabet of the QEA, not the number of bindings.

6.5.5 Algorithm selection

We have introduced multiple indexing strategies with different complex conditions for appli-

cability. It is not reasonable to expect the user to be able to decide which strategy to use.

Therefore, we introduce a function that selects the most appropriate strategy based on the

QEA being monitored.

Firstly, if a connectedness global guard is used then we select variations of the algorithms

that incorporate the appropriate structures and alternative checking algorithms to handle con-

nectedness.

Secondly, the mechanisms required to handle features such as non-determinism and free vari-

ables are unnecessarily complicated when the monitored properties do not use them. Therefore,

we construct reduced algorithms to be used in these cases that are automatically selected if

the associated features are not used. Additionally, we include options for turning different

optimisations, such as redundancy elimination, off when creating a monitor.

Finally, we select an indexing strategy based on structural properties of the QEA. We select

Zero indexing if Λ = ε and Single indexing if ∣Λ∣ = 1. If the alphabet is disjoint we select

Disjoint indexing. Otherwise we select Symbol indexing by default (as later experiments show

this performs better most often) with the option of selecting Value indexing instead. We also

select the optimised checking algorithm if quantification is pure.

6.6 Dealing with Reference Values: Garbage and Equality

So far we have assumed that values are symbols with a notion of equality. In the case of integer

or boolean values the notion of equality is straightforward, but if these values are objects

taken from an object-orientated programming language, as is often the case, then there are two

issues we must consider. Firstly, we need to fix our notion of equality for such object values, and

secondly we should handle the case where these object values become ‘garbage’ i.e. unreachable

in their original program. In this section we discuss these two issues and propose solutions as

extensions of the techniques we have already developed.
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The implementation of our tool is given in the Scala programming language and we generally

assume we are working within the family of JVM (Java Virtual Machine) based languages.

However, the ideas in this section can be mapped across to concepts in other high-level languages

where we have a notion of garbage collection (automatic or manual) and differing actual and

semantic equality.

6.6.1 Exploring the issues

Let us consider the two issues introduced above.

Equality

With reference objects there are two notions of equality we might want to use:

• Identity - the two reference objects refer to the same point in memory. In Java this can

be achieved by using == or System.IdentityHashCode.

• Semantic equality - the two reference objects are semantically equivalent via some user

defined notion. In Java this can be achieved by using equals or hashCode, and often

coincides with usage of the Comparable interface.

The first case will be the most common, but there are cases where we may wish to use the

second. For example, in Java, objects such as Integer and String are not always interned,

and therefore (new Integer(200)) == (new Integer(200)) will be false. Additionally, there

may be some domain-specific reason semantic equality is required.

We therefore want the user to be able to specify which form of reference equality they want

to be used when comparing two reference values. Note that we will also have a class of primitive

values in any language, for example int and byte in Java, which may have their own notion

of equality. In Java we use ==.

Garbage

Reference objects are generally stored in a separate area of memory from the main program

stack and are accessed via pointers. If an object cannot be reached via any sequence of pointers

from the program stack it is said to be unreachable and can no longer take part in the program

execution. This objects are referred to as garbage and it is common to have techniques to

remove such objects as they are unnecessarily consuming memory. In JVM-based languages

this is via automated garbage collection.

We note that garbage references cannot take part in any future events. Firstly, this means

that there are sets of bindings in our monitor lookup that are now redundant and using up

space. But more importantly, the states associated with these bindings can now be considered

final i.e. as the strong versions of themselves. By noting this we can make two optimisations:

1. If quantifiers are pure it might be the case that viewing states as strong might lead directly

to a strong result i.e. if our quantification is ∀x,∀y and a total binding [x↦ A,y ↦ B] is

in a non-final state when the object A becomes garbage then we have strong failure.
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2. If quantifiers are pure but the binding does not cause an ultimate result, or if the quan-

tifiers are alternating, we can apply the optimisations discussed in Sec. 6.4 for removing

redundant bindings.

In the following we discuss our extensions that deal with the issues of equality and garbage.

6.6.2 Garbage events

To abstract away from the problem of detecting garbage objects at runtime (we might also

be monitoring offline), we introduce the concept of garbage events. These are a special form

of event that indicate to the monitoring algorithm that a certain object is now redundant. A

garbage event consists of the name garbage1 and a finite sequence of values that have become

garbage.

Next we consider how garbage events should be handled. We can use a set of garbage values

to identify a set of bindings which are garbage redundant.

A binding θ in configurations C is garbage-redundant if there are no transitions in δ(θ) such

that a configuration in C can reach a state with a different acceptance.

Definition 57 (Garbage Redundant Bindings). Given a set of garbage values G and a QEA

Q = ⟨λ, ⟨Q,A, q0, δ, F ⟩,D⟩, garbage redundant(θ,C) holds if

∀⟨q,ϕ⟩ ∈ C,∀(q1, e(x), g, γ, q2) ∈ δ.q = q1 ⇒

(∀x ∈ x.x ∈ vars(Λ) ∨ θ(x) ∉ G)⇒ q1 = q2 ∨ q2 ∈ StrongS if ∃⟨q′, ϕ′⟩ ∈ C.q′ ∈ F
q1 = q2 ∨ q2 ∈ StrongF otherwise

Garbage redundant bindings should be removed from any indexing structures and the mon-

itor lookup. Here care must be taken not to prevent the creation of later bindings that would

effect the verdict returned. They should also be removed from the checking structure. This may

lead to a strong state being reached and an ultimate verdict being returned. We only check for

garbage events at intervals (every 100 events) to prevent the processing of garbage events from

interfering with the normal monitoring process and to amortize the cost of removing garbage

as it requires us to iterate over a number of collections.

6.6.3 Online monitoring

Here we consider the processes we go through when monitoring a program to produce garbage

events and deal with the notion of equality.

Extending QEA

We add two additional (optional) components to QEA: the reference variables and the kept

variables. The reference variables record the notion of equality to use for a variable and the

kept variables are those whose value we need to observe in guards or assignments.

The reference variables consist of a pair ⟨IRef,SRef⟩ such that IRef ∩ SRef = ∅, IRef ∪
SRef ⊆ vars(E) and for every two quantified variables x and y, if they have the same type

1This is therefore a reserved event name.
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variable then they are in the same reference set. The kept variables are a set K ⊆ vars(E) such

that K ⊆ (IRef ∪ SRef).
These sets will then be used to appropriately process events when they are received. These

components are optional and by default all variables are considered to be in IRef and not in

K. One possible future extension would be to examine guards and assignments and attempt to

automatically detect variables that should be in K.

Preprocessing

When monitoring online (when the monitored program is running) we do the following to each

incoming event:

1. Replace values in events with either their identity hash code if they are in IRef or their

semantic hash code if they are in SRef .

2. Store weak references to reference values along with a pointer to a ReferenceQueue.

When the reference values are garbage collected the weak references will be placed on

this queue. A weak reference is one that does not prevent garbage collection i.e. does not

effect the reachability of an object.

3. At intervals during the execution of the monitor, check the reference queue and create

garbage events for any garbage objects, using the appropriate hash code. We must also

ensure that garbage events are not accidentally created before all events for that value

have been processed.

4. Map hash codes to these weak references if they are related to a kept variable in K. This

map is then accessed in guards and assignments to access the true values.

When collecting traces for offline monitoring we follow the same procedures, only storing

events rather than passing them to a monitor.

Important choice

Using semantic equality can be problematic when the identify of a monitored object changes

during the monitored process. A notable example of this behaviour is with collections where

semantic equality is based on their contents. It is therefore important that the correct notion

of equality is used, although the default behaviour (of identity equality) is most likely to be the

desired one.

6.7 Summary

In this chapter we have considered five different ways in which the runtime monitoring of QEAs

can be optimised. Firstly, we introduced a five-valued verdict domain and methods for incre-

mentally tracking checking information. Secondly, we considered how global guards could be

used to trim the search space and discussed how we could deal with special trace-predicated
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guards such as connectedness. Thirdly, we looked at redundancy elimination, focusing on re-

moving redundant bindings. The fourth optimisation introduced indexing strategies for quickly

identifying the bindings required for updating monitor lookups. Finally, we discussed mech-

anisms for dealing with the pragmatic issues of equality and garbage that arise when dealing

with reference values.



Chapter 7

Evaluating Monitoring

Techniques

In this chapter we evaluate the incremental runtime monitoring technique and optimisations

discussed in Chapters 5 and 6. As outlined in Section 1.1, our aim is to develop a highly

expressive runtime monitoring technique that can compete with the most-efficient techniques

and improve on the efficiency of more expressive techniques. To this end, we compare our

technique to one of the most efficient tools (JavaMOP) and one of the most expressive tools

(RuleR). We acknowledge that our system is relatively immature compared with systems such

as JavaMOP, which have received years of optimisation.

Structure. We use the sets of specifications discussed in Sec. 4.1.1 to evaluate our techniques.

We begin (Sec. 7.1) by using the planetary rover scenario to address research questions, such

as the effect of the number of quantifiers on monitoring overhead, and the relative performance

of different indexing techniques. We then (Sec. 7.2) consider the application of QEA to real-

world programs by using the DaCapo benchmark suite to monitor a number of Java library

properties. In both cases we compare QEA the with JavaMOP and RuleR.

Implementation. We have implemented algorithms in the Scala programming language

[OSV08] as its combination of functional and object-oriented features make it particularly

suited to implementing QEA as an internal domain specific language (DSL). We abbreviate

implementations with no, zero quantifier, single quantifier, disjoint alphabet, symbol and value

indexing strategies Basic, Zero, Single, Disjoint, Symbol and Value respectively.

Experimental machine. All experiments are carried out on an eight core Mac Pro containing

two 2.26GHz Quad-Core Intel Xeon 5500 series processors and 16GB of RAM. We use version

1.6 of Java running on Oracle’s HotSpot 64-Bit Server VM.

156
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The other tools

In this chapter we will compare QEA with both JavaMOP and RuleR systems, previously

described in Section 4.5. As it is will be helpful when discussing our results we briefly review

the important points of each implementation.

We use version 3.0 of JavaMOP. The tool generates an AspectJ file that contains all in-

strumentation and monitoring code. There are a range of optimisation techniques incorporated

here, including extensive caching, but the most important is their approach to indexing and

garbage. They have implemented a range of custom mapping structures that combine hashing

and WeakRerefences1 to ensure that they can quickly locate the correct monitors and clear

monitors relating to garbage. The initial garbage implementation was unsound with respect to

an implicitly universally quantified specification as bindings that could be extended to failure

were removed if they contain garbage (see Sec. 6.6). This issue has been fixed in later work

[JMGR11], and would not effect the properties monitored here.

RuleR maintains a set of rule activations and updates this by iterating over the set. Some

kinds of rule activations require checking all other activations to see if they can fire. This

linear search can become very expensive when many data values are being tracked. However,

rule systems can explicitly remove rule activations, meaning that some well-written, simple

specifications can ensure that this set is kept small. Garbage is dealt with by storing data in

WeakReferences and occasionally scanning for garbage rule activations. By default RuleR

stops monitoring when it reports an error. To allow us to detect many errors we restart the

monitor on an error, although this is unsound and has the potential to report false positives as

the data structures will be reset and some previous information is lost.

7.1 Planentary rover case study

We use the planetary rover case study to address a number of research questions.

7.1.1 Research questions

We aim to answer the following questions:

RQ1 How do the indexing techniques based on structural properties (zero and one variable and

disjoint alphabet) compare to basic monitoring, and do they represent an improvement

on the general indexing techniques?

RQ2 For each indexing approach, which structural properties, if any, effect running time, and

to what extent?

RQ3 To what extent do the redundancy elimination techniques (including garbage removal)

effect running times?

RQ4 How does our technique compare with the efficient JavaMOP and expressive RuleR

runtime verification systems?

1In Java a weak reference does not prevent an object being marked for garbage collection. This prevent data
leaks and keeps data structures small. We use a different approach in our work.
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Table 7.1: A summary of the properties used in this case study. CC = cyclomatic complexity.

Name ∣Λ∣ ∣Q∣ ∣A∣ CC disj. norm. has triv. Fig/page
GrantCancelS 1 4 3 4 yes A.25/350
GrantCancelD 2 4 2 4 A.25/350
ResourceLifecycle 1 4 5 6 yes no A.26/350
ReleaseResource 3 4 4 4 A.27/350
RespectConflictsS 1 4 5 6 A.29/351
RespectConflictsD 2 4 5 7 A.28/351
RespectPriorities 2 11 10 28 A.30/352
ExactlyOneSuccess 1 5 3 5 yes A.31/352
IncreasingIdentifiers 0 3 2 4 A.32/353
CommandAcks 1 4 4 6 A.33/353
NestedCommands 2 4 4 3 no 3.3/61
ExistsSatellite 2 3 2 1 yes A.34/353
ExistsSatelliteS 1 2 3 2 yes A.35/354
ExistsLeader 2 3 2 1 yes no no A.36/354
HashCorrect 2 2 2 4 yes A.37/354

The hypthetical planetary rover system used in this section mainly reflects a log-file analysis

scenario, however we make some modifications to allow us to evaluate the effects of garbage

collection. Section 7.2 is concerned with monitoring real world programs online. These research

questions are addressed in Sections 7.1.3 to 7.1.6.

7.1.2 Properties and workloads

We give an overview of the properties and workloads used in this study.

Properties overview

Table. 7.1 gives an overview of the properties (see Appendix A.4) that we will be using in

this evaluation. There is a slight discrepancy between the number of states given in Table. 7.1

and the graphical representations as we must add an implicit failure state if next-style states

are used. We also give the cyclomatic complexity [McC76] of each QEA, which measures the

complexity of the transition structure in the QEA and is given as

∣{(q1,b, g, γ, q2 ∈ δ ∣ q2) ∉ StrongF}∣ − ∣Q/StrongF∣ + 2∣F ∣

where StrongF is the set of strong failure states as defined in Sec. 6.1.2. Therefore, cyclomatic

complexity gives the number of linearly independent paths to an accepting state.

Property workloads

For each QEA property we design a suitable workload parameterised by the number of values

for each quantified variables and the number of events. These workloads are designed to spread

events related to each binding across the trace and randomise the paths taken through the QEA

where appropriate. All but the NestedCommands workloads use a set of persistent objects to

represent the objects being monitored. NestedCommands creates commands in a recursive
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Figure 7.1: The results of RQ1 with zero quantifiers for IncreasingIdentifiers.

structure and the object representing a command goes out of scope shortly after that command

succeeds. To evaluate the effects of different redundancy elimination techniques we create

custom workloads, described later. Appendix C.2 describes the workloads further.

7.1.3 RQ1: Comparing indexing approaches

We compare Zero, Single and Disjoint with Basic, Value and Symbol.

Zero quantifiers

The IncreasingIdentifiers QEA has zero quantified variables and can be monitored using Zero.

We compare our strategies across a range of workloads (from 100 to a million events). The

results are given in Fig. 7.1; we also show how much slower other techniques are compared to

the Zero strategy. We can see that the Zero strategy performs better than the other approaches,

running between 1.5 and 2 times faster than the basic monitoring approach. Symbol performs

slightly better than Value as in this case its book-keeping overhead is smaller. Zero processes

events at roughly one every 0.024 milliseconds, or 42k events a second.

Single quantifier

We have five QEA’s with a single quantifier in our set of properties: ResourceLifecycle, Exact-

lyOneSuccess, ExistsSatelliteS, GrantCancelS and RespectConflictsS. We inspect ResourceLife-

cyle in detail and then review the results for the other properties.

The workload for the ResourceLifecycle consists of randomly producing e events for r re-

sources. The graphs in Fig. 7.2 give the results for the different cases of r/e. We give both

the running time (in milliseconds) and compare the Single approach to the other strategies.

The basic monitoring approach is substantially slower than the indexing techniques, running

170 times slower than the single quantifier indexing approach for 5k resources over 10k events.

Single performed the best, with the symbol-based strategy almost performing as well. Value

performed very badly when the number of resources was very large; in the 5k/10k case, where

on average every second event introduces a new value, Value was 4 times slower than Single.

This is due to Value needing to iterate over the set of existing bindings when adding a new
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Figure 7.2: The results of RQ1 with single quantifiers for ResourceLifeCycle.

Table 7.2: Comparing the Single approach with other strategies.

Property Single is X times faster than Throughput
Basic Value Symbol ms/ events/

min avg. max min avg. max min avg. max event sec
ResourceLifeCycle 4.3 148 475 1.3 1.7 3.8 1.2 1.3 1.4 0.024 46k
ExactlyOneSuccess 3 37 96 1.5 3.4 7.6 1 1.5 1.7 0.036 28k
ExistsSatelliteS 2.4 42 102 1 1.4 1.7 1.6 1.8 2.1 0.038 26k
GrantCancelS 8.4 46 121 2 2.7 5.1 2.3 3 3.6 0.012 103k
RespectConflictS 7.6 15.7 27 5.7 9.7 13.3 1.3 1.6 2 0.007 144k

binding. On average compared to the basic monitoring strategy, Single performed 148 times

faster, Value ran 59 times faster and Symbol ran 105 times faster.

Tables 7.2 records the average speedup achieved using the Single strategy for each QEA, we

give detailed analysis of the other properties in Appendix C.2.2. The Symbol approach is the

closest in performance to the Single approach and we achieve large speedups compared to the

Basic approach. Table 7.2 also gives the average milliseconds per event and events processed

per second for each QEA using the Single strategy. The GrantCancelS and RespectConflictS

have far better throughput as the value reuse rate is far higher than with the other properties.

In summary, the Single strategy consistently performed much better than alternative strate-

gies whenever it was applicable.

Disjoint alphabet

There are two QEAs with disjoint alphabets: ExistsSatellite and HashCorrect. Note that

ExistsLeader is not suitable as it is not a normal QEA (see page 134 for a discussion).
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Figure 7.3: The results of RQ1 for ExistsSatellite.

Table 7.3: Comparing the Disjoint approach with other strategies.

Property Disjoint is X times faster than Throughput
Basic Value Symbol ms/ events/

min avg. max min avg. max min avg. max event sec
ExistsSatellite 8 253 540 2.6 29 118 2.3 2.5 2.7 0.034 30k
HashCorrect 6.8 248 650 2.3 21 97 2.8 3.2 4.2 0.035 30k

Let us consider the ExistsSatellite QEA. The workload for this QEA consists of randomly

selecting a non-empty set of satellites to acknowledge each rover and producing the appropriate

ping and ack events. The results are given in Fig. 7.3. Here we can see that the disjoint

alphabet indexing approach far outperforms all other approaches. We note that roughly half

of the bindings produced are disjoint. Value performs badly as it is having to consider many

irrelevant bindings frequently, i.e. when introducing a new binding. On average, Symbol takes

2.5 the time of the disjoint alphabet approach, whereas Value takes almost 30 times as long. On

average compared to the basic monitoring strategy, Single performed 253 times faster, Value

ran 25 times faster and Symbol ran 101 times faster.

Table 7.3 records the average speedup achieved using the Disjoint. Again, we analyse the

HashCorrect QEA in Appendix C.2.2. This time the Value strategy performed very poorly due

to many irrelevant bindings being created and added. The Symbol strategy avoids this as it

indexes using events instead of bindings. Table 7.3 also gives the average milliseconds per event

and events processed per second for each QEA using the Disjoint strategy. This is roughly

similar to the Single strategy as the mechanisms involved are similar.

In summary, the Disjoint strategy consistently performed much better than alternative

strategies whenever it was applicable.
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Table 7.4: Average speedup for Value and Symbol.

Property Value Symbol Difference (Symbol
Value

)
IncreasingIdentifiers 1.44 1.19 0.82
ResourceLifeCycle 59.54 105.84 1.78
ExactlyOneSuccess 15.06 22.64 1.5
ExistsSatelliteS 29.87 23.74 0.79
GrantCancelS 14.86 15.10 1.02
RespectConflictS 1.56 9.40 6.02
ExistsSatellite 25.30 101.67 4.02
HashCorrect 29.73 70.67 2.38
GrantCancelD 34.70 76.42 2.2
ReleaseResource 9.39 31.78 3.38
RespectConflictsD 12.98 14.81 1.14
RespectPriorities 1.59 2.73 1.72
NestedCommands 6.36 8.28 1.3
CommandsAcks 0.99 0.61 0.62
ExistsLeader 16.67 14.96 0.9

Summary

We have shown that Zero, Single and Disjoint are always more efficient than general indexing

or basic monitoring where they are applicable.

7.1.4 RQ2: The effects of structural properties

Here we consider how structural properties outlined in Table. 7.1 effect monitoring times.

A summary of all experiments

We review how the Value and Symbol strategies perform on our properties, including those

discussed previously. Table 7.4 reports the speedup (with respect to the Basic strategy) for the

Value and Symbol strategies. On average the Symbol strategy achieved almost 2 times better

speedup than the Value strategy. Overall Symbol performs best in 11 cases and Value performs

best in 4 cases. Appendix C.2.3 gives further details.

The CommandAcks QEA is interesting as, on average, we see no speedup using indexing

approaches. The workload consists of c commands being sent and either acknowledged or resent.

The results for different c are given in Fig. 7.4. The Value strategy only just outperforms the

basic strategy and for 10 commands the basic strategy runs the fastest as we only see 20 events

and the overhead for Value and Symbol dominates. Symbol is consistently outperformed by the

basic monitoring approach as most events introduce a new binding. Therefore, the common

case that the two indexing strategies optimise for (the reuse of data values) is not seen.

Quantified variables

We consider the three properties in our set that have versions using both one and two quantified

variables where the first is constructed from the second using the quantifier stripping ‘trick’. We

compare the monitoring times for different indexing strategies for the two different versions. We
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Figure 7.4: The results of RQ1 for CommandAcks.

expect the single quantifier versions to be monitored more efficiently, which is the case, and we

present our results in terms of how much faster monitoring these versions is. Fig. 7.5 compares

the running times for each version. In the case of ExistsSatellite we also include results from

the Disjoint strategy i.e. we compare the Single strategy on the single quantifier version with

the Disjoint strategy on the double quantifier version.

For ExistsSatellite the Disjoint strategy with two quantifiers is more efficient than the Single

strategy with one as the additional computation required when removing one quantifier makes

no impact when we use the Disjoint strategy, which is an adaptation of the Single strategy. In

this case the quantifier stripping trick was not effective.

In the two other cases the single quantifier versions are always more efficient i.e. for all

strategies. The Basic and Value strategies performed worst; this is expected as the additional

bindings mean that the strategies have large structures to search through. However, in the case

of RespectConflicts with relatively short traces (10k events) we see the Value strategy vastly

outperforming the Symbol strategy, but when we move to longer traces (1M events) we see the

performance of the Value strategy decrease again. This is due to the higher value reuse rate in

both cases i.e. the same number of bindings are used, only reused more often. This shows that

the Value strategy is very sensitive to reuse rate, where the Symbol strategy is not.

The RespectConflicts graph demonstrates a link between the size of domain and the slow-

down caused by an additional quantifier for Basic. Larger domains leads to more bindings,

leading to larger data structures to search through on each event. This effect is multiplied with

additional quantified variables, as suggested in Sec. 4.3.1 and demonstrated here.

In summary, the number of quantified variables has a drastic impact on efficiency and any

possible action to reduce the number of quantified variables should be taken. This observation

applies to any trace-slicing based approaches, including JavaMOP.

Size of alphabet and transition complexity

The graphs in Fig. 7.6 plot speedup against alphabet size and transition complexity,the Re-

spectPriorities QEA is not included.

Firstly, let us consider alphabet size. If we look at the graph plotting alphabet size against

speedup we can see a weak negative correlation, which is stronger for the Symbol strategy.
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Figure 7.5: Comparing versions of properties with one and two quantifers.

Recall that this measures speedup with respect to the Basic strategy, i.e. not using indexing.

The Symbol strategy is more sensitive to alphabet size as it uses the alphabet to construct the

index and the time taken to search and update this index is related to the size of the alphabet.

The two data points in the top right represent an outlier and are for the ResourceLifecycle

QEA. Here the single quantifier compensates for the larger alphabet. There does not appear

to be as strong a connection between transition complexity and speedup.

Table 7.4 shows that the Value strategy performs best with small, simple properties. How-

ever, there are exceptions: ExistsLeader performs best with Value whilst ExistsSatellite per-

forms far better with Symbol even though though they have the same structure. The difference

between these two properties are the quantification alternation, which would have limited ef-

fect, and the workloads. We have a far greater reuse rate with ExistsLeader, which is a trace

property we have already highlighted as being important for the Value strategy. This suggests

that trace properties are often more important than structural properties.

The RespectPriorites QEA has the largest alphabet and transition complexity and makes

extensive use of guards and assignments. Therefore, the time to process each event is greatly

increased, as the large transition set must be searched and guards and assignments evaluated.

In summary, whilst the size of alphabet and transition complexity of a QEA do effect

monitoring time, they do not appear as important as other factors, such as the number of

quantified variables or the value reuse rate in the trace.
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Figure 7.6: Comparing speedup with alphabet size and transition complexity.

Trace properties

Let us return our attention to the ResourceLifecycle QEA discussed on page 159 with graphs

given in Fig. 7.2. If we consider the reuse rate for resources we can confirm that the performance

of the Value strategy is strongly related to the ratio of times a resource is reused. This is

consistent with our statement that Value optimises the common case where the values have

been seen previously (page 146).

r e reuse rate events/sec

10 10k 1000 44,843

100 10k 100 38,314

1000 10k 10 23,266

5k 10k 2 6,223

r e reuse rate events/sec

100 1M 100k 44,193

1000 1M 10k 39,717

5k 1M 2k 30,285

The events per second is given for Value. We see that it is at its worst when the reuse rate is

2. We also see that the number of bindings can also effect event throughput, supporting our

claims in Section 4.3.1.

Summary

The number of quantified variables in the QEA and the value reuse rate in the trace are the

two most important structural factors for determining efficiency.

7.1.5 RQ3: Redundancy elimination

We now consider the two redundancy elimination optimisations: removing bindings that have

trivial projections and removing bindings whose values become ‘garbage’.

Trivial projection redundancy

Only two of our properties have usable trivial events: ExactlyOneSuccess and ReleaseResource.

The other properties’ trivial events are not usable as they match with non-trivial events, and

some have no semantically correct trace that would introduce a trivial event. The trivial events

for each QEA are given in Appendix C.2.
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Table 7.5: Speedup for trivial projection redundancy elimination on custom workloads.

ExactlyOneSuccess ReleaseResource
Workload Symbol Value Workload Symbol Value
10 0.8 1.33 5/5/100 1.23 13.17
100 0.88 2.78 5/5/1000 1.04 42.14
1000 1.1 5.66 10/10/100 1.44 27.18
10000 1.2 3.12 10/10/1000 1.15 66.28

To evaluate the effects of removing redundant events we construct workloads for Exactly-

OneSuccess and ReleaseResource that for half of the events introduce a redundant command.

Table 7.5 summarises the speedup achieved using the trivial projection redundancy filtering

technique. This shows that redundancy elimination is far more effective for Value as the num-

ber of created bindings effects this strategy the most. In cases where we have relatively few

bindings the cost of redundancy checking is not effective for Symbol, but for reasonably sized

workloads we see a positive effect. The effects are greater for ReleaseResource as we have three

quantifiers, which amplifies the effects of introducing a new command value.

In summary, this redundancy elimination can be very effective but there may be limited

scenarios in which it is useful. One case where it will be useful is where we have looping

transitions on the initial state (or it is a skip state) for events whose orderings are only prescribed

after some other event occurs. For example, in UnsafeIter an update to a collection should be

ignored unless it occurs after the creation of an iterator.

Garbage redundancy

To explore this redundancy elimination method we use the NestedCommands and the Re-

sourceLifecyle properties with updated workloads. We should note here that the rest of the

other evaluations in this section have (with the exception of NestedCommands) used workloads

without garbage, meaning that bindings are never removed. We test garbage frequency of every

1, 10, 100 and 1000 events.

In Figure 7.7 we see the results for NestedCommands, this shows that different workloads

achieve greatest speedup with different collection frequencies and indexing strategies. For the

Value strategy we see a frequency of every one event achieving the greatest speedup with

complex workloads. This is because the majority of events require us to iterate over the main

data structure. For the Symbol indexing strategy a frequency of 100 achieves the greatest

speedup. The speedup with Symbol is much lower than with Value as the effects of garbage

are less. In the case of Symbol the overhead of checking for and clearing garbage only becomes

worthwhile when there is enough garbage to clear.

The ResourceLifecyle workload produces a less garbage than NestedCommands as it uses

one resource object at a time and then lets it go out of scope; the full results are reported in

Appendix C.2.4. In this case we see a frequency of 100 performing well across both strategies

for the less complex workloads. However, with the more complex workloads we see a frequency

of 1 working best for Value again and a frequency of 10 performing well for Symbol. The most

likely explanation here is that with longer running experiments the number of resources that
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Figure 7.7: Garbage frequency test with NestedCommands.

become garbage over the lifetime of the experiment increases, therefore the likelihood that there

will be garbage to remove increases.

In summary, garbage removal is very important and should be frequent. Further work might

explore methods by which the frequency can be altered automatically. But it is evident that

checking for garbage is not detrimental in long running programs.

7.1.6 RQ4: Comparison with JavaMOP and RuleR

We compare QEA with JavaMOP and RuleR for Expressiveness, Elegance and Efficiency.

The implemented properties for these tools can be found in Appendix C.1.

Expressiveness

As RuleR is very expressive it can capture all of our properties. However, as QEA are im-

plemented as an internal DSL in Scala we are able to use an arbitrary hash function in the

HashCorrect property and as RuleR uses an external DSL we do not have that option. To

overcome this in these experiments we use a simple ‘hash’ function that just takes the negative

of the number. RuleR would not be able to compute arbitrary hash functions, although we

note that whether a different implementation of QEA would depend on the expressiveness of

the guard and assignment languages.

The JavaMOP tool is less expressive, yet can be made to capture half of the properties in

this case study, in some cases by using extra code. We cannot capture the IncreasingIdentifiers,

CommandAcks, HashCorrect nor RespectPriorities as they use free variables and in some cases

at least one event that contains no quantified variables. We cannot capture ExistsSatellite nor

ExistsLeader as they make use of existential quantification. All of these properties could be

captured using JavaMOP along with extensive additional coding but we feel that they would

as easily be captured using pure AspectJ without JavaMOP.

For some of the properties we had to apply the following trick. As JavaMOP does not allow

us to associate an event name with more than one list of parameters we rewrite, for example,

grant(t1, r) and grant(t2, r) into grant1(t1, r) and grant2(t2, r). We have to apply this trick
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Table 7.6: Comparing conciseness.

Property QEA JavaMOP RuleR
GrantCancel 13 28/20 18
ResourceLifecycle 15 25/16 28
ReleaseResource 14 35/24 24
RespectConflicts 26 31/22 24
RespectPriorities 66 - 31
ExactlyOneSuccess 12 28/18 22
IncreasingIdentifiers 12 - 15
CommandAcks 16 - 24
NestedCommands 15 35/27 24
ExistsSatellite 20 - 21
ExistsLeader 15 - 31
HashCorrect 34 - 17

to GrantCancel, RespectConflicts and NestedCommands. The issue with this renaming of

events is that they are both created by the same program events, which only becomes an issue

when, for example, t1 = t2, as the two events belong to the same trace slice and the JavaMOP

semantics does not allow for this. Therefore, in the JavaMOP versions of these properties we

must add checks to ensure this is not the case, this is okay for these properties but requires us

to add some code to the monitors.

Therefore, we were able to translate ResourceLifecycle, ReleaseResource and ExactlyOne-

Success into JavaMOP without additional code and were able to translate GrantCancel, Re-

spectConflicts and NestedCommands by adding some extra code.

Unlike QEA and RuleR, the JavaMOP tool does not have the notion of weak verdicts;

one can either return the standard boolean verdicts, or attach verdicts to states when using the

finite state machine plugin. This means that we do not get the fine-grained verdicts for some

properties (such as ReleaseResource) that we would get with the other two tools. However, as

we can attach advice to different states we can take different actions (print different messages)

on different kinds of error, which is not possible with QEA or RuleR.

Elegance

To give a measure of elegance we consider the issue of conciseness. Table 7.6 measures con-

ciseness as number of lines of code needed to write the property (in a readable format) in the

respective DSL. Where there is a choice we show the more efficient QEA. We give JavaMOP

specifications with and without the event definitions as the other tools using separate AspectJ

files to generate events.

This is a crude measure of conciseness, let alone elegance, but overall QEA specifications

are shorter. Two obvious exceptions are RespectPriorities and HashCorrect. It turns out that

the RespectPriorities requires us to communicate between trace slices. To do this we use free

variables, however RuleR’s parameterised rules are a for more elegant mechanism for capturing

such behaviour. The QEA description of the HashCorrect property is long as it is parameterised

by a hash function and then instantiated with a given hash function, which is functionality not

provided by the RuleR tool. Generally, JavaMOP specifications are long as they combine
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Table 7.7: Speedup (times faster) for QEA over JavaMOP and RuleR.

Property QEA Basic QEA Best
simple complex average simple complex average

JavaMOP
GrantCancel 0.01 0.002 0.005 0.08 0.09 0.16
ResourceLifecycle 0.001 0.0001 0.0003 0.005 0.005 0.005
ReleaseResource 0.008 0.002 0.02 0.08 0.06 0.32
RespectConflicts 0.007 0.005 0.005 0.06 0.06 0.06
ExactlyOneSuccess 0.005 0.0001 0.003 0.02 0.01 0.02
NestedCommands 0.17 0.07 0.12 0.9 0.64 0.77

RuleR
GrantCancel 0.149 1.03 0.338 1.25 246.7 65.0
ResourceLifecycle 0.114 5.22 1.36 0.5 2433.5 537.0
ReleaseResource 0.011 0.001 0.005 0.112 0.07 0.073
RespectConflicts 2.97 291.3 83.0 23.17 7998.3 2009.5
ExactlyOneSuccess 0.33 1.31 0.63 1 126.1 43.3
IncreasingIdentifiers 0.076 0.04 0.064 0.128 0.082 0.124
CommandAcks 1.06 0.2 0.5 0.77 0.22 0.43
NestedCommands 0.005 0.0002 0.002 0.028 0.002 0.012
ExistsSatellite 0.313 0.079 0.083 1 9.1 3.38
ExistsLeader 0.181 0.111 0.12 0.555 3.72 1.74
HashCorrect 0.051 0.005 0.022 0.35 2.36 1.1

instrumentation with the specification but even with these removed the additional code required

to implement the specifications make them longer.

Efficiency

We compare monitoring time of JavaMOP and RuleR with that of the QEA strategy se-

lected by the algorithm selection routine for each property. We choose the more efficient QEA

representations where there is a choice i.e. single quantifier.

Table. 7.7 reports the speedup (number of times faster) given by QEA, where this is less

than one the other tool performed better i.e. if the speedup is 0.5 this is a 2 times slowdown,

if it is 0.01 this is a 100 times slowdown.

The JavaMOP tool is much more efficient for the properties that it can express. The best

QEA algorithm typically runs a few hundred times slower. We only beat JavaMOP once,

when monitoring the ReleaseResource property when we have a large number of objects with

respect to the number of events. One reason JavaMOP runs so much faster is that it weaves

the monitoring code directly into the monitored code, whereas QEA is implemented as an

external monitor. This means that calls to the monitor are often inlined by the Java just-in-

time compiler and as the majority of running time is monitoring time these small differences

have a large impact. The QEA monitor also creates a new object per event, which JavaMOP

avoids. We can learn a lot from the engineering decisions of JavaMOP.

For RuleR we note that there appears to be a divide between the specifications: those where

QEA greatly outperforms RuleR and those where RuleR greatly outperforms QEA. Let us

consider the case where QEA performs best. Firstly, we have the singly quantified properties
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that make use of the efficient Single strategy: GrantCancel, ResourceLifecycle, RespectCon-

flicts, ExactlyOneSucces and ExistsSatellite. In this case we target the source of RuleR’s

efficiency issue. Then we have ExistsLeader and HashCorrect. In both cases QEA’s Sym-

bol indexing strategy of QEA proves more efficient than the linear search method of RuleR.

RuleR outperforms QEA for one reason; it can actively remove bindings from consideration,

thus maintaining a small set of activations and allowing its linear search to be effective. In the

case of IncreasingIdentifiers both systems track a small amount of information, but the addi-

tional matching and checking mechanisms of QEA add unnecessary overhead. For the other

cases we have complex quantification where QEA must keep track of many bindings. In the

case of NestedCommands we saw RuleR running hundreds of times faster than QEA as each

command only lasts for a few events, yet QEA keeps track of them and combines them with

other commands. RuleR also beats JavaMOP for ReleaseResource and NestedCommands.

7.1.7 Discussion

In this section we have used an artificial case study to analyse the performance of monitoring

algorithms for QEA and answer a number of research questions. Overall we showed that our

monitoring techniques are efficient and that the optimisations we made were worthwhile. The

Symbol indexing strategy performed the best in cases where specific structural-based indexing

strategies did not apply. We briefly review the conclusions of our four research questions.

RQ1 We compared the Zero, Single and Disjoint strategies against the Basic strategy and the

general strategies of Value and Symbol. In all cases where this specialised strategies

applied they performed the best. In some cases we saw these strategies performing hun-

dreds of times faster than Basic, tens of times faster than Value and 2-3 times faster than

Symbol.

RQ2 We examined the relationships between structural properties of the QEA and monitoring

efficiency. We found, as expected, that more quantified variables leads to greater mon-

itoring overhead. We concluded that alphabet size and transition complexity played a

role, but are not as important as trace properties such as object reuse rate.

RQ3 We demonstrated that both of our redundancy elimination techniques were effective. Triv-

ial projection redundancy elimination may be of limited applicability but, as is confirmed

in the next section, garbage redundancy elimination is very important.

RQ4 We compared QEA with JavaMOP and RuleR along the three dimensions of Expres-

siveness, Elegance and Efficiency. We showed that QEA is as expressive as RuleR and

strictly more expressive than JavaMOP, and that QEA is the most concise (using one

crude measure of conciseness). We found that JavaMOP was far more efficient than

QEA for the properties it could express and that RuleR was very efficient for some small

properties, but far less efficient than QEA for complex properties.
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7.2 Evaluating with the DaCapo benchmark suite

This section uses a collection of real world applications (the DaCapo benchmark suite) to

evaluate the applicability of the QEA monitoring algorithms. The aim is to firstly establish

that our technique can be applied to real world applications, and secondly to compare the

performance to existing tools JavaMOP and RuleR.

We begin by introducing the experimental setup. We then look at the HasNext property in

detail, inspecting the errors found and discussing the performance of our algorithms with respect

to the other tools. Finally we present and discuss our results for the remaining properties.

7.2.1 Experimental Setup

We introduce the the monitored applications and the monitored properties. We use the exper-

imental machine introduced earlier and restrict all experiments to two hours.

The DaCapo suite

The DaCapo benchmark suite [BGH+06] was originally designed to evaluate the performance

of Java Virutal Machines. It has been adopted as a useful benchmark suite for evaluating

program analysis techniques and is often used to evaluate a runtime verification tools i.e. [MR10,

MJG+11, BHL+07, BLH10]. Table 7.8 describes the programs that make up the suite, giving

the number of threads used and the time it takes to run on our experimental machine (described

earlier on page 156). In some cases programs use all available hardware threads, which is 16 in

our case. The programs included in the suite were chosen to represent a range of workloads,

however are all relatively short-running. We use version 9.12 of the benchmark suite with

default workloads.

The DaCapo benchmark suite has a number of parameters to control how the individual

programs are ran and how results are collected. We use the -converge option with window -5

which means that the program should be repeated until the running time is within 3% of the

mean running time over the last 5 runs. All running times reported in this section are the average

of 5 runs. Note that this means we are monitoring multiple runs of a program using the same

monitor. Systems that use garbage collection should be able to effectively reset data structures

as all objects will become unreachable. We also use the --no-validation, -preserve and

-scratch-directory options to allow us to print information during monitoring.

Some programs are multi-threaded, although not all threads will exhibit monitored be-

haviour. We give a rough indication of the level of concurrency as threads do not necessarily

last for the full run of the system. All monitoring systems used have a single monitor lock to

keep monitors thread-safe.This single-lock can have the effect of adding significant overhead to

multi threaded programs in the form of waiting time. A number of multithreaded benchmarks

use different classloaders to create threads, which means that a separate monitor will be created

per thread as new AspectJ instances will be created in each classloader. We treat these threads

separately where they occur.

The DaCapo benchmark suite has been chosen as it has been used previously to evaluate

runtime verification tools and represents a range of applications. However, we note that the
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Table 7.8: The DaCapo benchmarks.

Name Description Threads Time (ms)

avrora A set of simulation and analysis tools in a framework for
AVR micro-controllers.

∼23 5823

batik An SVG toolkit produced by the Apache foundation. The
benchmark renders a number of svg files.

2 1613

eclipse Executes some of the (non-gui) jdt performance tests for the
Eclipse IDE.

∼1 27317

fop Parses it and formats an XSL-FO file, generating a PDF. 1 517
h2 Is an in-memory database benchmark. > 32 7209
jython Interprets the pybench Python benchmark. ∼1 5757
luindex Uses lucene to index a set of documents; the works of Shake-

speare and the King James Bible.
∼6 853

lusearch Uses lucene to do a text search of keywords over the works
of Shakespeare and the King James Bible.

∼16 1425

pmd Analyzes a set of Java classes for source code problems. ∼16 2722
sunflow A raytracing rendering system for photo-realistic images. ∼16 2241
tomcat Uses the Apache Tomcat servelet container to run some sam-

ple web applications.
∼16 1878

tradebeans Runs the Apache daytrader workload ”directly” (via EJB)
within a Geronimo application server.

> 30 10211

tradesoap Identical to the tradebeans workload, except that clien-
t/server communications is via soap protocols.

> 30 17313

xalan Transforms XML documents in HTML. ∼1 990

range of monitored behaviours only represents low-level properties found in Java programs.

Ideally, more extensive benchmarks would be developed, but this is beyond the scope of this

work. The interested reader should refer to the international runtime verification competition

starting in 2014, which aims to collect a larger range of benchmarks and properties.

The Properties

Table 7.9 describes the specifications used in this evaluation, taken from our specification of

the Java Standard Library in Appendix A.3. Some of these specifications have been used

in previous examples. All properties, apart from LockOrdering, property can be described

using the less expressive JavaMOP system. These are relative simple specifications only using

universal quantifications and only using guards and assignments to reduce complexity (i.e. they

are not necessary). Appendix C.1 gives the JavaMOP and RuleR versions of these properties.

7.2.2 The HasNext Property

Let us first consider the HasNext property, a canonical example for runtime monitoring.

Understanding the traces

We look at two properties of the traces produced by the monitored programs. Firstly, the

number of occurrences of each event, and secondly the amount of time an iterator object is

‘alive’. These properties should indicate the level of overhead expected during monitoring.

Table 7.10 gives the number of hasNext events returning true or false and the number of
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Specification Description Fig/page

HasNext Every call of Javanext must directly be preceded by
a call to JavahasNext returning true.

3.2 / 61

UnsafeIter Do not update a JavaColletion when using the
JavaIterator interface to iterate its elements.

A.16 / 344

UnsafeMapIter Do not update a JavaMap when using the
JavaIterator interface to iterate its values or keys.

A.17 / 344

UnsafeSyncCollection If a JavaCollection is synchronized, then its iterator
also should be accessed synchronously.

A.20 / 346

UnsafeSyncMap If a JavaMap is synchronized, then its iterators on
values and keys also should be accessed synchronously.

A.21 / 346

UnsafeFileWriter Do not write to a JavaFileWriter after closing. A.12/ 341
LockOrdering If two locks are taken in a certain order they should

not be taken in the opposite order elsewhere.
A.22/ 347

ConsistentHashes If an object is placed in a JavaHashSet or as a key in
a JavaHashMap then its Javahashcode should not be
updated until it is removed.

A.18/ 345

CloseFiles If a file is opened in a method then it should be closed
in the same method, this is a software development
good practice.

A.14/ 342

Table 7.9: Specifications of behaviour found in the Java library used for evaluation.

next events occurring in a single run of each benchmark. We can assume that an iterator

only returns false for hasNext once and calculate the average number of iterations per iterator.

Note that for a few benchmarks we have many events, but for others we have very few. Three

benchmarks (h2, luindex and sunflow) have HasNext activity on separate threads created by

different class loaders (see above). Table 7.10 gives the total number of events across all threads,

but the events per second and lifetimes are averaged across threads.

Table 7.10 also gives the average lifetime of an iterator object. This demonstrates the length

of time an iterator will be present in the monitor if garbage collection is used. It should be

noted that these times can be skewed by the act of recording them, however they should give

a rough guide to the average size of data structures in the monitor. Note that the maximum

lifetimes often far exceed the running times of the benchmark, as it is running in a JVM with

the DaCapo harness and objects created whilst the benchmark ran may not be collected until

after it has completed. Overall, we see many iterators not becoming garbage during the running

time of the benchmark, the main exceptions being eclipse and jython.

Errors found

There were a number of violations of this property. We manually inspect all reported errors and

report those results here. Table 7.11 gives the errors reported. We class an error as a real error

if the method in which the reported error occurred does not prevent the error i.e. assuming that

two external data structures are the same size is a real error, but calling next after checking that

the data structure is non-empty is not a real error. The reasoning is that whilst there might be

some class invariant that guarantees correct behaviour, small changes could break this contract

and there are no local checks in place to ensure that they still hold. We give different results

for different monitors when different errors are captured by each system. JavaMOP fails to
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Table 7.10: The trace statistics for the HasNext property.

Events
hasNext hasNext next total mean events

(true) (false) iterations per ms
avrora 247,026 908,978 350,547 1,506,551 0.39 259
batik 11,913 24,277 12,559 48,749 0.52 30
eclipse 80,989 4,346 60,472 145,807 13.91 5.3
fop 477,917 72,692 461,585 1,012,194 6.35 1,958
h2 61,710,546 61,710,216 36,521,060 159,941,822 1.69 4,437
jython 395,759 85,977 256,432 738,168 2.98 128
luindex 6,795 6,795 2,835 16,425 2.4 1.28
lusearch 256 128 256 640 2.00 0.4
pmd 3,947,524 804,529 3,640,109 8,392,162 4.52 3,083
sunflow 35,754,264 35,764,120 2,827,552 74,345,936 12.64 4,739
tomcat 0 0 0 0 - -
tradebeans 0 0 0 0 - -
tradesoap 0 0 0 0 - -
xalan 0 0 0 0 - -

Lifetime (milliseconds) Overall
min mean max runtime

avrora 2,335 25k ± 70k 63k 5,823
batik 222 6.5k ± 2.5k 11k 1,613
eclipse 239 6k ± 8k 29k 27,317
fop 1870 29k ± 29k 50k 517
h2 24 53k ± 17k 656k 7,209
jython 71 3k ± 1.5k 68k 5,757
luindex 730 1.1k ± 1.4k 1841 853
lusearch 11 523 ± 2k 3k 1,425
pmd 376 22k ± 157k 580k 2,722
sunflow 510 6k ± 28k 999k 2,241

capture any potential errors that stem from calling next after hasNext returns false. QEA

fails to capture multiple errors for the same iterator due to the way the non-failing mode is

implemented, it could be extended to support the same behaviour as JavaMOP i.e. removing

the monitor and allowing it to be recreated. RuleR has the same restart issue as QEA but

also gives false positives as mentioned previously.

In fop we see a few cases of custom iterator operations such as nextIndex and previous

causing false positives. In one case the false positive was difficult to determine but was caused

by caching in the custom iterator which meant that hasNext returned false before a valid call

to next. The JavaMOP monitor did not catch this false positive as it is an incorrect behaviour

not captured by their version of the property as they cannot capture free variables.

One source of false positives comes from non-empty checks on the collection being iterated

as in this example, taken from org.apache.batik.ext.awt.image.AbstractRable.

1 i f ( this . s r c s . s i z e ( ) != 0) {
2 I t e r a t o r i = s r c s . i t e r a t o r ( ) ;

3 F i l t e r s r c = ( F i l t e r ) i . next ( ) ;
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Table 7.11: Errors reported when monitoring HasNext.

Property Reported errors Average repetitions Real errors
avrora (JavaMOP,QEA) 1 103k 1

avrora (RuleR) 10 23k 1
batik 3 65 2

fop (JavaMOP,RuleR) 14 214k 8
fop (QEA) 20 97k 7
h2 (QEA) 4 8 0

h2 (JavaMOP,RuleR) 1 30 0
pmd (JavaMOP,QEA) 3 2k 1

pmd (RuleR) 7 3 0
sunflow (RuleR) 1 5 0

Sometimes the programmer has defended against the error. For example, in this code

taken from avrora.sim.radio.Medium$BasicArbitrator.mergeTransmissions we see an as-

sert statement being used.

1 public char mergeTransmiss ions ( Rece iver r e c e i v e r ,

2 L i s t i t , long bit , int M i l l i s e c o n d s ) {
3 a s s e r t ( i t . s i z e ( ) > 0 ) ;

4 I t e r a t o r i = i t . i t e r a t o r ( ) ;

5 Transmiss ion f i r s t = ( Transmiss ion ) i . next ( ) ;

We find some real bugs, verified by manual inspection of the code. For example, this code

taken from org.apache.batik.gvt.renderer.StrokingTextPainter assumes that aciList

is not empty but inspection of the rest of the method could not verify that this will always

hold, as it is dependent on external data structures.

1 // copy the t e x t chunks i n t o an array

2 At t r i bu t edCharac t e r I t e r a to r [ ] ac iArray =

3 new Att r ibu t edCharac t e r I t e ra to r [ a c i L i s t . s i z e ( ) ] ;

4 I t e r a t o r i t e r = a c i L i s t . i t e r a t o r ( ) ;

5 for ( int i =0; i t e r . hasNext ( ) ; ++i ) {
6 ac iArray [ i ] = ( At t r i bu t edCharac t e r I t e r a to r ) i t e r . next ( ) ;

7 }

Another source of errors is where we iterate over two collections at the same time, as seen

in org.apahce.batik.bridge.SVGTextElementBridge. Here two iterators are created from

strings and attributes and the programmer has relied on the (unchecked) property that

these collections are the same size. The call to next on line 7 is incorrect, however the call on

line 12 is a false positive as it is necessarily the case that the key set and value set of a map are

the same size.

1 I t e r a t o r s i t = s t r i n g s . i t e r a t o r ( ) ;

2 I t e r a t o r a i t = a t t r i b u t e s . i t e r a t o r ( ) ;

3 int idx = 0 ;

4 while ( s i t . hasNext ( ) ) {
5 St r ing s = ( St r ing ) s i t . next ( ) ;

6 int nidx = idx + s . l ength ( ) ;
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1 2 3

4

∀c∀i

iterator(c, i)

hasNext(i, false)

hasNext(i, true),
size(c, s) s>0

next(i)),
size(c, s) s=0

hasNext(i, false),size(c, s)

hasNext(i, true),
size(c, s) s>0

size(c, s) s=0

Figure 7.8: A refined HasNext QEA

7 Map m = (Map) a i t . next ( ) ;

8 I t e r a t o r k i t = m. keySet ( ) . i t e r a t o r ( ) ;

9 I t e r a t o r v i t = m. va lue s ( ) . i t e r a t o r ( ) ;

10 while ( k i t . hasNext ( ) ) {
11 Att r ibute a t t r = ( Attr ibute ) k i t . next ( ) ;

12 Object va l = v i t . next ( ) ;

13 r e s u l t . addAttr ibute ( att r , val , idx , nidx ) ;

14 }
15 idx = nidx ;

16 }

The fact that only 46% of identified errors are real errors demonstrates that programming

rules such as HasNext might be too specific, and we might consider incorporating additional

information. For example, if the size of the base collection is confirmed as nonempty and

not updated before an iterator is created and used with next. Figure 7.8 captures a refined

QEA that incorporates checking the size of a collection. However, there are some semantic

behaviours, such as two collections being assumed to be the same size, which may be beyond

the scope of runtime monitoring.

Timing results

Table 7.12 gives the average slowdown for each tool, the actual times are reported in Ap-

pendix C.3.2. The fastest tool for each benchmark is highlighted. In some cases the percentage

overhead is less than one, this phenomenon has been previously reported and is due to instru-

mentation causing the code to undergo different optimisations by the JIT compiler or different

thread orderings caused by synchronisation on the monitor.

On average QEA performed 3.94 times faster than JavaMOP and 22.63 times faster than

RuleR but if we exclude fop QEA performs 1.06 times faster than JavaMOP and 1.43 times

faster than RuleR. This is mainly due to the Single indexing strategy that is specialised for

the case where we have only one quantified variable. As HasNext is a very simple property it

is unsurprisingly that RuleR performs well generally. We consider the results more closely.

Firstly, let us consider those benchmarks that have relatively few or no events i.e. luindex,

lusearch, tomcat, tradebeans, tradesoap and xalan. Slowdown is between 0.82 and 1.17. The

last four properties have zero events and no instrumentation occurs and therefore slowdown can

only be due to variants in the timing of the original program.

Finding errors can have a large impact on running time. RuleR performs well on avrora
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Table 7.12: Slowdown results for HasNext

Slowdown Single compared to
QEA-Single JavaMOP RuleR JavaMOP RuleR

avrora 1.99 6.30 4.11 3.16 2.07
batik 1.06 1.32 2.15 1.24 2.02
eclipse 1.00 0.99 1.01 1.00 1.02
fop 3.54 146.51 981.75 41.35 277.06
h2 1.51 1.06 - 0.70 -
jython 0.56 0.51 0.78 0.92 1.40
luindex 1.11 1.09 1.12 0.98 1.01
lusearch 0.99 0.96 1.04 0.97 1.05
pmd 5.17 2.27 - 0.44 -
sunflow 2.33 0.99 10.23 0.42 4.38
tomcat 1.03 1.03 1.05 0.99 1.02
tradebeans 1.03 1.03 0.96 1.00 0.94
tradesoap 0.83 0.83 0.86 0.99 1.03
xalan 0.94 0.93 0.99 0.99 1.05

due to the false positives returned as we restart the monitor on every error, clearing the data

structures. For fop QEA outperforms JavaMOP and RuleR, partly due to the errors identified

as QEA will only report one error per iterator and then stop considering that iterator, but both

JavaMOP and RuleR will continue to process these events. In batik and pmd the errors are

infrequent with respect to the rest of the behaviour.

QEA sees a vast improvement for fop compared to the other monitors, which cannot only

be explained by error handling. We should first note that fop is a short running program

(507 milliseconds) and any overhead will lead to large slowdowns. It is also the case that the

majority of iterators are live for the full length of the program. The most likely explanation is

that the indexing structures making use of weak references used by JavaMOP added unneeded

overhead as JavaMOP relies on quickly clearing its data structures to remain efficient.

The h2 and sunflow benchmarks were both monitored with multiple monitors as different

parts were loaded by different class loaders. This spread the workload between monitors but

we still saw a very high throughput. For sunflow each monitor handled 10M events on average,

and for h2 it was almost 35M events per monitor. Sunflow has relatively long iterations so it is

likely that JavaMOP’s caching mechanism allowed it to achieve its very small slowdown. It is

likely that the different threads are monitored by different monitors preventing synchronisation

on the single monitor lock.

Both eclipse and jython have relatively small slowdown given the number of events. If

we inspect Table 7.10 we see that the majority of iterators are short-lived, meaning that for

these benchmarks data structures remain reasonably small. Figure 7.9 plots the slowdown

overhead against the average Iterator lifetime as a percentage of benchmark running time,

meant to indicate the level of garbage collected during the run. We see that as the average

lifetime increases above 100% slowdown increases dramatically, and that slowdown is at its

worst for JavaMOP when we have the most garbage. RuleR is a slight exception as it can

directly remove rule activations without waiting for them to become garbage, so it is the number

of simultaneously live iterators that effects its performance. This shows that the removal of



178 CHAPTER 7. EVALUATING MONITORING TECHNIQUES

Figure 7.9: Comparing the average lifetime of iterators with overhead.

Table 7.13: Inside overhead and throughput whilst monitoring HasNext. We report the time
spent inside the monitor in terms of percentage of total monitoring time and percentage of
overall overhead, we also report the average events processed per millisecond.

JavaMOP RuleR QEA-Single
% total % over e/ms % total % over e/ms % total % over e/ms

avrora 87 103 45 - - - 43 82 282
batik 23 56 78 46 77 26 7 20 265
eclipse 0 0 3639 0 3 235 0 1 323
fop 98 99 13 - - - 44 56 903
h2 24 195 2549 89 1.51 353 39 1.09 1116
jython 1 -4 8877 27 5.59 289 6 -0.28 1729
luindex 0 0 481 1 6 22 1 4 20
lusearch 0 2 179 5 23 7 5 20 7
pmd 38 56 2696 - - - 44 54 1284
sunflow 13 68 4216 39 44 165 21 35 1243

garbage is of key importance.

Additionally, we note that eclipse and jython are single-threaded benchmarks, suggesting

that much of the overhead for other benchmarks is due to synchronization on the single monitor.

We add additional instrumentation to track the time spent inside each monitor (i.e. holding

the monitor lock). Table 7.13 reports the time spent inside the monitor as a percentage of

the total monitoring time and of the overhead; where the overhead is negative this will also

be negative. We also report throughput as time time spent inside the monitor divided by the

number of events processed. From this we can see that it is often the case that a minority of

the overhead is spent in the actual monitor; the rest will be a form of interference caused by

synchronising on the monitor lock. For example, pmd has 16 threads and time spent inside the

monitor makes up just over half of the total overhead time.

Summary

The HasNext property is often used as a representative example for runtime monitoring, however

our analysis of errors found in the DaCapo benchmark suite show that it may be too simplistic
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Figure 7.10: Overhead for monitoring the UnsafeFileWriter property.

as a reflection of common coding practice. Our Single indexing strategy allowed us to monitor

this property very efficiently. Furthermore, we found that garbage collection is a fundamental

requirement and that the monitor lock can cause negative interference.

7.2.3 Other properties

In this section we consider the remaining properties in slightly less detail. In some cases we

group similar properties together. Full details are given in Appendix C.3.

UnsafeFileWriter

This is a very simple property that has been used previously in runtime monitoring experiments

using DaCapo [MJG+11]. However, we found that none of benchmarks make use of FileWriters.

This allows us to examine the effects of monitoring an unused property. When we monitor an

unused property we construct a monitor at the beginning and load the necessary classes into

memory. We also pass the code through the AspectJ compiler to carry out instrumentation,

which should not effect uninstrumented code.

Figure 7.10 gives the slowdown for all monitoring approaches used in our experiments. This

shows that some properties are sped up by the small changes mentioned previously. This could

be accounted for in our other discussions of slowdown. For example, if we take this as jython’s

baseline then we get positive (but small) slowdown for HasNext across all monitors. We see

little variation in the overhead introduced by different approaches.

The connected properties

We consider UnsafeIter, UnsafeMapIter, UnsafeSyncCollection and UnsafeSyncmap together

as they all consider objects created from other objects. These properties also demonstrate an

issue with the current implementation of the QEA monitoring algorithms i.e. how they deal

with garbage.

Table 7.14 summarises the average slowdown across all benchmarks for these four properties,

for QEA this is somewhat skewed by a few properties that have hundreds of times slowdown. In
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Table 7.14: Average slowdown for each property for each monitoring approach.

QEA JavaMOP RuleR
UnsafeIter 110.65 1.64 4.02
UnsafeMapIter 135.29 1.29 1.72
UnsafeSyncCollection 103.99 1.12 -
UnsafeSyncmap 163.50 1.06 -

Figure 7.11: The garbage problem in UnsafeIter.

these cases QEA runs on average 100 times slower than JavaMOP, and RuleR. The issue here

is that the garbage removal technique for QEA cannot deal with these connected properties

properly. as we take all possible combinations of collections and iterators, keeping bindings

alive necessarily as there is still an extension of the trace slice for that binding that could

lead to failure. This means that data structures get very large. Figure 7.11 demonstrates this

garbage issue. We show the increasing time it takes to complete an iteration in UnafeIter for

both the Symbol and Value strategies for fop and batik respectively. On every iteration the

time increases (we would expect it to decrease as JIT optimisations apply) as the monitors are

storing more and more values. The problem is far worse with the Value indexing technique,

compared to Symbol, as this approach has a larger index. RuleR performs reasonably here as

it has fine-grained control over when it creates rule activations, and many of the events can be

ignored.

This is an issue that needs resolving to make our tool applicable to this class of properties.

It should be possible as the underlying structure is similar to that of JavaMOP.

ConsistentHashes

This property checks that objects stored in collections using hashing maintain their hashCode.

We consider both HashSet and HashMap. We need to write a specification for each in JavaMOP

but can monitor both together in QEA. To implement the properties in JavaMOP a small

amount of programming is required, whereas QEA uses free variables. For JavaMOP we need

to add a variable to each monitor to store the previous hashcode. It should be noted that the

use of IdentityHashCode to identify different objects is of key importance here.

Table 7.15 records the total number of events and slowdown per benchmark. We only include

benchmarks with more than zero events, additionally an exception persistently occurred when
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Table 7.15: Average slowdown for the ConsistentHashes property.

Events
QEA-Disjoint QEA-Symbol JavaMOP RuleR

add observe
avrora 1,984 713,809 1.88 7.72 1.03 -
batik 10,872 23,130 1.24 2.19 1.0 866
eclipse 7,865 25,367 1.02 1.04 1.01 -
fop 29,735 359,969 97.9 41.0 1.36 2310
jython 10,626 3,146,865 2.1 10.88 0.52 -
luindex 218 124,565 1.91 5.52 1.02 452
lusearch 9,202 1,049,474 64.4 121.2 2.0 -
pmd 149,039 764,939 0.59 -
xalan 29,534 462,500 10.84 24.27 1.25 -

Table 7.16: Warnings when monitoring for the LockOrdering property.

QEA RuleR
Warnings Frequency Warnings Frequency

avrora 6 8 13 34k
batik 0 0 1 35
fop 0 0 1 2
h2 ≥16 ≥94 ≥31 ≥ 307k
luindex 5 5 11 1.2k
lusearch 33 11k 21 30k
pmd 4 194 5 115
sunflow 8 11 8 35
xalan 2 2 18 240

monitoring h2 so it has been excluded. JavaMOP outperforms QEA, although we should note

that it spreads events across two monitors, reducing the size of data structures. For QEA we

see that performance degrades with the number of objects added, for example with fop and

xalan. RuleR performs very badly for this property as it involves storing a large number of rule

activations, and searching through them on each step. For lusearch the slowdown is amplified

as it is multithreaded, with 16 threads all accessing hashing structures at the same time causing

synchronisation on the single monitor lock.

Warning properties

The last two properties are different from the rest as it captures a desired rather than required

property. Therefore we refer to reports of breaking this property as warnings rather than errors.

Let us first consider the LockOrdering property, which cannot be captured using JavaMOP.

Some of the benchmarks produce a lot of events as they make heavy use of locking.

Table 7.16 captures all of the warnings given during monitoring. As before, RuleR returning

false positives drastically reduces the number of locks being tracked, improving efficiency. This

suggest a possible future work that eagerly discards bindings, trading soundness for efficiency.

Benchmarks that use locking heavily, such as lusearch, receive many warnings. We have not

explored these warnings; a possible exercise, which we have not explored, would be to check

the warnings using standard techniques for detecting potential deadlocks.
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Table 7.17: Average slowdown for the LockOrdering property.

Total events Live (mean/max) QEA-Value QEA-Symbol RuleR
avrora 3,355,930 6.19/12 91.9 95.3 -
batik 104,882 0.52/4 680.1 526.8 1.32
eclipse 237,732 4.25/10 - - -
fop 7,106 0.5/2 7.15 7.8 0.97
h2 ≥43492240 32.45/35 - - -
jython 33,101,230 - - - -
luindex 428,608 2.85/6 671.7 642.7 7.13
lusearch 3,289,700 8.42/61 - - -
pmd 17,714 8.76/17 136.5 130.6 -
sunflow 1648 8.63/17 1.26 1.45 1.1
xalan 8,935,120 37.84/65 - - 1641

Table 7.18: Average slowdown for CloseFiles.

JavaMOP QEA-Symbol QEA-Value RuleR
batik - 108.2 92.7 185.9
eclipse - 1.02 1.04 1.23
fop 627.1 430.4 404.3 457.5
h2 54.8 - - -
pmd - 462.2 444.2 -
sunflow 547.7 - - -
tomcat - 1.01 1.04 1.0
tradebeans - 1.02 0.98 1.01
tradesoap - 0.85 0.82 0.83

It is important to note that producing warnings can effect the efficiency of the approach.

Table 7.17 gives the total number of events and slowdown for each benchmark and monitoring

approach. We also record the mean and maximum number of locks held at any time, giving

a very coarse measure of how likely a lock ordering problem is to occur. In many cases there

are too many locks for the monitors to efficiently deal with them all. Both approaches need to

store a large amount of data, and as before, QEA suffers from not being able to remove garbage

bindings as they could be extended to failure. QEA is able to deal with over 3M locks in the

case of avrora and a relatively large number of live held at once, in pmd. Only RuleR was able

to monitor xalan successfully, which had the most locks held at once. In general, to efficiently

monitor this property we need to implement better methods for trimming the search space.

The CloseFiles property is interesting as it is context-free. This means that we use the

context-free-grammar plugin for JavaMOP and our QEA makes use of counters to keep track

of the depth of method nestings. We also have a lot of activity as this property requires us to

capture every method entrance and exit. Table 7.18 reports the slowdown for each monitoring

approach, we only include benchmarks where at least one monitor completes.

JavaMOP and QEA are reasonably even in their performance. For fop, QEA outperforms

JavaMOP considerably, but in two other cases JavaMOP completes monitoring when QEA

does not. In the case of batik and pmd, QEA is at an advantage as it only produces one warning

per thread, allowing it to monitor more efficiently. RuleR’s performance was reasonable,
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outperforming JavaMOP for fop. For tomcat we only saw 124 events, in contrast to the 200M

events for batik and 3.2M events for eclipse. Of those benchmarks that did not complete, on

average QEA had processed 400 million events after two hours. They also typically had many

warnings; JavaMOP reports 2 different warnings in luindex 7.6 million times.

Given its nature we suggest that this property is not well-suited to runtime monitoring

and might more effectively be checked using simple static analysis as it does not require intra-

procedural checks.

7.2.4 Discussion

From the experiments in this section we can conclude two things:

1. Our technique scales to real world applications. It can outperform other techniques in

cases where we have developed efficient algorithms and compete with more efficient tech-

niques in other settings.

2. Further work is required to improve how our monitoring algorithms deal with garbage. In

particular, the case where we fail to remove objects as their trace slices could be extended

to failure, but our external knowledge that there is a connected semantics means that it

is safe to remove these objects.

7.3 Summary

In this chapter we have used a hypothetical case study to explore a number of research questions

relating to the efficiency of our monitoring algorithms and then applied these algorithms to

some real world programs from the DaCapo benchmark suite to establish the applicability of

our techniques.

We have shown that the optimisations described in the previous two chapters have been

worthwhile but that there is still some work to be done to tackle the issue of garbage collection.

There are further optimisations that can be applied. importantly, as we make use of the trace

slicing concept we can adapt any of the optimisations used by JavaMOP. Our algorithm

selection technique can be extended to consider more specific optimisations based on structural

and trace properties. One observation is that the Symbol indexing technique, which is novel to

this work, outperforms the Value indexing technique, which was introduced by JavaMOP.
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Chapter 8

Mining Quantified Event

Automata

We now consider the problem of inferring QEA. The problem we address is that of producing

a (form of) QEA from a set of labelled traces produced by a system presumed to be correct.

We refer the reader to Section 2.4 for a discussion of this learning process.

Here we take an approach that is well suited to our development; a generate-and-check style

approach that harnesses the efficient runtime verification algorithms developed in Part II. Our

technique generates a set of possible ‘patterns’ and then checks them against the traces using

our runtime verification process. From an abstract point of view these patterns can be seen as

hypothesis QEAs, however in practice we carry out mining at the propositional level and use

the quantifications to move between the parametric and propositional settings. It is useful to

produce large specifications and therefore we introduce a combination stage to our approach

that combines together extracted patterns.

This process relies on a number of different concepts coming together. Firstly, we require

a notion of pattern that can be easily and effectively combined. Secondly, we need an efficient

method for generating and checking such patterns. Part of the efficient checking will come from

the QEA monitoring algorithms presented in Part II, and part will depend on our method of

combining patterns together to be checked simultaneously.

We note here that this chapter focuses on mining a restricted form of QEA that does not

allow free variables, we discuss methods for extending this approach in Sec. 12.2.8.

Structure. We begin by introducing the general area of specification mining (Sec. 8.1). This

is followed by an overview of the mining process used here (Sec. 8.2). Although the mining

process is generate, check, combine the first stage we will consider is that of combination, as

this informs our choice of pattern formalism, therefore Section 8.3 introduces open automata

as our notion of pattern. Next we define appropriate mechanisms for generating and checking

sets of patterns against traces (Sec. 8.4) before bringing these definitions together in the mining

framework (Sec. 8.5). We then demonstrate how this mining process applies to a trace (Sec. 8.6).

Next we present an extension of the mining framework to take into account the connectedness

185
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global guard (Sec. 8.7). The chapter concludes by comparing the approach taken here with

existing work from the fields of specification mining and specification inference (Sec. 8.8).

8.1 Pattern-based specification mining

Here we consider our chosen specification inference approach; a pattern-based specification

mining technique that uses a set of template patterns to generate potential specifications, and

then checks these against the traces.

8.1.1 Daikon:an important beginning

An early generate and check approach for state specifications, or state invariants, is the Daikon

tool [ECGN01, NE02]. The tool can label different program points, such as method entry/exit,

with invariants over the accessible variables. The approach uses a set of template invariants,

which it instantiates and checks over execution traces recording the value of variables at different

program points. Inferred invariants are filtered for redundancies.

Daikon infers many kinds of invariants, for example: a variable being constant, coming from

a small set, being in a range, being no-zero, or being equal to some constant modulo some

other constant; two numerical variables having some linear relationship, ordering relationship,

or functional equivalence; sequences having minimum and maximum conditions, (lexicograph-

ical) orderings, invariants holding over the whole sequence, or relationships with other linear

sequences such as elementwise linear relationship, comparison, or subsequence relationships.

Daikon is often cited as an inspiration for pattern-based trace specification mining.

8.1.2 The problem

Gabel and Su [GS08b] describe the pattern-based specification mining problem as finding an

instantiation of a template finite state machine with events in a trace. They attempt to formalise

this as follows:

Problem 1 (Pattern-Based Specification Mining). Given a finite state machine A over an

alphabet Σ1 and execution trace τ ∈ Σ∗
2 such that Σ1 ∩Σ2 = ∅. Does there exist a total injective

function ρ ∶ Σ1 → Σ2 such that τ ↓Σ1∈ L(ρ(A)) where τ ↓Σ1 is τ with all elements not in Σ1

removed and ρ(A) is equal to A with δρ(A)(s, ρ(a)) = δA(s, a).

Importantly, as they take the trace projection, an inferred model only captures interactions

between the symbols in Σ2. Note that there may be many solutions ρ and each represents an

inferred specification. Their problem description does not discuss how to differentiate between

these different solutions. Furthermore, the template finite state machine A determines the

specifications extracted and the identification of good templates is a separate problem.

Although some processes may be missing from this problem description, it captures the core

activity of the pattern-based approach. Gabel and Su [GS08b] also give a polynomial reduction

from their definition of the problem to the well known NP-complete HamPath problem [Kar72].

This shows that the pattern-based approach, in general, is NP-complete.
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8.1.3 The generate-check-refine process

The pattern-based specification mining approach can be realised by a generate-check-refine

process. Concrete patterns are generated from templates and an alphabet, these are checked

over the set of traces and those that pass are refined to form a description of the system. We

now discuss these three stages in more detail.

Generate

The generation stage will always take one or more pattern templates and an alphabet and

combine them together to make many instances of the pattern. If the pattern template has n

symbols and the alphabet has m symbols then the number of patterns generated is bounded

by nm. We note that the generation stage is often conceptual i.e. we do not create the pattern

instances directly but may represent them when checking. However, the set of pattern templates

and alphabet determine the pattern instances that must be checked.

Let us now consider the choice of pattern templates. Later (Chap. 9) we will explore the

choice of patterns in more detail and give a more thorough review (Sec. 9.2) of previously used

patterns. For now we review the different tools and the kinds of patterns they use.

Engler et al. [ECH+01] use this approach to uncover bugs as inconsistent behaviour and

employed ad-hoc templates in a framework that would be difficult to extend, for example the

template do not dereference null pointer < p >, although they do consider the two templates

a(¬b)∗ and ab. Perracotta [YE04a, YE04b, YEB+06], uses small (2 element) regular expression

patterns based on the Response pattern [DAC99] that says whenever P happens, S must also

eventually happen. The Javert tool [GS08b, GS08a] introduced the concept of combing suc-

cessful patterns to produce larger patterns and the (2 or 3 symbol) patterns reflect this. Li et

al[LFS10] focus on mining temporal properties for hardware design and build a binary pattern

language over temporal and timing operators, for example the pattern G(a → X(a U b)). In

contrast, Weimer and Necula [WN05]) only use the alternating pattern (ab)∗.

All of the approaches given here take the symbols in the trace to be the alphabet, causing

many patterns to be generated. The idea is that it is difficult to know a priori what an interesting

set of symbols will be (each inferred specification describes the interaction between a subset of

the alphabet) and therefore all should be used. However, a decision must be made of what to

record in the execution trace and the decision of what symbols may be interesting is deferred.

Check

Generated patterns are checked against the traces (previous approaches only use positive traces).

Peracotta [YEB+06] introduce a simple matrix approach for checking binary patterns1. For

each pattern and alphabet of n symbols an n×n matrix is constructed with each cell representing

a state in the finite state automaton for that pattern. Then, for each observed event in the

trace and for each pattern being checked the rows and columns relating to the observed event

are iterated over, with the states being updated accordingly. Li et al. [LFS10] extends the

matrix approach in their SAM tool. As their framework allows multiple events to occur at the

1Patterns over two symbols
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same time (this makes sense in their setting of hardware systems) they extend the approach to

ensure that no cell is updated more than once on a single cycle.

Javert [GS08b, GS08a] employ a symbolic algorithm using Binary Decision Diagrams (BDD)

to represent the current state of each of the instantiated templates being checked, each of which

is encoded using (∣Σ∣ ∗ ⌈log2(∣Σ′∣)⌉) + ⌈log2(∣Q∣)⌉ boolean variables. The set of all automaton

configurations can be represented efficiently as a BDD and the algorithm for updating the BDD

on the observation of an event is then given in terms of BDD operations.

In OCD Gabel and Su [GS10] base their checking approach on the assumption that properties

occur within a small finite window. They use a sliding window over each trace to generate and

check new, and check previously seen, patterns on the fly.

All approaches are sensitive to the size of the alphabet; the matrix approach uses O(An−1l)
time for an alphabet of A symbols, a pattern with n symbols and a trace of length l.

Refine

The set of all successful patterns can be used to describe the system but as there might be

many such patterns (with varying levels of accuracy and relevance) we can refine this set in

three ways: ranking, pruning, and combination.

The patterns can be ranked based on measurements of support and confidence as well as

other factors that might indicate relevance, such as number of symbols. The support of a

specification is the number of times it occurred positively in the sample set and the confidence

of a specification is the number of times it appeared positively over the number of times it

appeared both positively and negatively. These notions of support and confidence only make

sense in scenarios where lots of small rules are being extracted from many traces. The set

can be pruned by removing patterns based on heuristics; for example, Peracottta [YEB+06]

uses a reachability heuristic and a name similarity heuristic. OCD [GS10] aggressively prunes

specifications during the mining process based on frequency of occurrence.

Perhaps the most effective way to refine the successful patterns is to combine some together

to form larger, more descriptive specifications. Yang et al. [YEB+06] proposed a method for

chaining inferred alternating patterns using the rule:

A→ B B → C

A→ C

Where A→ B is a pattern stating that if A occurs then B should occur later.

Gabel et al. have created two tools Javert [GS08a] and OCD [GS10] which use more complex

inference rules to combine patterns. Furthermore they argue that the chaining rule used by

Yang et al. is not statistically sound as it does not need a relationship between A and C. The

two inference rules used are as follows:

(aL∗1b)∗ (aL∗2b)∗

(a(L1∣L2)∗b)∗
(Branching)
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(aL1b)∗ (bL2c)∗ (ac)∗

(aL1bL2c)∗
(Sequencing)

The first rule allows us to take the disjunction of behaviour that is observed to happen within

the bounds of other events. For example, if both read and write were observed to happen

between open and close. The second rule is an extension of Yang et al.’s sequencing rule.

Li et al.’s work [LFS10] with more complex temporal patterns also introduced similar infer-

ence rules over their more complex patterns.

(ab)∗ (bc)∗ (ac)∗

(abc)∗
(Alternating Pattern Chaining)

G(a→XFb) G(b→XFc)
G(a→XFG(b→XFc))

(Eventual Pattern Chaining)

G(a→X(aUb)) G(b→X(bUc))
G(a→X(aU(bUc)))

(Until Pattern Chaining)

Generally these combination rules are used to close the set of patterns i.e. carry on applying

them until they can no longer be applied.

8.1.4 Dealing with data

Few previous approaches consider an events contextual information, for example parameter

or return values. Yang et al. [YEB+06] can either perform a context-sensitive rewriting of

events (f(1) becomes f1) or context-slicing where traces are sliced (in the same way we use the

term previously) based on the callee object. This will therefore extract typestate properties,

restricted to methods called on a particular object. Gabel and Su [GS10] also take a context-

slicing approach by relating each symbol in a binary rule to an object - note that this generalises

Yang et al.’s approach. Neither of these approaches can deal with multiple quantifications.

8.1.5 Applications

In Sec. 2.4.3 we discussed general applications for specification inference, but specification

mining has particular strengths. Specification mining extracts small patterns of behaviour con-

cerning a few events of interest. These may be combined together to form larger patterns but in

general the mined specifications describe the behaviour of parts of a system only. Therefore, the

extracted patterns can be useful in understanding these particular snapshots. For example, the

usage of a particular interface in a code-base. The advantage of extracting small specifications

is that they exclude the clutter of unimportant interactions. A key area where specifications

extracted in this way can be used is in automated processes. For example, the OCD tool

[GS10] mines and checks patterns simultaneously; effectively checking for self-consistency of

coding rules. Another example would be where one tested system was replaced by an untested,

optimised one; a set of patterns could be extracted describing the first and checked against
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the second. Automated uses such as these play to the strengths of specification mining as

specifications do not need to be presented in a comprehensive format.

8.1.6 Summary

There are two computational problems to be solved in pattern-based specification mining:

checking patterns against traces and combing patterns together. The first of these is exactly

the role of runtime verification. This is our reason for selecting this approach to specifica-

tion inference; we can directly use any runtime verification techniques developed for our new

specification formalism.

8.2 Overview of approach

The previous section outlined the general specification mining approach. Here we discuss the

approach taken in this work and relate this back to the runtime verification work carried out

in Part II.

8.2.1 Target QEA

In this chapter we focus on mining QEA without free variables (we discuss this limitation at

the end of the chapter). This form of QEA does not fit exactly into the hierarchy developed in

Chapter 3 so we introduce a new kind of QEA for use here.

Definition 58 (Target QEA). A target QEA is a pair ⟨Λ,E⟩ where , Λ ∈ ({∀,∃} × vars(E))∗

is a list of quantified variables and E is a simple event automaton (as introduced in Definition

8 in Section 3.2) i.e. a tuple E = ⟨Q,A, q0, δ, F ⟩ where Q is a finite set of states, A is a finite

alphabet of events, q0 ∈ Q is an initial state, δ ⊆ (Q ×A ×Q) is a finite set of transitions, and

F ⊆ Q is a finite set of final states. It is required that vars(E) = vars(Λ).

This adds existential quantification to SQSEA and differs from full QEA in that it does not

include free variables, type variables, global guards or given domains.

8.2.2 The stages

The approach is generate-check-combine where the three stages (demonstrated in Fig. 8.1) are:

1. Generating. A pattern library and candidate alphabet are used to produce a set of possible

patterns. To be more precise, an alphabet and pattern library are used to produce a

pattern checker (introduced in Sec. 8.4.2) that extracts patterns from traces.

2. Checking. These patterns are checked against a set of given traces using concepts intro-

duced in Chapter 3; traces are projected for bindings of quantified variables to produce a

set of subtraces per input trace. The pattern checker is then used to extract a set of pat-

terns that hold in each subtrace and a supplied quantifier list is used to select successful

patterns with respect to the quantification.

3. Combining. The passing patterns are combined to form a specification.
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Figure 8.1: Pattern checking in the parametric setting.

8.2.3 The inputs

There are four inputs to the monitoring process which determine the specification produced.

As illustrated in Figure 8.1 these are:

A) A pattern library.

B) An alphabet.

C) A list of quantifications over the variables in the alphabet.

D) A set of positive traces (and possibly a set of negative traces)

In the following, we discuss how these inputs may be produced, the effect they may have on

the extracted specification and any limitations they introduce.

A) Pattern library. These should represent common patterns found in real-world specifi-

cations. The hypothesis is that by using many small, general patterns we can build powerful

yet concise specifications, we explore this notion further in Chapter 9. The choice of pattern

library dictates the specifications that can be extracted and later (Sec. 9.1.1) we discuss the

theoretical bounds introduced by pattern libraries. In Section 8.3 we discuss our requirements

for a pattern language and introduce open automata to be used as patterns in this work.

B) Alphabet. This is the set of events that will be used to identify the traces to record

and will form the alphabet of the extracted specification. The need to identify a set of events

to extract is a limitation, which is discussed further in Sec. 8.9.1, and we do not address the

problem of detecting likely alphabets in this work. Adding or removing events from an alphabet

can have a significant impact on the results obtained and furthermore that the entire mining

process must be repeated for each alphabet considered as partial results are not possible due

to our use of open automata. We discuss this further later.
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C) Quantifications. The checking stage only uses the set of quantified variables, and whether

the quantifications are ∀ or ∃ is immaterial at this stage. Therefore, all possible combinations

can be explored efficiently after the traces have been traversed. However, this may result in

a separate specification per quantification list as the successful patterns may be different in

each case. In general, the assumption might be that if a specification can be found using only

universal quantification then this is the most general specification, however this may be an

over-generalisation. We demonstrate this later.

D) Traces. As discussed in Section 2.4, the mining process is a generalisation from the set of

input traces. We will produce a specification that accepts at least the positive traces and rejects

at least the negative traces. If such a specification does not exist in the set of specifications that

can be built from the pattern-library then no specification will be returned. The assumption is

that we have no control over the input traces, but if we do we should aim for good coverage,

as discussed in Sec. 8.8.3.

It is generally difficult to generate negative traces and the mining process does not require

them. We include negative traces as they serve as an additional source of external knowledge

that can contribute towards the final specification. For example, if we know that a trace cannot

begin with a certain event we can supply a negative trace to that effect.

8.3 Patterns that combine

In this section, we present open automata for capturing patterns along with a sound and com-

plete method for combination i.e. the combination process does not lose or add any information.

We begin by discussing what we require of our pattern formalism, and then discuss why stan-

dard deterministic finite automata are inadequate before introducing open automata and their

properties.

8.3.1 Requirements for patterns

Our approach involves checking many small patterns and then combining the successful patterns

together to form a large specification. Each of these small patterns will describe some behaviour

of a subset of the events involved in the final specification. Here we consider the ideal qualities

a pattern formalism would have with respect to combination; the matter of checking traces

against patterns will be considered in the next section.

Metasymbols in patterns. Our approach requires us to define patterns up-front yet the

patterns we extract should refer to events in our given alphabet. We will therefore define

patterns over metasymbols to be instantiated before checking against given traces. For example,

we may define a pattern over two metasymbols a and b and then given an alphabet of n events

we will create 2n instantiated patterns to check at runtime.

When checking patterns containing metasymbols we could either think of instantiating the

pattern with events or rewriting the trace with the inverse of the instantiation. We will use the
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first approach here, but the fact that this is equivalent to the second approach is why throughout

this section it will make sense to talk about a pattern accepting a trace of metasymbols.

A pattern formalism. Let us assume we have a pattern formalism such that a pattern p

consists of a set of metasymbols Σ and a language L(p) such that L(p) is the set of traces (of

metasymbols) accepted by p.

Small alphabets. Generally patterns will be defined for a small set of symbols i.e. if we have

k metasymbols in our pattern and n distinct events in an input trace it is likely that k < n. To

allow us to talk about a pattern accepting a trace over a larger set of symbols we will use the

concept of projection as we did with the definition of acceptance for QEA.

Definition 59 (Projection). Given a trace of symbols τ and set of symbols Σ let τ ↓Σ be the

trace τ with all symbols not in Σ removed. Given a language L(p) let LΣ(p) = {τ ↓Σ∣ τ ∈ L(p)}.

Combining patterns. The first concept we introduce is that of combination i.e. adding

together the information given by a set of patterns. So what does this mean? A pattern

represents a very general approximation of the behaviour of the system that produced the

trace. We choose to take a safe notion of acceptance, rather than rejection, when combining

patterns i.e. ensure that we maintain all information about traces that are rejected.

Therefore, combination can be given as an intersection of languages; if p is the combination

of p1 and p2 then L(p) = L(p1) ∩ L(p2). However, the language of a pattern is given as a set

of traces over the patterns alphabet and the two patterns may not have the same alphabet. To

address this, we expand these patterns so that they reflect the traces they accept based on the

notion of projection. Expanding a pattern includes the symbols in the other patterns alphabet.

Definition 60 (Expansion). Given a pattern p defined over alphabet Σ, the expansion of p for

alphabet Σ′ is a new pattern pΣ′

defined over the alphabet Σ ∪Σ′ such that L(pΣ′) = LΣ(p).

Let ∩p be an intersection operation on patterns with the same alphabet. Combination then

becomes expansion followed by intersection.

Definition 61 (Combination). Given two patterns p1 and p2 over alphabets Σ1 and Σ2 respec-

tively, let their combination be p1 ∩ p2 = pΣ2

1 ∩p pΣ1

2 .

The ‘combination space’. Let us consider the conceptual space of patterns defined by this

combination operator. We use the combination operator to define a partial order on patterns

such that p2 ⊑ p1 iff there exists a p3 such that p1 ∩ p3 = p2. We can read this as ‘p2 is more

precise than p1’ as it contains more information about what traces should be rejected.

Given a set of patterns P , the patterns that we can extract from this set is the closure of

P under combination. Next, let us also categorise patterns based on the size of their alphabet

i.e. the k-patterns are those patterns with an alphabet of size k. Figure 8.2 illustrates this

partial order and categorisation; arrows connect patterns to other patterns more precise than

them. If there existed a k such that every k-pattern is a combination of patterns in a lower

category then we could place an upper limit on the number of symbols required in patterns.
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k

k + 1

k + 2

. . .

p p p p

p p p

p p p p

. . .

. . .

. . .

. . .

Figure 8.2: A partial order on patterns

However, if we can show that for every category there exists at least one pattern that is not

the combination of patterns in a lower category then we learn something about the limitations

of this approach i.e. that we require an approach that allows patterns of an arbitrary size.

The inverse of combination. The notions of expansion and combination are what we need

for our mining process. However, to discuss patterns we also introduce their (theoretical) inverse

operations: contraction and decombination.

Definition 62 (Contraction). Given a pattern p defined over alphabet Σ ∪Σ′, the contraction

of p for Σ′ is a new pattern pΣ′

defined over the alphabet Σ such that L(pΣ′) such that LΣ(p) =
L(pΣ′).

Definition 63 (Decombination). A set of patterns {p1, . . . pn} is a decombination of pattern p

if ⋂{p1, . . . , pn} = p and p ∉ {p1, . . . pn}. This is called a k − n decombination if every pi is in

category k−n when p is in category k. Furthermore, it is called a covering k−n decombination

if for every subset Σ of metasymbols of size k there is a pattern pi with Σ as an alphabet.

Contraction is the inverse of expansion as for pattern p we have L((pΣ′)Σ′) = L(p) as

LΣ(pΣ′) = L((pΣ′)Σ′) and LΣ(pΣ′) = L(p). Decombination is the inverse of combination by

definition.

It is clear that if a decombination operator exists and is totally defined (i.e. for all patterns)

then we solve our above problem of finding a set of patterns that can be used to build all

other patterns. If k − 1 decombination is defined for all k bigger than some n then we find

our maximum number of symbols required. However, we will see later that selecting a pattern

formalism is a trade off between generality of decombination and coverage of combination such

that decombination can only be perfect if it does not generalise. The goal is therefore to find a

pattern formalism that offers an appropriate level of generality in decombination and coverage

in combination.
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1 2 3
a b

c

b

Figure 8.3: A DFA capturing the resource usage pattern (ab+c)∗, note the use of next states.

8.3.2 Considering deterministic finite automata

Let us consider deterministic finite automata as a possible pattern formalism. As discussed

in Section 8.1 they have been used previously in propositional generate-and-check specifica-

tion mining approaches. We begin by formalising what we mean by standard automata, i.e.

deterministic finite automata (DFA), and their combination.

Definition 64 (DFA). The tuple D = ⟨Σ,Q, δ, q0, F ⟩ is a deterministic finite automaton (DFA)

where Σ is a finite set of symbols, Q is a finite set of states, δ ∶ Σ × Q → Q is a transition

function, q0 ∈ Q is an initial state and F ⊂ Q is a set of final states. L(D) is defined in terms

of δ and F in the standard way.

As we have a standard notion of intersection for DFA we only need to introduce the concept

of expansion to give us notions of combination and decombination.

Definition 65 (DFA Expansion). The Σ′ expansion of DFA D with alphabet Σ is the DFA

DΣ′

which is obtained by adding a looping transition to each state for each new symbol i.e. each

symbol that does not already occur in Σ.

It was shown by Gabel and Su [GS08a] that there exist three symbol DFA that cannot be

decombined into two symbol DFA. We reproduce this proof here by giving a 3-symbol DFA

that cannot be detecting using any set of 2-symbol DFA patterns.

Proposition 5. The resource usage automaton in Fig. 8.3, let us call it R, has no two-symbol

decombination.

Proof. We can assume, without loss of generality, that the decombination of R consists of three

DFA; one for each pair of symbols in its alphabet (two DFA with the same alphabet can be

combined). Let us call these DFA R1, R2 and R3, with alphabets Σ1 = {a, b}, Σ2 = {b, c} and

Σ3 = {a, c} respectively, and let Σ be the alphabet of R. From the definition of decombination

we have that

L(RΣ
1 ) ∩L(RΣ

2 ) ∩L(RΣ
3 ) = L(R)

and therefore for i ∈ {1,2,3}
L(R) ⊆ L(RΣ

i ).

As contraction is the inverse of expansion we also get

L(RΣi) ⊆ L(Ri)

for i ∈ {1,2,3}. We can then apply contraction to get

RΣ1 = (ab+)∗ RΣ2 = (b+c)∗ RΣ3 = (ac)∗
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1 2 3 4 5 6

7

a b

b

c

a

b

b

a
cb

b

Figure 8.4: A DFA for the DFA combination of (ab+)∗, (b+c)∗ and (ac)∗.

The trace

a.b.b.c.b.b.a.b.b.c

is in the language of each of the contractions, but not in the language of R. Therefore we have

a contradiction and R1, R2 and R3 cannot exist. To be more precise, R1, R2 and R3 are not

a precise decombination of R.

The key problem here is that the contractions (ab+)∗, (b+c)∗ and (ac)∗ do not contain

any information about what is happening in the rest of the trace and we can insert symbols

wherever we want, in this case a c in the middle of the bs of (ab+)∗. The decombination is too

general as it does not capture any context. To illustrate this Fig. 8.4 gives the combination of

the decombination of the resource usage pattern, which accepts more traces than the original.

Our solution of open automata captures the lost context by replacing removed symbols

by holes when performing contraction. However, this will still introduce some ambiguity in

combination. We could introduce a two-hole open automata to deal with this second level of

context but this process could continue until decombination did not generalise i.e. we use as

many kinds of hole as we have removed symbols.

Later we will show that contraction for open automata is necessarily more precise (i.e. retains

more information) than contraction for DFA, meaning that in our diagram above (Fig. 8.2) using

open automata we will be able to cover more patterns on a given level using patterns at a lower

level.

8.3.3 Syntax and Semantics of Open Automata

We introduce open automata as a formalism for patterns.

Definition 66 (Open Automata). An open automaton is a tuple ⟨Σ,Q, q0, δ, F, q�⟩ where Σ is

a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ (Q×Σ∪ {●}×Q) is a

set of transitions where ● is a special hole symbol, F ⊆ Q is the set of final states and q� ∈ Q/F
is the error state.

Let Pattern be the set of all open automata. The special hole symbol ● can match any

symbol not in Σ, we assume a universal set of symbols U . We define a function ∆ which

returns a set of states given a trace over U for a given open automaton p = ⟨Σ,Q, q0, δ, F, q�⟩ as
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follows:

∆p(S, ε) = S

∆p({}, σ) = {q�}

∆p(S, aσ) = ∆p(S′, σ) for S′ =
⎧⎪⎪⎨⎪⎪⎩
q′ ∣ ∃q ∈ S ∶ (q, a, q′) ∈ δ if a ∈ Σ

(q, ●, q′) ∈ δ) if a ∉ Σ

⎫⎪⎪⎬⎪⎪⎭

This adds transitions to an error state if no other transition can be made. The language of p is

then

L(p) = {σ ∣ ∆p({q0}, σ) ∩ F ≠ ∅}.

Every DFA is a form of open automata; the translation is the straightforward addition of

self-looping hole transitions on each state. This is consistent with the notion of acceptance with

respect to projection introduced in the previous section.

8.3.4 Combining Open Automata

Open automata expansion can be defined as adding transitions for the new symbols where a

hole transition exists. It should be obvious that DFA expansion described previously is a special

case of this.

Definition 67 (Open Automata Expansion). Given open automaton p = ⟨Σ,Q, q0, δ, F, q�⟩, the

expansion for Σ′ is pΣ′ = ⟨Σ ∪Σ′,Q, q0, δ′, F, q�⟩ where

δ′ = δ ∪ {(q1, ●, q2) ∣ ∃a ∈ Σ′/Σ ∶ (q1, a, q2) ∈ δ}

The definition of contraction is similarly straight-forward: replace symbols to be removed

with hole symbols, it helps that open automata are non-deterministic.

We can define combination as expansion followed by intersection. Note that this can be

seen as synchronizing on hole symbols.

Definition 68 (Open Automata Combination). The combination of the two open automata

p1 = ⟨Σ1,Q1, q
0
1 , δ1, F1, q

�
1 ⟩ and p2 = ⟨Σ2,Q2, q

0
2 , δ2, F2, q

�
2 ⟩ is

p1 ∩ p2 = ⟨Σ1 ∪Σ2,Q1 ×Q2, (q0
1 , q

0
2), δ, F, (q�1 , q�2)⟩

where (q1, q2) ∈ F iff q1 ∈ F1 and q2 ∈ F2, and ((q1, q2), a, (q′1, q′2)) ∈ δ iff both

1. (q1, a, q
′
1) ∈ δ1, or a ∈ Σ2/Σ1 and (q1, ●, q′1) ∈ δ1, and

2 (q2, a, q
′
2) ∈ δ2, or a ∈ Σ1/Σ2 and (q2, ●, q′2) ∈ δ2

Decombination can be defined using contraction for a given set of symbols.

Definition 69 (Open Automata Decombination). Given open automaton p = ⟨Σ,Q, q0, δ, F, q�⟩
such that ∣Σ∣ = k and a n < k the k − n decombination is the set of open automata

D(p,n) = {p{a1,...,an} ∣ a1, . . . , an ∈ Σ}
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This is equivalent to the set of contractions for each subset of Σ with n symbols removed.

The size of D(p,n) is (k
n
) as it is equivalent to the number of n-sized subsets of Σ.

8.3.5 Properties

We need to convince ourselves that by introducing open automata we have gained something

useful over using DFA. Firstly, we show that combination for open automata is sound and

complete, i.e. no new traces are accepted or rejected, this is important as it demonstrates that

open automata are not worse than DFA in that respect.

Proposition 6. Given two open automata p1 and p2 we have that L(p1)∩L(p2) = L(p1 ∩ p2).

We prove this by showing that, for a given trace, the states reached by both p1 and p2 are

exactly those reached by p1 ∩ p2 and therefore if an accepting state is reached by both patterns

it is reached by their combination.

Proof. Let p1 = ⟨Σ1,Q1, q
0
1 , δ1, F1⟩ and p2 = ⟨Σ2,Q2, q

0
2 , δ2, F2⟩. Let

S1 = ∆p1({q0
1}, τ) S2 = ∆p1({q0

1}, τ) S = ∆p1∩p2({(q0
1 , q

0
2), τ)

It is sufficient to show that (q1, q2) ∈ S if and only if q1 ∈ S1 and q2 ∈ S2. We therefore prove

that

S1 × S2 = S

by structural induction on the trace τ . For τ = ε our conditions hold by definition:

S1 = {q0
1} S2 = {q0

2} S = {(q0
1 , q

0
2)}

For τ = σ.a let Sσ1 , Sσ2 and Sσ represent S1, S2 and S for σ. Note that our induction hypothesis

gives us that Sσ1 × Sσ2 = Sσ. Let us consider the four different cases for an input symbol a.

The cases where a ∈ Σ1 ∩Σ2 and a ∉ Σ1 ∩Σ2 are symmetrical. In the following let α = a in

the former case and α = ● in the latter. Firstly,

S1 = {q′ ∣ q ∈ Sσ1 ∧ (q,α, q′) ∈ δ1} S2 = {q′ ∣ q ∈ Sσ2 ∧ (q,α, q′) ∈ δ2}.

We then show that S1 × S2 = S by rewriting S by expanding the definition of δ for p1 ∩ p2 and

using our induction hypothesis:

S = {(q′1, q′2) ∣ (q1, q2) ∈ Sσ ∧ ((q1, q2), α, (q′1, q′2)) ∈ δ}
= {(q′1, q′2) ∣ (q1, q2) ∈ Sσ ∧ (q1, α, q

′
1) ∈ δ1 ∧ (q2, α, q

′
2) ∈ δ2}

= {(q′1, q′2) ∣ q1 ∈ Sσ1 ∧ q2 ∈ Sσ2 ∧ (q1, α, q
′
1) ∈ δ1 ∧ (q2, α, q

′
2) ∈ δ2}

= {q′1 ∣ q1 ∈ Sσ1 ∧ (q1, α, q
′
1) ∈ δ1} × {q′2 ∣ q2 ∈ Sσ2 ∧ (q2, α, q

′
2) ∈ δ2}

The second two cases are also symmetric.Without loss of generality assume a ∈ Σ1 but a ∉ Σ2,

we first have that

S1 = {q′ ∣ q ∈ Sσ1 ∧ (q, a, q′) ∈ δ1} S2 = {q′ ∣ q ∈ Sσ2 ∧ (q, ●, q′) ∈ δ2}
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and again by rewriting S by expanding δ for p1 ∩ p2 and using our induction hypothesis we get

S = {(q′1, q′2) ∣ (q1, q2) ∈ Sσ ∧ ((q1, q2), a, (q′1, q′2)) ∈ δ}
= {(q′1, q′2) ∣ (q1, q2) ∈ Sσ ∧ (q1, a, q

′
i) ∈ δi ∧ a ∈ Σi/Σj ∧ (qj , ●, q′j) ∈ δj}

= {(q′1, q′2) ∣ q1 ∈ Sσ1 ∧ q2 ∈ Sσ2 ∧ (qi, a, q′i) ∈ δ1 ∧ (qj , ●, q′j) ∈ δj}
= {q′1 ∣ q1 ∈ Sσ1 ∧ (q1, α, q

′
1) ∈ δ1} × {q′2 ∣ q2 ∈ Sσ2 ∧ (q2, α, q

′
2) ∈ δ2}

Next let us consider decombination for open automata. Firstly, we show that given an

open automaton without holes we have perfect k − 1 decombination. This means that given all

patterns with k symbols we could detect all hole-less patterns with k + 1 symbols. However, as

we see shortly, as we only cover hole-less patterns, this will not extend to patterns with k + n
symbols.

Proposition 7. Given a hole-less open automaton p its k − 1 decombination can be combined

to give p exactly.

Proof. Straightforwardly, the contractions of the decombination would only have holes in them

that were given by removing a single symbol therefore during combination these holes would be

filled with exactly those symbols that were removed so each contraction would become p.

This means that the resource usage pattern has a perfect 2 symbol decombination, and

therefore we can extract it using open automata, demonstrating already that open automata

have greater coverage than DFA.

As mentioned above, this is not the case for an open automaton in general as if there are

pre-existing holes the contractions would have a larger language when expanded. This means

that we cannot extend decombination to the k−2 case and beyond in a precise way. But we can

show that open automata gives us more coverage in the solution space then DFA by including

contextual information. Recall that a pattern p is more precise than a pattern q if L(p) ⊆ L(q).
Firstly, we show that as we remove more information from each contraction the resulting

decombination is less precise.

Proposition 8. Open automata k − n decombination is at least as precise as k − n − 1 decom-

bination for n ≥ 0 i.e.

L(⋂D(p,n − 1)) ⊆ L(⋂D(p,n))

Proof. The first thing to note is that all contractions of p will have the same structure modulo

holes replacing symbols. This makes our proof more straightforward. We show that every trace

in L(⋂D(p,n − 1)) is necessarily in L(⋂D(p,n)). We proceed by contradiction. Assume that

there exists a trace τ such that τ ∈ L(⋂D(p,n − 1)) but τ ∉ L(⋂D(p,n)). There most be at

least one contraction pX ∈ D(p,n) such that τ /∈ L(pX) and a contraction pY ∈ D(p,n − 1) such

that Y ⊂ X, ∣X ∣ = n and ∣Y ∣ = n − 1. Let q0
τÐ→ q be an accepting path of τ on pY ; it will also

be a path on pX with the symbol in Y but not X replaced by a hole and therefore matching

the missing symbol. Therefore, every accepting path of pY is an accepting path of pX and

L(pY ) ⊆ L(pX) leading to a contradiction, and therefore our assumption that τ ∉ L(⋂D(p,n))
cannot hold.
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This property implies that L(p) ⊆ L(⋂D(p,1)) as L(p) is the k−0 decombination. We now

want to show that open automata decombination is more precise than DFA decombination.

Proposition 9. Open Automata k − n decombination is more precise than DFA k − n decom-

bination.

Proof. Given a DFA p with k symbols we consider the k−n decombination of p in terms of DFA

and open automata. In both cases we produce a set of (k
n
) patterns {p1, . . . , pm}. Let us label

these pDFAi in the case of DFA contraction and pOAi in the case of open automata contraction.

Firstly, assuming that the ith decombination removes the symbols Σi, we show that

L(pOAi ) ⊆ L(pDFAi )

by showing that every trace in L(pDFAi ) must be in L(pOAi ). Given a trace τ ∈ L(p) let

τ ′ = τ ↓Σi i.e. the projection for Σi. The set L(pOAi ) then contains any variant of τ ′ that

inserts a symbol not in Σi where it occurred in τ . The set L(pDFAi ) contains any variant in τ ′

that inserts any symbol in Σi at any point. Obviously every variant that satisfies the first case

satisfies the second case.

It is then straightforward to see that

(L(pOA1 ) ∩ . . . ∩L(pOAm )) ⊆ (L(pDFA1 ) ∩ . . . ∩L(pDFAm ))

as if there were a trace τ in (L(pOA1 ) ∩ . . . ∩ L(pOAm )) but not in (L(pDFA1 ) ∩ . . . ∩ L(pDFAm ))
then there must exist an i such that τ ∈ L(pOAi ) and τ ∉ L(pDFAi ), but as we saw previously

this cannot be the case.

This means that, for some k, every pattern that can be extracted with k-symbol DFA can

also be extracted with k-symbol open automata, and there are some patterns that can only be

extracted using k open automata.

8.3.6 Understanding precision

Let us consider a few examples that demonstrate the previous discussions about precision.

Firstly let us consider the following DFA, let us call this p.

1

2

3

a,b

c

c,d

a,b,c,d

Using open automata decombination we get the following for D(p,3).

1

2

3

a

●

●

●,a

1

2

3

b

●

●

●,b

1 2
c,●

c,●

1 2
●

d,●



8.3. PATTERNS THAT COMBINE 201

Now we can see that the trace a.c.b is accepted by each of these automata, but not the original

automaton. This demonstrates the imprecision of open automata decombination. Indeed, the

combination of these automata is given as follows.

1

2

3

4

a

b

c,●

c,d,b,●

c,d,a,●

a,b,c,d,●

Now let us consider a slightly different DFA, which we shall call q.

1

2

3

a,b

c

c

a,b,c

This is the same as p except that we do not include d, therefore D(q,2) consists of the patterns

in D(p,3) except for the one with alphabet {d}. Now, the combination of the patterns in D(q,2)
gives us q exactly i.e. there is no imprecision.

So what is it about the d symbol in p that causes the imprecision of the decombination?

The decombination for a conflates the behaviour of b, c and d and the other patterns can

differentiate b and c but not b and d.

However, this is not a realistic example and the reason for that is that majority of the

specifications used in the rest of this document have a precise decombination. Therefore, we

claim that open automata represent a reasonable compromise between generality (precision) of

decombination and coverage of combination.

8.3.7 Converting to Target QEA

Open automata can be instantiated with a mapping from symbols to ground events, ground

events only as target QEA do not allow free variables. This process will allow us to generate

target QEA from extracted patterns.

Definition 70 (Instantiation). Given an open automaton p = ⟨Σ,Q, q0, δ, F, q�⟩, an instantia-

tion ϕ is a map from Σ to GEvent such that p(ϕ) = ⟨A,Q, q0, δ(ϕ), F, q�⟩ where (q,ϕ(a), q′) ∈
δ(ϕ) iff (q, a, q′) ∈ δ and A is the co-domain of ϕ.

The conversion is then straight-forward; holes are removed and symbols replaced with their

appropriate events. Note that this generates a SEA, as mining is undertaken within the context

of a given Λ this can then be combined with the produced SEA to give a TQEA.

Definition 71 (Conversion). Given a pattern p = ⟨Σ,Q, q0, δ, F, q�⟩ and an instantiation ϕ we

can create the SEA by applying the instantiation, removing the hole symbols and introducing

transitions to the error state i.e. E = ⟨Q,A, δ′, q0, F ⟩ where

δ′ = {(q1, ϕ(a), q2) ∣ a /= ● ∧ ((q1, a, q2) ∈ δ ∨ ((q1, a, q2) ∉ δ ∧ q2 = q�))}
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During conversion it is necessary to add transitions to the error state as open automata

have a next-style semantics, whereas target QEA have a skip-style semantics.

8.3.8 Example

Here we give an example of three patterns and how they are combined. Consider the following

three patterns.

1 2

Pattern p1

●
a

1 2 3

Pattern p2

b ●
●

c

1 2

Pattern p3

●
● d,e

●

We combine each pair of patterns in turn, giving the three patterns below. The first (left)

pattern is the result of combining p1 and p2, the second (middle) is the result of combining p1

and p3 and the third (right) is the result of combining p1 and p3.

1

2 3

4

b

●
●

c

a
a 1 2 3

4

●
●

d,e

d,e

●

a
a

a 1 3

2

5 6

b
d,e

●
d,e

c

●

c
●

d,e

c

●

When we combine all three together we get the following pattern:

1 3 4

2

5 6

b
d,e

a

●
d,e

c
a

●

c
●

a

d,e

c

●

a
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And if we remove hole symbols (as we do when converting to SEA) we get:

1 2 3

4

b d,e

d,ec

a

a

8.4 Generating and checking patterns efficiently

In this section we consider how we can generate and check sets of patterns efficiently. We

begin by describing the sets of patterns that we will consider, which are called pattern libraries,

then we introduce a structure that allows us to check these sets of patterns efficiently, before

describing how we construct such a structure from a pattern library.

8.4.1 Pattern libraries

Our approach takes a predefined pattern library as an input. A k-pattern library is a list of

k-patterns with the same alphabet, which we will take as the first k letters of the English

alphabet i.e. {a, b, c, . . .}. A pattern library is a set of k-pattern libraries. We can have any

value k, but we focus on small k for two reasons. Firstly, for efficiency reasons as the complexity

of checking is dependent on the maximum pattern size, and secondly, the intuition behind our

approach is that small general patterns can be combined to create larger specifications. The

more symbols used in a pattern the more specific it is.

8.4.2 Pattern checkers

We begin by introducing a pattern checker that maps a trace of metasymbols to a set of patterns

that will accept the trace.

Definition 72 (Pattern Checker). Let C = ⟨Q,Σ, q0,⇒,Γ⟩ be a pattern checker where Q is a

set of states, Σ is a set of symbols, q0 ∈ Q is the initial state, ⇒ ∈ (Q ×Σ)→ Q is the transition

function and Γ ∈ Q → 2Pattern is the output function. Lifting ⇒ to traces in the standard way,

define C’s successful patterns for the trace τ as

C(τ) = {p ∈ Γ(q) ∣ q0
τ⇒ q}

A pattern checker can be specialised with an instantiation (Def. 70) to extract patterns

from traces of events as follows. Let us define an event pattern checker as a pattern checker,

a binding and an instantiation. An event pattern checker maps a trace of events to a set of

instantiated patterns that accept the trace (given the binding). Let ϕ−1 ∈ GEvent ⇀ Σ be the

inverse of instantiation ϕ.
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Definition 73 (Event Pattern Checker). An event pattern checker EC = ⟨C, ϕ, θ⟩ with pattern

checker C, instantiation ϕ and binding θ produces the following instantiated pattern from the

trace τ ∈ GEvent∗:

EC(τ) = {p(ϕ) ∣ ∃σ ∈ C.Σ∗ ∶ ∣σ∣ = ∣τ ∣ ∧ p ∈ C(σ)∧
∀i.0 ≤ i < ∣σ∣.∃b ∈ ϕ−1(σ[i]).matches(τ[i], θ(b))}

This states that a pattern is included if there exists a trace of metasymbols that produces

the pattern and has a mapping onto the trace of events using the instantiation.

We include a binding to allow us to separate the abstract alphabet of a pattern and the

concrete one i.e. a pattern might match against concrete events f(2) and e(4) but when we

extract the pattern we want it to be over the abstract alphabet f(x) and e(y).
We lift this concept to a set of event pattern checkers F such that F’s successful patterns for

trace τ are

F(τ) = ⋃
EC∈F

EC(τ)

8.4.3 Generating pattern checkers

We now build a generation function G that uses a pattern library and an alphabet of events to

construct an event pattern checker.

Firstly we construct a pattern checker from a k-pattern library as follows. Given a k-pattern

library L over the set of symbols Σ let ⟨Q,Σ, q0,⇒,Γ⟩ be the pattern checker of L where

• Q = (. . . × 2L[i].Q × . . .) and q0 = ⟨. . . ,{L[i].q0}, . . .⟩ for 0 < i < ∣L∣

• ⟨. . . , Si, . . .⟩
a⇒ ⟨. . . , S′i, . . .⟩ iff for 0 ≤ i < ∣L∣

S′i =
⎧⎪⎪⎨⎪⎪⎩

L[i].δ(qi, a) if a ∈ Σ

L[i].δ(qi, ●) otherwise

• L[i] ∈ Γ(⟨. . . , qi, . . .⟩) iff qi ∈ L[i].F for 0 < i < n

where we use the standard dot notation to access the elements of a pattern i.e. L[i].q0 is the

initial state of pattern L[i]. Recall that all patterns in L will have the same alphabet.

We construct a set of event pattern checkers G from a k-pattern library L and an alphabet

of events A by using C, the pattern checker of L, as follows:

G(L,A, θ) = {⟨C, ϕ, θ⟩ ∣ ∀a ∈ C.Σ ∶ a ∈ dom(ϕ) ∧ ϕ(a) ∈ A}

Finally, the generation function for pattern library P and alphabet of events A is

G(P,A, θ) = ⋃
L∈P

G(L,A, θ)

In this approach, pattern checkers check all patterns together in one operation, so the size

of the pattern library effects the size of the pattern checkers produced but not the time it takes

to find the successful patterns for a given trace.
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1 2

Pattern p1

●,a

b
1 2 3

Pattern p2

a ●

●b

1 2

Pattern p3

●

● a,b

● 1 2

Pattern p4

●,a

a

1 2 3

Pattern p5

● ● a,● 1 2

Pattern p6

● a, ●

Figure 8.5: Six patterns used to create a pattern library

For efficiency, pattern checkers can be precompiled from pattern libraries and then combined

with alphabets to produce event pattern checkers later. These can be compiled once and used

many times. If additional patterns are added we can combine pattern checkers at runtime. This

is important as it further reduces the effect of a large pattern library.

8.4.4 Example

Here we demonstrate how pattern checkers are generated and used. Consider the six patterns

in Fig. 8.5. The first three are 2-patterns, as they have alphabets of size 2, and the second three

are 1-patterns, as they have alphabets of size 1. Recall that patterns with the same number of

symbols should have the same alphabets if they are to be used in a pattern library together.

The pattern checker for the first three patterns is given in Fig. 8.6 and the pattern checker

for the second three patterns is given in Fig. 8.7. The patterns written on each state are those

given by the output function for that state i.e. those that accept traces ending at that state.

8.5 Mining framework

Figure 8.8: An overview of the tool.

In this section we describe how we

mine Target QEA using patterns

(i.e. open automata). As outlined

previously, our approach is split into

three main stages, illustrated in Fig-

ures 8.2 and 8.8. We give a more de-

tailed overview of these three stages.

1. Generator. Patterns in the

pattern library are defined in

terms of metasymbols and the

job of the generator stage is to

use the given alphabet to in-

stantiate those metasymbols

to produce patterns which can

be checked against the trace.
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1:{p1, p2, p3}

2:{p1, p3}

6:{p1}

5:{p1}

3:{p1, p3} 8:{p1, p3}

7:{p1, p3}

12:{p1}

4:{p3} 9:{p3}

10:{p3}

11:{p1, p2} 13:{p1, p2}

14:{ }

15:{p2} 16:{p2}

a

b

●

b

●

a

a
b

●

a

●

b

b,a
●

a

●

b

●,a
b

●

● b,a

●

a,b

a

b

●

a

●

●

b

a

Figure 8.6: An example pattern checker for a 2-pattern library.

1:{p5}

2:{p4}

3:{p5, p6}

4:{p6}

5:{p5, p6}

a

● ●

a

a,● a,●

a,●

Figure 8.7: An example pattern checker for a 1-pattern library.
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As it would be inefficient to check these patterns separately, we introduced in the pre-

vious section the concept of event pattern checkers, which check all patterns for a set of

events simultaneously. We have already introduced the G function that produces a set of

event pattern checkers from a pattern library and set of events.

2. Checker. The checking stage has two steps. Firstly, the concept of projection from the

development of QEA is used to project the trace into subtraces, and secondly the event

pattern checkers are used to find the patterns which hold in each subtrace. A sub-stage

then uses a list of quantifications to select the positive and negative patterns.

3. Combiner. The notion of combination for open automata is used to produce an instan-

tiated open automaton that, with the quantification list, forms a Target QEA.

We have implemented this framework in the Scala programming language.

8.5.1 Checking patterns

In this section we use the notion of projection and acceptance from QEA to produce sets of

positive and negative successful patterns. First we compute scorecards, which capture, for each

trace, which patterns hold for each binding of quantified variables.

Definition 74 (Scorecard). A scorecard is a map from bindings to sets of patterns:

Scorecard = Binding ⇀ 2Pattern

We use projection and the generator function G to generate a scorecard S(τ) for a trace τ .

Definition 75 (Scoring). Given a pattern library P, alphabet A, set of quantified variables X

and trace τ , let the set of relevant bindings be

relevant = {θ ∣ dom(θ) =X ∧ ∀x ∈X ∶ θ(x) ∈ Dom(τ)(x)}

where Dom(τ) is as given previously in Def. 15 on page 60. The scorecard S(τ) defined as

S(τ) = [θ ↦ G(P,A, θ)(τ ↓A(θ)) ∣ θ ∈ relevant]

where the ↓ projection operator is as given in Def. 6 on page 52 and the notion of alphabet

instantiation A(θ) is that given on page 56.

This definition can be implemented directly to produces scorecards. However, it requires

passing over each trace multiple times. Instead, we adapt the techniques explored in Chapters 5

and 6 to produce an efficient algorithm for checking these patterns against traces.

Once scorecards have been constructed the list of quantifications is used to extract successful

patterns following the approach given for QEA acceptance in Def. 27 on page 68.
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Definition 76 (Successful patterns). Given a scorecard S(τ), the successful patterns for the

list of quantifications Λ are given by pat(S(τ), [ ],Λ), defined as

pat(S, θ,∀xΛ′) = ⋂d∈Dom(τ)(x) pat(S, θ †[x↦ d],Λ′)
pat(S, θ,∃xΛ′) = ⋃d∈Dom(τ)(x) pat(S, θ †[x↦ d],Λ′)
pat(S, θ, ε) = S(θ)

The positive and negative successful patterns for positive traces T+ and negative traces T+

are therefore given as

sucα = ⋂τ∈Tα pat(S(τ), ⟨ ⟩,Λ) for α ∈ {−,+}

i.e. a pattern is positively (negatively) successful if it is a successful pattern for every positive

(negative) trace.

8.5.2 Combining patterns

This stage straightforwardly combines the successful positive and negative patterns produced

by the checking stage using the notion of combination given in Def. 68 on page 197.

Definition 77 (Combination). The combination of a set of positive successful patterns suc+

and a set of negative successful patterns suc− is given as

( ⋂
p∈suc+

p)⋂( ⋂
p∈suc−

p)

where the complement q of an open automaton q is given by inverting accepting states.

The result is an open automaton with events as symbols; the translation to TQEA is then

as described in Sec. 8.3.7.

8.5.3 Complexity

To calculate the time complexity of the mining process we examine each stage separately.

Generation happens once per pattern library as the pattern checkers are pre-compiled. As

this involves simulating all patterns in parallel this process is exponential in the size of the

pattern library i.e. if ∣p∣ is the average size of a pattern then the complexity of the generation

stage is O(∣p∣∣L∣).
In the worst case the checking stage passes over each trace τ twice; once to construct the

bindings and once to compute the passed patterns. Given quantified variables X, the number

of bindings is O(∣X ∣∣τ ∣), as the domain of each quantified variable is bounded by the length

of the trace and we consider each combination of values. For each event we update the event

pattern checkers associated with the event’s relevant bindings. The number of event pattern

checkers is given by ∣A∣k for each k-pattern library. Letting k be the maximum k-library, t be

the average trace length and T be the number of traces, the complexity of the checking stage

is O(∣X ∣t + Tt∣A∣k).
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The combination stage takes a divide-and-conquer approach to combining a set of patterns.

The complexity of combining two open automata via the standard product construction is

quadratic in the size of the automata and therefore the complexity of the combination stage is

O(n2logm) where n is the average size of automata being combined and m is the number of

automata. As m, the number of successful patterns, is bounded by ∣A∣k ∣P∣, the number of all

possible patterns, this can be rewritten O(n2log∣A∣k ∣P∣).
Therefore, at runtime, the complexity of mining is O(∣X ∣t + Tt∣A∣k + n2log∣A∣k ∣P∣). This

grows quickly with k and the size of A and, to a lesser extent, the size of X. Therefore, the two

limiting factors for performance are the size of alphabet and number of quantified variables.

8.6 Demonstrating the Mining Process

We demonstrate the mining process by considering a system that deals with files. Assume that

we have instrumented the system to produce events from the following alphabet:

A = {open(f),read(f),write(f),close(f),delete(f)}

As there is a single quantified variable, and we want the property to hold for all files, we consider

the quantification ∀f . We then take following trace

τ1 = open(1).write(1).open(2).read(2).read(1).close(1).write(2).
open(1).read(1).write(1).close(2).open(2).read(2).write(1).
read(1).delete(1).write(2).delete(2)

Lastly, let us take the pattern library given in Sec. 8.4.4 and therefore the pattern checkers

given in Fig. 8.6 and Fig. 8.7, which we will call C3 and C2 respectively.

Our first task is to construct a scorecard for the trace. The relevant bindings are {[f ↦
1], [f ↦ 2]}. Firstly we compute τ1 ↓A(θ) for each relevant binding as follows

τ1 ↓A([f↦1) = σ1 = open(1).write(1).read(1).close(1).open(1).read(1).
write(1).write(1).read(1).delete(1)

τ1 ↓A([f↦2]) = σ2 = open(2).read(2).write(2).close(2).open(2).read(2).
write(2).delete(2)

We then compute G(P,A, θ) for each binding. As we have two pattern checkers we have

G(P,A, θ) = {⟨C3, [a↦ a, b↦ b], θ⟩ ∣ a,b ∈ A} ∪ {⟨C2, [a↦ a], θ⟩ ∣ a ∈ A}

for each binding. As ∣A∣ = 5 we have ∣G(P,A, θ)∣ = 25+ 5, giving us 60 event pattern checkers in

total, 30 for each binding. Finally, we compute the set of instantiated patterns given by each

trace for each event pattern checker.

Before we give the results, let us briefly consider the patterns extracted from σ2 by the event

pattern checker ⟨C3, [a ↦ close(f), b ↦ delete(f)], [f ↦ 2]⟩. The following shows the states
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Table 8.1: The reached states for traces σ1 and σ2 for the patterns and their event checker for
the 2-pattern library, - indicates no states were reached.

ϕ σ1 σ2

a b p1 p2 p3 C3 p1 p2 p3 C3

open(f) read(f) − − − − − − − −
open(f) write(f) − − − − − − − −
open(f) close(f) − 3 − 15 : {p2} − 3 − 15 : {p2}
open(f) delete(f) 2 − − 6 : {p1} 2 − − 6 : {p1}
read(f) open(f) − − − − − − − −
read(f) write(f) − − 1 4 : {p3} − − 1 4 : {p3}
read(f) close(f) − − − − − − − −
read(f) delete(f) 2 − 2 3 : {p1,p3} 2 − − 6 : {p1}
write(f) open(f) − − − − − − − −
write(f) read(f) − − 1 4 : {p3} − − 1 4 : {p3}
write(f) close(f) − − − − − − 1 4 : {p3}
write(f) delete(f) 2 − − 6 : {p1} 2 − 2 3 : {p1,p3}
close(f) open(f) − − − − − − − −
close(f) read(f) − − − − − − − −
close(f) write(f) − − − − − − 1 4 : {p3}
close(f) delete(f) 2 − 2 3 : {p1,p3} 2 − 2 3 : {p1,p3}
delete(f) open(f) − − − − − − − −
delete(f) read(f) − − 2 9 : {p3} − − − −
delete(f) write(f) − − − − − − 2 9 : {p3}
delete(f) close(f) − − 2 9 : {p3} − − 2 9 : {p3}

that the trace σ2 passes through.

1
open(2)ÐÐÐÐ→ 2

read(2)ÐÐÐÐ→ 2
write(2)ÐÐÐÐ→ 2

close(2)ÐÐÐÐ→ 8
open(2)ÐÐÐÐ→ 7

read(2)ÐÐÐÐ→ 2
write(2)ÐÐÐÐ→ 2

delete(2)ÐÐÐÐÐ→ 3

Note that we can think of the processing part of the event pattern checker as rewriting the

trace as follows:

●. ● . ● .a. ● . ● . ● .b

Therefore, for this event pattern checker there are two passing patterns at state 3 in C3,

giving us the following two instantiated patterns:

1 2

●,close(f)
delete(f) 1 2

●
● close(f),delete(f)

●

If we apply this process to all event pattern checkers we reach the final states in the patterns

and pattern checkers as given in Tables. 8.1 and 8.2. We include the final states in the individual

patterns to show that the pattern checker achieves its aim of finding the patterns that match a

trace. Here we can see that wherever one of the patterns reaches an accepting state the pattern

checker reaches a state that produces that pattern.

We can now construct the sets of successful patterns. Table 8.3 describes the successful
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Table 8.2: The reached states for traces σ1 and σ2 for the patterns and their event checker for
the 1-pattern library, - indicates no states were reached

ϕ σ1 σ2

a p4 p5 p6 C2 p4 p5 p6 C2

open(f) 2 − − 2 : {p4} 2 − − 2 : {p4}
delete(f) − 3 2 5 : {p5,p6} − 3 2 5 : {p5,p6}
write(f) − − 2 4 : {p6} − 3 2 5 : {p5,p6}
read(f) − 3 2 5 : {p5,p6} − − 2 4 : {p6}
close(f) − 3 2 5 : {p5,p6} − 3 2 5 : {p5,p6}

Table 8.3: The successful patterns.

a b Patterns
open(f) close(f) {p2}
open(f) delete(f) {p1}
read(f) write(f) {p3}
read(f) delete(f) {p1}
write(f) read(f) {p3}
write(f) delete(f) {p1}
close(f) delete(f) {p3,p1}
delete(f) close(f) {p3}

a Patterns
open(f) {p4}
delete(f) {p5,p6}
write(f) {p6}
read(f) {p6}
close(f) {p5,p6}

patterns, as we have universal quantification this is the set of instantiated patterns that hold

in both traces.

These can then be combined to give a final pattern that can be converted into a SEA.

Figure 8.9 gives the combined open automaton that is the result of combining all successful

patterns in Table 8.3. Figure 8.10 gives the resulting SEA. Holes can be removed as we can

take the universal set of symbols to be the alphabet.

8.7 Connectedness extension

We introduce the additional input of a global guard to the mining process. The notion is

straightforward: the input global guard is used to restrict the bindings used to select patterns.

However, by also allowing the connectedness global guard (see Sec. 3.5.8) we can improve the

mining process considerably.

We begin by motivating the usefulness of a connectedness mode and then describe the ad-

ditional mechanisms required to achieve it, finishing with an example. Note that this extension

also allows us to include other global guards over the quantified variables, for example that

they are not equal.

8.7.1 Why connectedness is useful

Let us briefly remind ourselves what connectedness is. As first described in Section 3.5.8, we

can introduce a special global guard that takes the trace seen so far as input and only evaluates

to true for a binding if there exist events in the trace that ‘connect’ the binding’s contents.

In Definition 31 on page 70 we defined the notion of a connected binding as follows. Given
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1 2 3 4 5

6

7

open(f) ●

read(f),
write(f)

read(f),
write(f)

●

delete(f)
close(f)

open(f)

read(f),write(f)

●

delete(f)

close(f)

close(f)

delete(f)
●

Figure 8.9: The combined open automaton with holes.

1 2 3 4 5
open(f)

read(f),
write(f)

open(f)

read(f),
write(f)

delete(f)close(f)

Figure 8.10: The resultant SEA.

a trace τ and an EA E with alphabet A, let the set of τ -connected bindings be the smallest set

C(τ) such that:

ϕ ∈ C(τ) iff ∃a ∈ τ,∃b ∈ A ∶ ϕ ⊑ quantified(match(a,b))
ϕ1 ⊔ ϕ2 ∈ C(τ) iff ϕ1, ϕ2 ∈ C(τ) ∧ ϕ1 ∩ ϕ2 ≠ ∅

For example, the binding [c ↦ 1, i ↦ 2] is connected if iterator(c, i) ∈ A and iterator(1,2)
is in the trace. Here the intuition is that when inspecting method calls, if we see two (or more)

objects used in the same method then it is likely that the behaviour of those objects is (in some

way) connected. Connectedness mode is therefore useful for two reasons:

1. Extracted specifications are simpler. We saw this previously when using the connectedness

guard to specify QEA. As the behaviours of unconnected objects are ignored we do not

need to specify what this behaviour should be.

2. Extracted specifications are more accurate (and more likely to be found). As traces

related to unconnected bindings can be ignored the mining process will not be effected

by the ‘noise’ they introduce. Additionally, in the case where the patterns in the pattern

library are unable to capture the complex behaviour needed to describe the behaviour of

unconnected events it is more likely that the pattern library can explain the more simple

connected behaviour.

We explore these claims later (Sec. 10.3.4).
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We note that the specification mining tool JMiner [LCR11] using a similar notion of pro-

jection to our tool but runs exclusively in connected mode i.e. only considers the behaviour

associated with connected bindings.

8.7.2 Including global guards

Extending the mining framework to also use a global guard G as an input is straightforward.

We redefine successful patterns (previously Def. 76) as follows:

Definition 78 (Successful patterns). Given a scorecard S(τ), the successful patterns for the

list of quantifications Λ and global guard G are given by pat(S(τ), [ ],Λ,G), defined as

pat(S, θ,∀xΛ′,G) = ⋂d∈Dom(τ)(x) pat(S, θ †[x↦ d],Λ′,G)
pat(S, θ,∃xΛ′,G) = ⋃d∈Dom(τ)(x) pat(S, θ †[x↦ d],Λ′,G)
pat(S, θ,∀xε,G) = ⋂{S(θ †[x↦ d]) ∣ d ∈ Dom(τ)(x) ∧G(θ †[x↦ d])}
pat(S, θ,∃xε,G) = ∪{S(θ †[x↦ d]) ∣ d ∈ Dom(τ)(x) ∧G(θ †[x↦ d])}

This ignores all bindings that do not pass the global guard G, i.e. we do not include their

successful patterns.

To compute connectedness we do not need to follow the method described in Sec. 6.3.3 as

we are provided with whole traces. Instead, we can first extract all bindings from the trace by

matching each event in A with each event in the trace, and then close this set by repeatedly

taking the union of any two bindings with a non-empty intersection.

8.7.3 An example

To demonstrate mining in connected mode let us consider the following trace that could be

created by iterating over two separate collections:

iterator(A,1).use(1).use(1).update(B).iterator(B,2).use(2).update(A).update(A)

Firstly, we can create the following trace projections for the three relevant bindings:

c i τ ↓A(θi)

θ1 A 1 iterator(A,1).use(1).use(1).update(A).update(A)

θ2 A 2 use(2).update(A).update(A)

θ3 B 1 use(1).use(1).update(B)

θ4 B 2 update(B).iterator(B,2).use(2)

Note that bindings θ1 and θ4 are connected, whilst θ2 and θ3 are not. Let us now take the

following patterns as a pattern library:

1 2 3

p1

b a

●a a

1 2 3

p2

a ●
b● ●
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And consider the successful patterns. The following table shows for each instantiation of

a and b which patterns hold for each of the trace projections. Given our updated notion of

successful patterns we only need to take the intersection of those patterns associated with

connected bindings, here identified as θ1 ∩ θ4. If we do not filter the results in this way then

there would be no successful patterns.

a b θ1 θ2 θ3 θ4 θ1 ∩ θ4

iterator(c, i) update(c)
iterator(c, i) use(i) p1,p2 p1 p2 p2

update(c) iterator(c, i) p1 p2 p1, p2 p1

update(c) use(i) p1

use(i) iterator(c, i) p2

use(i) update(c) p2 p1 p1

The two successful instantiation patterns are:

1 2 3
iterator(c, i) update(c)

●update(c) update(c)

1 2 3
iterator(c, i) ●

use(i)● ●

Which, when combined, give us the following specification of the UnsafeIter property:

1 2 3

∀c∀i ∶ connected(c, i)

iterator(c, i) update(c)
use(i)update(c) update(c)

8.8 Alternative inference techniques

We compare our approach to existing work in the area of specification mining and specification

inference. We provide information about alternative approaches for completeness.

8.8.1 Generate-and-check specification mining approaches

No previous generate-and-check techniques consider the parametric setting. We therefore extend

the expressiveness of this approach (discussed in Sec. 8.1). We also extend the notion of pattern

using open automata. Unlike previous approaches we assume a given alphabet.

One of the main idioms behind previous generate and check techniques is that frequent

behaviour is correct. We lose this notion in our work as we do not distinguish between patterns

that ‘occur’ frequently and those that do not. This may lead to infrequent and unnecessary

behaviour being taken as a requirement. We could include frequency in two ways; by measuring

the (respective) lengths of projected slices for pattern alphabets, or the (respective) lengths of

trace slices.

We do not focus on efficiency, but it is likely that including additional information makes

our approach less efficient than propositional techniques.
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8.8.2 Static approaches

There are a large range of techniques that generate specifications using source code [LZ05a,

WZL07, RGJ07, SYFP07, KTB+06, LPH+07, WML02, DLWZ06]. We review the common

approach of frequent itemset mining [GZ03] here. This technique, from data-mining, takes a

set of itemsets (a set of arbitrary items) and a support threshold min support and returns a

set of patterns that occur in at least min support itemsets.

PR-Miner [LZ05a] finds associations among elements by identifying those which are fre-

quently used together, with no explicit concept of order. Each function is turned into an itemset

by taking the set of all symbols. Frequent itemset mining is applied to extract patterns of the

form set1 ⇒ set2 read as ‘if we see the symbols in set1 then we should see the symbols in set2’.

Jadet [WZL07] takes a similar approach but uses a form of call-graph to construct their item-

sets. An item is an ordered pair (m,n) indicating that n can be called after m and a function

is turned into an itemset by extracting the valid pairs (m,n). Ramanathan et al. [RGJ07] use

a combination of frequent itemset mining and sequential pattern mining [MTP05] to develop a

technique called predicate mining that identifies the preconditions that must hold whenever a

procedure is called. Flow-analysis labels program statements with sets of predicates, frequent

itemset mining infers data-flow predicates, where an itemset represents the predicates at a call

point, and sequential pattern mining infers control-flow predicates.

We do not consider extracting specifications from source code in our work.

8.8.3 Regular inference

Regular inference asks whether a finite state machine can be extracted from a set of traces.

Here we briefly review the main concepts and algorithms. This is an alternative to the generate-

and-check approach taken by previous mining techniques that make use of slicing - Secondly, we

compare with other tools. We are strictly more expressive than previous work that uses trace

slicing i.e. JMiner [LCR11] and Pradel and Gross [PG09]. Our approach is more expressive than

these as we consider existential quantification and, more importantly, non-connected bindings.

Nerode’s right congruence

Nerode’s right congruence ≡L is a congruence on the set of words Σ∗ for some regular language

L that splits Σ∗ into a number of equivalence classes such that no two words in an equivalence

class can be differentiated by any suffix. A language is regular if there are a finite number of

equivalence classes, as there will then be a finite number of states. It is given by the following

for u, v ∈ Σ∗

u ≡L v iff ∀w ∈ Σ∗ ∶ uw ∈ L⇔ vw ∈ L

This has a number of consequences, the main one being that two states accepting the same sets

of words can be merged as they cannot be differentiated.

We can use ≡L to give a canonical minimal DFA accepting L. Let uL represent the equiv-

alence class of u with respect to ≡L then define A = ⟨Q,Σ, δ, q0, F ⟩ such that Σ is given,

Q = {uL ∣ u ∈ Σ∗}, q0 = εL, F = {uL ∣ u ∈ L} and for all a ∈ Σ we have δ(uL, a) = uaL.
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Passive state-merging

The main approach to passive regular inference is that of state-merging. The general idea

is to construct an automaton that accepts and rejects exactly those traces given (called an

augmented prefix tree acceptor) and then merge states to generalise this.

From Nerode’s right congruence we can derive a condition for exact learning with passive

information. We say that a sample is characteristic if for every transition and state in the

hidden automaton there is a positive trace that visits them, and for every two non-equivalent

states there exist traces that can separate them. A characteristic set is of size O(∣Q∣2∣Σ∣),
which is reasonable, but there is no guarantee that we can extract this. The Regular Positive

Negative Inference (RPNI) [OG91, OGV93, Lan92] algorithm begins by constructing the prefix

tree acceptor for the positive sample set S+ and then attempts to merge each pair of states. If

the resulting automaton is consistent with S− it is kept and the process repeated until no more

pairs of states can be merged. There have been some refinements to help select pairs of states

to merge. The Blue-Fringe algorithm [LPP98] maintains a subset of mergeable states and the

(Evidence Driven State Merging) EDSM [CK02] algorithm scores a merge pair by comparing

the state transitions from each state. If the sample of traces is not characteristic then learning

will be approximate. Note that negative traces are required to form a characteristic sample.

Another approximate approach is that of Biermann. The ktails algorithm [BF72] merges two

states if they have identical suffixes of length k, so the level of approximation can be controlled

using k. Leucker [Leu07] notes that this algorithm can be reduced to a constraint satisfaction

problem over the natural numbers. This algorithm has been extended in a number of ways. Most

notably the sk-strings [RP97] algorithm infers a probabilistic finite state automaton (PFSA)

where states are merged if they agree on the top s percent of their most probable k-strings

There have been a few parametric extensions. GkTail [LMP08] combines the Daikon

invariant-detection tool with the k-tails approach to mine a form of Extended Finite State

Machine (EFSM). Traces are annotated with Daikon and used to construct a canonical au-

tomaton accepting all traces. States which share the same k-futures are then merged, where

state equivalence can be based on different forms of predicate subsumption. JMiner [LCR11]

mines parametric specifications with universally quantified variables using sk-strings to infer

a PFSA from trace slices. A recent approach [WTD13] extracts EFSMs with ‘local’ guards

(i.e. based only on the values in the transition label) by combining classifiers with the EDSM

approach. They train classifiers (taken from WEKA [HFH+09]) to predict the next parametric

event given a previous parametric event and then use this information to restrict merges.

Active learning

An active learning approach to grammar inference was first taken by Dana Angluin [Ang87].

She introduced the seminal L∗ algorithm which has been studied, extended and applied in many

places in the literature. Berg et al. [BJLS03] give a good introduction to the algorithm that is

more approachable than the original paper.

The setup has a teacher or oracle who can answer queries put to it by the learner. Queries

can either be membership queries (is this word in the language) or equivalence queries (is this

the answer). The algorithm uses a prefix-closed set U ⊆ Σ∗ to identify states, and a suffix-closed
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set V ⊆ Σ∗ to distinguish states. This is similar to the constraints used in k-tails as both are

based on Nerode’s right congruence. The learner builds a table T ∶ U → (V → B) with ∣U ∣ rows

and ∣V ∣ columns. The table is said to be closed and consistent as follows

∀u ∈ U,a ∈ Σ,∃u′ ∈ U ∶ T (ua) = T (u′) (closed)

∀u,u′ ∈ U,a ∈ Σ ∶ (T (u) = T (u′))⇒ (T (ua) = T (u′a)) (consistent)

If the table is closed, the set U can be split into U = US∪US .Σ where US is a set of short prefixes

differentiating different states. The table begins with U = V = {ε}. A membership query is

asked for each row in the table and then, whilst the table is not closed or consistent, rows are

added to fix this and the table completed again. Once the table is closed and consistent a

hypothesized DFA can then be constructed from T so that Q is the set of distinct rows (US),

q0 is the row T (ε), δ is defined by δ(T (u), a) = T (ua) and the accepting states are those rows

where T (u)(ε) = true. If the teacher accepts this hypothesis a unique minimum DFA has been

found, otherwise all prefixes of the counterexample are added to U and the process continued.

This is guaranteed to exactly learn a canonical minimal DFA in time polynomial in the num-

ber of states and the maximum counterexample length. For this reason oracle implementations

aim to reduce counterexample length.

This approach has been extended to inexperienced teachers [Leu07, FGMP94], Mealy Ma-

chines [SG09], infinite languages [MP95] and timed automata [GJL10].

In recent years there has been much interest in extending L∗ to the parametric setting.

Some make use of abstraction and refinement to deal with parametric events through guards

[BJR06, AHK+12] as well as learning an automaton they learn an abstraction function. More

recently there has been an interest in forms of Register Automata. Both Howar et al. [HSJC12]

and Bollig et al. [BHLM13] define regular canonical representations for their target automata

using symbolic representations of data words. Howar et al. [HSJC12] extract a subclass of

Register Automata (described in [CHJ+11]) that restrict the way state variables are stored.

Bollig et al. [BHLM13] extract so-called session automata that can either write a value into a

register as a fresh value, or read an existing value and compare it against the input. The tool

TzuYu [XSL+13] makes use of a refiner to split alphabet symbols using guards when two states

cannot be distinguished. They implement their refiner using support vector machines [Joa98]

and therefore their approach only works if states are linearly separable. All of these techniques

need to translate propositional queries into parametric ones, and parametric counterexamples

into propositional ones.

These active approaches focus on free notion of data, rather than the quantified view we

take in our work.

8.8.4 Data mining

Lo et al. [LKL07, LKL08a, LKL08b, LK08, LRRV09] have carried out extensive work using the

data-mining technique of frequent itemset mining to mine specifications. Their general approach

is to prune the traces with respect to support before generating patterns they are confident in.

This basic approach (two event patterns) has complexity O(n + ab) where n is the cumulative
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length of all traces, a is the total number of frequent events and b is the maximum length of a

trace. Earlier work produced sets of closely occurring events but later work introduces orderings

between these events. One interesting approach [LMP09] uses the inferred temporal patterns

to steer the previously described ktails algorithm for regular inference.

The same group have also produced parametric extensions. For example, they mine live se-

quence charts enriched with invariants by first identifying frequent charts and then using these to

identify subtraces for invariant mining [LM12]. They also produce the Tark [LCH+09, LRRV12]

tool that identifies predetermined quantified binary temporal rules with equality constraints.

Our approach is more expressive than Tark as we consider general orderings of events.

8.8.5 Evolutionary approaches

The earliest attempt at grammar inference using genetic algorithms was by Fogel et al. [FOW66]

in 1966, who attempted to evolve DFAs for regular languages. More recently Dupont presented

the GIG method [Dup94] that evolves a partitioning of states and Pawar and Nagaraja [PN02]

extend this work with different forms of structural mutations. Hingston [Hin01] attempts to

evolve a partitioning using the concept of Minimum Message Length [WB68] to measure fitness.

Lucas and Reynolds [LR05, LR03] evolve the transition function for a DFA and Niparnan and

Chongstitvatana [NC02] evolve finite state machines in the form of Mealy Machines. Bongard

and Lipson [BL05] have developed an active approach which they describe as coevolutionary.

There have also been approaches that look at context-free languages. Lankhorst [Lan95]

and Naidoo and Pillay [NP07] evolve pushdown automata, whilst Wyard [Wya93] and Pandey

[Pan10] evolve grammars directly.

8.9 Summary

In this chapter we have introduced a method for extracting a form of QEA from traces making

use of a set of predefined patterns. We began by discussing the form these patterns should take

in Sec. 8.3 before introducing open automata as a formalism that allow us to combine extracted

patterns together. We then explored methods for efficiently generating and checking patterns in

Sec. 8.4, showing that we can use a set of patterns to produce a checker object that checks lots

of patterns simultaneously. We used the work of the first two sections to introduce our mining

framework in Sec. 8.5, which is demonstrated in Sec. 8.6. Finally, we extended our framework

with a notion of the connectedness global guard in Sec. 8.7.

8.9.1 Limitations

We discuss the limitations of our technique and what further work is required to address these.

Correct traces

One limitation of this technique is the assumption that all given traces are correct, therefore if

a pattern is satisfied by 99% of a trace it will not be recorded. We address this in Chapter 11.
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Pattern library

Another limitation is that we must provide a pattern library. On one hand, we may fail

to extract a specification if the library is too general as only specifications that are some

combination of patterns in the pattern library can be mined. On the other hand, we may fail to

generalise from the given traces if the pattern library is too specific. This limitation is inherent

in our approach and in the next chapter we will address it by exploring what makes a good

pattern library.

Prior knowledge

An alphabet must be supplied, requiring some prior knowledge of the system under inspec-

tion. This may be addressed with additional computation. For example, we could attempt to

enumerate all possible alphabets given a set of traces. However, this would become inefficient

quickly and examining the source code heuristically, as is done in the JMiner work [LCR11],

is likely to be necessary. This need not be a restriction, as in many applications we know the

events whose behaviour we wish to mine.

Free variables

Finally, our current approach only targets QEA without free variables. One of the main mo-

tivations for introducing QEA was that they included free variables and these are necessary

for writing expressive and concise specifications. We have developed an initial approach for

extracting QEA with free variables but as this is not fully developed we discuss later when

considering further work (Sec. 12.2.8).



Chapter 9

Exploring Pattern Libraries

The previous chapter introduced our mining process extracting a form of QEA from execution

traces. This mining process depends on a pattern library. What such a pattern library should

look like and how it should be developed is not obvious. Here we begin to address the question

“what makes a good pattern library?”

Ideally we would produce a general ‘pattern base’ i.e. a pattern library from which all

specifications could be generated. As shown in Sec. 8.3 this is not possible without placing re-

strictions on the size of alphabets. Furthermore, due to the issues of overspecification discussed

in Sec. 8.2 we do not want to be able to generate overly specific specifications as (without

sufficient negative traces) this will prevent generalisation from the traces, which is our aim.

Therefore, a pattern library should form a good basis for a particular domain i.e. be able to

generate specifications for general forms of common behaviour. Throughout this chapter we

consider methods for developing such patterns; for example, in Sec. 9.4 we consider specifica-

tions of common forms of behaviour and the patterns required to generate them.

Structure. We begin by discussing what we want from a pattern library (Sec. 9.1). This is

followed by a review of previous notions of pattern used in specification and mining (Sec. 9.2).

Next we ask whether suitable patterns can be generated automatically (Sec. 9.3), the answer

is generally ‘no’ but the discussion identifies interesting methods to automatically expand or

augment an existing library. Previous patterns for mining are based on general intuition about

useful or common behaviours and we build on this by looking at the patterns obtained when

decombining common specifications (Sec. 9.4). We conclude by summarising the pattern library

we will use for evaluation (Sec. 9.5).

9.1 What do we want from a pattern library?

To understand what we want form a pattern library let us look at how the choice of pattern

library effects the specification extracted.

220
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9.1.1 Solution space

Given a pattern library P and an alphabet A we can generate the solution space i.e. the set of

specifications that could possibly be extracted from a set of traces. This is simple to construct

as follows:
instances(P,A) = {p(ϕ) ∣ p ∈ P ∧ ∀a ∈ p.Σ,∃a ∈ A ∶ ϕ(a) = a}
solutions(P,A) = {⋂ I ∣ I ⊆ instances(P,A)}

i.e. all possible combinations of instances of patterns in P using events in A. Let us consider

the size and shape of the solution space.

The size of the solution space

Given a pattern library P containing pk patterns with k symbols and alphabet A consisting of

a events we have that
∣instances(P,A)∣ = ∑k=nk=1 pka

k

∣solutions(P,A)∣ = 2∣instances(P,A)∣

If we take p2 = 50 and p3 = 10. with pk = 0 for all other k. and a = 5 then we have

∣instances(P,A)∣ = 12.5k + 12.5k = 25k and ∣solutions(P,A)∣ = 225k, which is obviously a vast

solution space. However, the solution space will be significantly smaller than this for the fol-

lowing reasons:

1. Repetitions in instances. If we instantiate a pattern with two or more of the same symbol

then there is a chance that the language of this pattern collapses to that of another

pattern, or to the trivially total language. For example take the pattern that captures an

alternating relationship between two symbols interspersed by holes, if these are the same

symbols then any trace matches this pattern.

2. Empty combinations in solutions. If the language intersection between two patterns is

empty then their combination will represent the empty language. This is highly likely to

occur as patterns are designed to capture different behaviours. Additionally, it is unlikely

for instances of the same pattern to be compatible, for example if a pattern states that

the trace must begin with a certain symbol then two instances of this pattern will have

an empty combination.

3. Repeated combinations in solutions. If we combine patterns p1, p2, p3 where p3 ⊑ p1 and

p3 ⊑ p2 then their combination will be the same as the combination for p1 and p2. This is

likely to occur where we have patterns in our pattern library that include others. However,

this is often necessary for capturing slight variations of a pattern.

Therefore, to maximise the size of the solution space we should ensure that patterns are

mostly distinct yet there are enough similarities to allow for compatible combinations.

The ‘shape’ of the solution space

Let us consider the precision hierarchy of the solution space, recall that if p1 is more precise

than p2 then L(p1) ⊆ L(p2). Firstly, take the instances. We would expect a reasonably flat
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structure as most instances would not contain another instance. However, two or three levels

might be observed if we had different variations of the same kind of pattern.

The solutions would experience a much more complex structure. The maximum height is

log2∣instances(P,A)∣ if every pair of instances were consistent. However, this is unlikely. Again,

the more distinct the patterns in the pattern library, the greater complexity and depth we will

see in the precision hierarchy.

We want our solution space to exhibit a deep precision hierarchy as this shows that we can

differentiate between different levels of preciseness in a specification i.e. we do not just return

an over-general fit to the traces.

9.1.2 Exploring the solution space

Our approach can be phrased as an exploration of the solution space. We are looking for the

smallest/most precise pattern that satisfies our traces i.e.:

min({p ∈ solutions(P,A) ∣ ∀τ ∈ T+ ∶ τ ∈ L(p) ∧ ∀τ ∈ T− ∶ τ ∉ L(p)})

We do this by identifying the instances that satisfy our traces and combining them i.e.:

⋂{p ∈ instances(P,A) ∣ τ ∈ T+ ∶ τ ∈ L(p) ∧ ∀τ ∈ T− ∶ τ ∉ L(p)}

This is necessarily the minimum solution, as if there were a smaller/more precise solution it

would have to be based on the combination of additional instances, but by construction there

are no other compatible instances.

9.1.3 The over-specification problem

The mining process detects successful patterns and then takes their intersection. If a combina-

tion of patterns exactly describes the set of input traces then this is the specification that will

be returned. The whole notion of specification mining is to generalise from a set of traces and

a pattern-mining approach achieves this through using patterns that are appropriately generic.

An example of over-specification

Consider a pattern library that contains the following patterns:

1 2

p1

a

●,a

1 2 3

p2

a a

● ● ●

1 2

p3

a

b

● ●

Given the traces
τ1 = f.g.h

τ2 = f.g.h.f.g.h
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we would extract the patterns

p1([a↦ f]), p2([a↦ f]), p2([a↦ g]), p2([a↦ h]),
p3([a↦ f, b↦ g]), p3([a↦ f, b↦ h]), p3([a↦ g, b↦ h])

and combine these to form the following specification:

1 2 3 4 5 5 5
f g h f g h

The unfolding of p3 is caused by p2, which captures the fact that each event occurs at most

twice. However, from manually inspecting the traces we might conclude that these are special

instances of the more general specification:

1 2 3
f g

h

We can either think of this as an over-specification in our pattern library, or a problem with

the quality of the information received. If we had also received the trace τ3 = f.g.h.f.g.h.f.g.h

then we would have returned the more general specification.

9.1.4 The under-specification problem

This is a more common problem than over-specification. If we do not include a necessary

pattern in our pattern library then it is possible that we have no compatible instances in our

solution space, and no solution is returned. One cause of this is that there are small errors in

the input traces, we consider this scenario in Chapter 11.

An example of under-specification

Let us consider a similar situation to the over-specification example. Consider a pattern library

that contains the following patterns:

1 2

p1

a

●,a

1 2

p2

a

b

● ●

Given the traces
τ1 = f.g.h

τ2 = g.h.f.g.h.f.g.h

we would not extract any patterns as the two traces begin with different events and no two

events are in complete alternation as all pairs finish in state 2 of pattern p2. Extrapolating

from the two traces we might conclude that the two traces belong to the following general

specification, that there is an order between events but no start or end event:
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1

32 4

a
bc

a b

c

9.1.5 Summary

We have seen that the choice of patterns can greatly effect the size and shape of the solution

space. Therefore, our aim is to develop a set of patterns that capture distinct yet common

patterns of behaviour in traces. In the rest of this chapter we attempt to develop such patterns

through exploring previous work in the area of specification patterns, automatic generation,

and inspecting common specification forms.

9.2 Previous work on patterns

The idea of using patterns as general templates to describe common (program) behaviours has

been explored previously. In some cases there has been a focus on small patterns that can be

used to build larger patterns, but in others the focus has been on single independent patterns.

Here we review previous work and draw some conclusions about which elements of this work

we want to include in our approach.

Recall that we are interested in finite-state, finite-trace properties i.e. ones that can be

described by finite-state automata. As patterns are applied in a propositional setting we will

not be considering quantification in this section.

9.2.1 General concepts of safety and co-safety

We considered the high-level classification of finite-state, finite-trace properties of safety and

co-safety previously in Section 4.1.3. In terms of patterns these represent a distinction between

patterns that capture behaviour that should always occur and are prefix closed (all states are

accepting) and behaviour that should eventually occur (some set of end states are accepting).

The following gives an example of a safety (left) and co-safety (right) pattern.

1 2

a

b 1 2 3
a b

a a,b

Patterns do not to fall strictly within these classifications, therefore it would be more accurate

to say that there are three classes with the third being a combination of safety and co-safety.

9.2.2 Patterns used for specification

Here we explore how patterns have been used as templates for specifying programs.
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Figure 9.1: The pattern hierarchy (copied from [DAC99]).

Occurrence

1 2
a

1 2

a

a
1 2 3

a a

Absence Existence Occurs exactly twice

1 2 3
a a

a
1 2

a

a 1 2

a

b

Occurs at least twice Occurs an odd number of times Universal
Ordering

1 2

a

b

a

1 2

b
a

b

a precedes b b follows a

Figure 9.2: Demonstrating the pattern hierarchy of [DAC99].

Specification Pattern System

In 1999 a survey was carried out to collect examples of temporal specifications used in industry

and academia. The result was the Specification Pattern System (SPS) [DAC99], a hierarchy for

discussing finite-state properties. Examples were given in Linear Temporal Logic, Computation

Tree Logic, Graphical Interval Logic and Quantified Regular Expressions.

These specifications are slightly different from the kind we are concerned with as they are

over program states, therefore many propositions can hold on the same time step as many

things are true about the current program state, as opposed to our view where a single event

occurs on each time step.

The hierarchy, illustrated in Fig. 9.1, organises different kinds of patterns in terms of how

events should occur in a trace. We give an overview of the kinds of patterns in the following,

and give illustrative examples in Fig. 9.2.

• Occurrence. About the occurrence of events in a trace.

– Absence. An event does not occur. This is captured by a single transition to a

non-final state.
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– Existence. An event must occur. This is captured by a single transition to a final

state.

– Bounded Existence. An event must occur at least/at most k times. Here we

illustrate three versions of this property. The first two capture an event occurring

exactly and at least twice, the third captures an event occurring an odd number

of times. This last property probably falls outside the usual interpretation of this

pattern.

– Universality. An event occurs throughout. In our setting (where only one event

can occur on each step) this is equivalent to the absence of all other events.

• Ordering. About the ordering of events in a trace.

– Precedence. An event a must always be preceded by event b. This is captured by

alternation with a loop on the second state. This means that we can have a.a.b but

not b.a.b i.e. b cannot occur without being preceded by a.

– Response. An event a must always be followed by event b. This is often called

request-response where a is seen as a request, and b as the response. We capture

this in a symmetric fashion to precedence; a a cannot occur unless it is immediately

followed by a b.

• Compound. About the combination of patterns. We do not illustrate these as they are

natural extensions of the previous patterns.

– Chain Precedence. A sequence of precedence relationships between a sequence of

events.

– Chain Response. A sequence of response relationships between a sequence of

events.

– Boolean Combinations. We can take boolean combinations of other patterns.

This might benefit from illustration. For example, we might take the disjunction of

a occurs exactly once and a occurs exactly twice, or the conjunction of a precedes b

and b follows a, which give the following two patterns respectively:

1 2 3
a a

1 2

a

b

These patterns are combined with a notion of scope i.e. when in the trace they must apply.

These are illustrated in Fig. 9.3 and are as follws:

• Global - apply to the whole trace.

• Before R - must hold on the finite trace before R first occurs.

• After Q - most hold on the finite trace after Q first occurs.

• Between Q and R - most hold on any subtrace between the first occurrence of Q and the

first occurrence of R.
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Figure 9.3: Illustrating scopes (copied from [DAC99]).

• After Q Until R - the same as between Q and R, except if no R occurs before the end of

the trace the property should still hold.

Whilst many of the specification languages cannot capture these scopes directly the authors note

that they are very important in practice. Note that some patterns (for example Universality)

have significantly different meanings when combined with a scoping operator.

Extending SPS

This hierarchy has been extended and adapted in different ways.

Mondragon et al. [MGR] describe the Prospec tool for specifying properties and replace

the notion of chain patterns with composite patterns. Composite patterns identify relationships

between propositions and can be interpreted for either sequential or concurrent behaviour.

These patterns can assert at least one proposition occurring, many happening in parallel or in

some order consecutively or not. Salamah et al. [SGKR07] translate this notion of composite

pattern back into LTL.

In 2005, Konrad and Cheng [KC05] extended the hierarchy to consider real time patterns

(they label the previous patterns ‘qualitative’). They are concerned with the amount of time a

state formula (assertion about the state of the system) should hold. These can be captured in

an event-based system by generating an event when the state formula changes truth value. The

new categories include state formulas holding for given durations or occurring with a certain

period, and events happening with a minimum or maximum time between them.

As mentioned above, the SPS framework focused on state propositions. At a similar time

Chechick and Păun [CP99] considered how to interpret the system using an event system. A

key concern of theirs is stuttering, where the interpretation of a property is changed by adding

transitions that leave the system in the same state. The problem with formulas that can

stutter is that they place restrictions on the level of abstraction being used. The main issue is,

obviously, with the next operator.
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Table 9.1: Temporal property patterns used in Perracotta, adapted from [YE04b]. QRE have
been replaced by normal regular expressions.

Name Regular Expression Valid Examples Invalid Examples
Response b∗(a+b+)∗ f.g.g.f.f f.g.g.f.f.g

Alternating (ab)∗ f.g.f.g f.g.g, f.f.g, g.f.g
MultiEffect (ab+)∗ f.g.g f.f.g, g.f.g
MultiCause (a+b)∗ f.f.g f.g.g, g.f.g
EffectFirst b∗(ab)∗ f.g.f f.g.g, f.f.g
CauseFirst (a+b+)∗ f.f.g.g g.f.g.g, g.f.f.g
OneCause b∗(ab+)∗ g.f.g.g f.f.g.g, g.f.f.g
OneEffect b∗(a+b)∗ g.f.f.g f.f.g.g, g.f.g.g

Summary

We will keep the general hierarchy of the SPS framework, but refine it slightly given our event-

based setting. We do not consider stuttering, although note that the user will need to select the

correct level of abstraction to extract certain specifications. We present our pattern hierarchy

and selected patterns at the end of this chapter.

We will capture scope using additional patterns, such as the following pattern that specifies

that all occurrences of event a occur before the first occurrence of event b.

1 2
b

●,a ●,b

9.2.3 Pattern-based specification mining

We now consider the patterns used by previous pattern-based specification mining tools.

Initial work

Engler et al. [ECH+01] consider some language-specific patterns, for example do not dereference

null pointer < p > and whether a lock protects a certain object. They also utilise two general

patterns a(¬b)∗ and ab. The patterns are very specific as they are looking for specific kinds of

deviant behaviour that imply bugs.

Weimer et al. [WN05, GW09]) only use the alternating pattern (ab)∗, concentrating on

other aspects of specification mining such as reducing false positives.

Perracotta

Perracotta [YE04a, YE04b, YEB+06] used two-symbol regular expression patterns based on

the Response pattern [DAC99] that says whenever P happens, S must also eventually happen.

Table. 9.1 gives the eight patterns that they used, with examples. They use combination only

for their chaining pattern i.e. all extracted specifications are either chains of alternation or

instances of one of the other patterns.
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Table 9.2: Temporal property patterns used in OCD [GS10].

ab Sequencing ab? Precondition a+b∗ General Precon.
ab+ LoopBegin a?b Postcondition a∗b+ General Postcon.
a+b LoopEnd ab ∣ ba Association (a+b+) ∣ (b+a+) General Assoc.

Javert and OCD

Later work combines patterns to create final specifications and the patterns chosen reflect this.

Javert [GS08a] used (ab)∗ and (ab∗c)∗ although they also report using (ab+c)∗ [GS08b]. Their

later work in OCD [GS10] does not use combination, as they are generating and checking

patterns online and do not need to present specifications to a user. The patterns used are

summarised in Table. 9.2, note that b? means that b is optional i.e. can occur 0 or 1 times. It

should be noted that many of these are similar to those used in Perracotta.

Li et al

Li et al. [LFS10] focus on mining temporal properties for hardware design and build a binary

pattern language over temporal and timing operators. Their miner SAM (Scalable Assertion

Miner) uses (ab)∗, G(a→X(aUb)), G(a→Xb) and G(a→XFb). They carry out combination

and some additional merging to take into account timing bounds.

Summary

The two symbol pattern we see in every approach is that of alternation i.e. (ab)∗, often combined

with some notion of chaining. Only Gabel and Su use a three symbol pattern in Javert, that is

resource usage of the form (ab∗c)∗.

We will use all of the patterns discussed here. We note that the LTL patterns of Li et al.

have straightforward automata interpretations.

9.3 Automatically Generating Patterns

When considering a basis of patterns to use as a pattern library the first process we consider is

automatic generation. Firstly we show that it is not practical to enumerate possible patterns

and then we consider approaches to automatically augment a small set of given patterns.

9.3.1 Can we enumerate patterns?

It would be useful if we could enumerate all patterns up to a certain size as we could then

give guarantees about the specifications that could be extracted. However, this approach will

explode very quickly. If we consider all possible sets of transitions given m states and n symbols

we have

mmn

possible transition combinations. With 4 states and 3 symbols this is 16,777,216 different

versions of δ. Then we need to consider all non-trivial combinations of accepting states, which
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is

2m − 2

as we do not consider the full or empty subset. Therefore the number of total patterns is

(mmn)(2m − 2)

The number of patterns for relatively small values of m and n quickly grows prohibitively large,

as demonstrated in the following tables. At the minimum we require 3 states and 2 symbols;

recall that one of these states will be an error state. Realistically, we would like to consider

patterns with at least 4 states and 3 symbols, note that ● counts as a symbol here.

m n Patterns

2 2 32

2 3 128

2 4 512

3 2 4,374

3 3 118,098

3 4 3,188,646

m n Patterns

4 2 917,504

4 3 234,881,024

4 4 60,129,542,144

5 2 292,968,750

5 3 915,527,343,750

5 4 2,861,022,949,218,750

Even though many of these will not be fully connected and this set will contain a large

amount of redundancy, there are too many variations for this to be a realistic approach. Note

that whilst the checking time is not greatly effected by the number of patterns being checked,

the combinition time is dependent on the number of patterns that pass.

9.3.2 Opening patterns

Given a pattern p that contains no holes we can generate a set of open versions of the pattern

that places holes in different locations. For example, given the pattern

1 2

a

b

We can generate the following variants that add looping transitions with holes:

1 2

a

b

●

1 2

a

b

●

1 2

a

b

● ●

We can also generate variants that place sequences of holes before or after the given pattern,

in a sense framing the pattern and capturing the fact that it should occur at the beginning,

middle or end of a trace. These patterns therefore belong to the combination classification:

1 2 3

●
a

b

a

1 3

2

a

b●
●

1

3 42

●
a b

a
●

●
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Finally, we can introduce non-empty sequences of holes into patterns:

1 2 3
a ●

b

1 2 3
a b

●

1 2 3
a ●

b

●

1 2 3
a b

●●

We can see that ‘opening’ a pattern does not just consist of adding the looping ● transitions

on each state as was done for finite automata in Javert, but also adding intuitive hole behaviours.

9.3.3 Prefix-closing patterns

A pattern p is prefix-closed if ∀τ1.τ2 ∈ L(p) ∶ τ1 ∈ L(p) i.e. the prefix of every trace accepted

by p is also accepted by p. All of the patterns used in previous pattern-based specification

mining tools (discussed in Sec. 9.2.3) are not prefix-closed. Prefix-closing a pattern represented

in automata form is straightforward; all non failing states should be made final.

Let us briefly discuss whether prefix-closed patterns are desirable using the alternating

pattern. Below we have the alternating pattern as was described in Sec. 9.2.3, and the prefix-

closed version:

1 2

a

b

1 2

a

b

Which is preferable? Well, both have their uses. If we consider a = open and b = close

we might prefer the non prefix-closed version so that we capture the fact that not closing is

erroneous. However, if we consider a = left motor on and b = right motor on we might not

care if we finish with the left motor on, rather than the right. Therefore, it is useful to have

both prefix-closed and non prefix-closed versions of patterns.

9.3.4 Fuzzing patterns

Another approach to consider is taking a small set of patterns and ‘fuzzing’ them i.e. changing

them in small ways to generate similar patterns. The idea here is that the small set of given

patterns represent likely behaviours and certain fuzzing operations represent likely variations.

This generalises the notion of opening patterns. Possible fuzzing operations include:

• Changing the accepting states

• Changing the initial state

• Adding or removing hole or symbol transitions

• Making sections loop i.e. one transition, a path or the whole pattern

• Swapping symbols

One interesting direction not explored in this work is the possibility of using these techniques

as genetic operators to evolve a pattern library using a genetic algorithm and a set of canonical

specifications to generate traces from.
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9.3.5 Summary

We have concluded that automatically generating a pattern library is not feasible, but that

there are some interesting techniques that can be applied to existing sets of patterns to produce

new patterns. Later we apply pattern opening and prefix-closing to our constructed set of

patterns.

9.4 Exploration through decombination

In this section we attempt to use common specifications to generate the patterns that are needed

to mine them. We do this through the process of decombination for open automata, which is

given in Def. 69 on page 197. This is an imprecise activity as we saw in Sec. 8.3.6, but many

useful specifications do decombine precisely.

9.4.1 Common specifications.

We identify a number of common specifications and apply decombination to them, analysing the

resulting patterns. When we decombine a specification we are looking for smaller patterns (in

terms of alphabet) that can combine together to form that specification. Therefore we mainly

concentrate on specification patterns with large alphabets. However, we begin by considering

two small but common specification patterns:

• Resource usage. A resource is created or opened before being used and then destroyed

or closed. This process can be repeated.

• Mutual exclusion. Only one resource can be used at any time.

Next let us consider the following larger common specification patterns:

• Ordering. Events must occur in a sequential order.

• Reaching goodness. A number of operations must occur in a certain order but no

restrictions are placed on intermediate events. The idea is that the final state is some

good state we need to reach.

• Dependent resources. A resource A is marked as dependent on another resource B and

therefore A can only be used when B is active. This can be extended to many resources.

• Choice. Using events to choose between two possible (similar) behaviours.

In the next sections we consider the decombinations for these specification patterns through

manual and automated techniques i.e. we first attempt to automatically decombine the speci-

fications and then manually inspect and refine the results.

We note that it could be argued that this process biases our approach towards the spec-

ifications considered in this section. However, this is equivalent to developing a heuristic by

examining common cases; as the heuristic will always be biased towards these cases but this is

the point, we want to cover common cases.
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1 2

A open

use

close

1 2

B open

use

close

1 2 3

C

open

use

close
1 2 3

D

open use

close

Figure 9.4: Four different versions of the resource usage pattern.

9.4.2 Resource usage

Fig. 9.4 contains four versions of the resource usage specification. Each pattern can be de-

combined into three different open automata with alphabets of size two. For example, the

specification A decombines into the following pattern instances:

1 2

●
use

close

1 2

open

●
close

1 2

open

use

●

Which combine together to form the specification, actually any two of these pattern instances

will combine together to form the original. Therefore, to extract these four different versions

of the resource usage specification we would require eight patterns, two for each. However, if

we inspect the twelve decombinations we note that there are 81 different ways of choosing five

of those decombinations that can create all four resource usage specifications. One such set is

as follows:

1 2

1 open

use

● 1 2 3

2

open

use

●

1 2

3 ●
use

close

1 2

4 open

use

● 1 2 3

5

open use

●

One way in which the resource usage specifications from Fig. 9.4 can be constructed is as follows:

3 and 4 combine to make A, 1 and 3 combine to make B, 1 and 2 combine to make C and 1

and 5 combine to make D.

9.4.3 Mutual exclusion

Let us now consider the mutual exclusion specification, which can be written as followed for

two instances of a resource x and y:

12 3

start(x)

stop(x) start(y)

stop(y)
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The two-symbol decombination of this property contains nine pattern instances but we only

need the following two to reconstruct the specification:

12 3

●

● start(y)

stop(y)

12 3

start(x)

stop(x) ●

●

But both of these are an instance of the following pattern, therefore to extract specifications

of this form we only need one pattern.

1 2●
a

b

If we have any number of mutually exclusive states we can use the same pattern.

9.4.4 Ordering

Let us consider the following specification that captures the behaviour that four events appear

in sequence:

1 2 3 4 5
a b c d

This straightforwardly decombines into the following three instances of a simple chaining

pattern:

1 2 3
a b

● ● ●

1 2 3
b c

● ● ●

1 2 3
c d

● ● ●

The pattern instance involving d allows further symbols to occur after d, but the other

pattern instances ensure that it is not possible for any symbols to occur here.

Next we consider an extension of this specification that loops the sequence of events:

1 2 3 4
a b c

d

then we can modify our chaining specification to capture this looping as follows:

1 2

a

b

● ●
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If we then combine this pattern with either of the following patterns we will also capture

the original specification without looping. These patterns indicate that the trace begins with

a, or ends with d respectively.

1 2

●,a

a
1 2

●
d

●

Therefore, we can use two patterns to extract any ordered or ordered-looped specification.

Finally, let us consider a third form of ordering where the start and end event does not

matter, only the order of events, for example the following specification :

1

32 4 5

a b
cd

a b c

d

To capture this we only need one pattern with instances per pair of adjacent symbols:

1 2

3

a

b

b

a

●

1 2

3

b

c
c

b

●

1 2

3

c

d

d

c

●

1 2

3

d

a
a

d

●

This pattern is a generalisation of the chaining pattern that allows us to start on either

symbol. Combining this with the following pattern that indicates, which symbol should appear

first out of two symbols, gives us the chaining pattern we saw previously.

1 2

●,a,b

a

●

Therefore we only need three patterns to capture ordering.

9.4.5 Reaching goodness

The next specification is a form of ordering, but one where we aim to reach a certain state after

a sequence of events, with some events not taking part in that sequence. An example of this

specification is as follows:

1 2 3 4 5
a b c d

e,f e,f e,f e,f e,f
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To build this specification we can use the chaining pattern introduced for ordering along

with the following two patterns:

1 2

1

a

a, ●●

1 2

2

a

●●

Pattern 1 indicates that an event occurs, here used with e and f and pattern 2 indicates

that an event leads to success, here used with d. Pattern 2 forces the sequence to end with d

and ensures that we only see an accepting state once d occurs.

9.4.6 Dependent resources

Now let us consider the dependent resources specification. An example of this specification is

the (connected) version of UnsafeIter taken from the Java API examples (see Sec. A.3.2):

1 2 3

update(x)
connect(x, y)

use(y)
update(x)

update(x)

This automatically decombines into two 2 symbol pattern instances as follows:

1 2

3

●

connect(x, y)

use(y)

●

●

1 2

3

connect(x, y)

update(x) ●

update(x)

update(x)

Now let us consider a more complicated version of the dependent resource pattern, this time

taken as the UnsafeMapiterator property. Here there are three dependent resources.

1 2 3 4

update(x)
connect(x, y) connect(y, z)

use(z)
update(x)

update(x)

Again this automatically decombines into two 2 symbol pattern instances as follows:

1 2 3

4

●

connect(x, y) ●

use(y)

●

● 1

2 3

4

●

update(x)

connect(y, z)

●

update(x)

update(x)

Inspecting these pattern instances we note that the general case with n connected resources

can be captured with the following pattern instances:
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1 2 3

●
connect(ri, ri+1) connect(ri+1, ri+2)

●

1 2 3

update(r1)

● update(r1)
● update(r1)

1 2 3

●
connect(rn−1, rn) ●

use(rn) ●

The first pattern is not required in the case where we have two connected resources.

We should also consider the unconnected version of the UnsafeIter property. This is a bit

more complicated as it needs to account for the situation where x and y are not connected:

1 2 3

4

update(x)
connect(x, y)

use(y)
update(x)

update(x)

use(y)

use(y),update(x)

To capture this property we replace the second two general pattern instances we had before

with the following instances. We note that the first of these could be used in place of what we

had before.

1 2

3

update(r1), ●
connect(r1, r2)

update(r1)

●

update(r1)

1 2

34

●
connect(rn−1, rn)

●

use(rn)

●

use(rn)

use(rn), ●

9.4.7 Choice

We choose a complicated specification as the basis of our exploration of the choice specification.

Take the following specification based on the QEA given in Fig. A.38 on page 355 for file usage.

1

2 3

5

∀u,∀f

open(f,W, u)

close(f, u)

write(f, u)

read(f, u)
write(f, u)

save(f, , u)

read(f, u)
save(f, u)

open(f,R, u)

close(f, u)

read(f, u)
save(f, u)
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This chooses two behaviours based on the mode in which a file is opened. Firstly, we note

that the 2-decombination of this pattern is imprecise. However, if we include 3 symbol patterns

we can produce the following precise decombination:

1 2

1 open(f,W, u), ●

●

close(f, u)
1 2

2 open(f,R, u), ●
●

close(f, u)

1 2

3
close(f, u),
write(f, u)

open(f,R, u)

●

close(f, u)
1 2

4 ●
read(f, u), ●

close(f, u)

1 2

5 ●
write(f, u), ●

close(f, u)
1 2

6 ●
save(f, u), ●

close(f, u)

1 2 3

7
close(f, u),
save(f, u), ●

write(f, u), ●

save(f, u), ●
write(f, u) save(f, u)

write(f, u)

close(f, u)

Pattern instances 1 and 2 are instances of the same pattern, a simple variant of alternation for

the open and close events. Pattern instance 3 uses three symbols to capture the fact that a

write event cannot occur between an open event in read mode and a close event. Pattern

instances 4, 5 and 6 are also instances of the same pattern, which restrict read, write and

save events with respect to close. Pattern instance 7 also uses three symbols to capture the

correct order between write, save and close. Therefore, we can capture this complicated

choice property using four relatively simple patterns.

Note that it is pattern instance 3 that led to the choice behaviour, this pattern restricts

what can happen between two other symbols. This shows that we need three symbol patterns

to capture complex behaviours.

9.5 The Library

As a result of the experiments and observations made in this chapter we have designed a pattern

library that extends and refines the Specification Pattern System (SPS) [DAC99]. Note that

our patterns are event-based and the categories have been chosen with the mining method in

mind i.e. the fact that we will use combination.

The library is explored in detail in Appendix D.1. Briefly, it consists of four categories:

1. Occurrence - as before, these events place bounds on the number of times events, or sets

of events, should occur.
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2. Ordering - we consider the concepts of case (precedence) and effect (response) as well as

alternation.

3. Scope - this new category consists of restriction patterns such as a only occurs at the end

of a trace, or after some other event b.

4. Compound - this considers the arbitrary chaining and disjunction of patterns.

We also construct an augmented version of this library by applying the pattern opening and

prefix closing augmentation techniques.

9.6 Summary

This chapter began to address the question “what makes a good pattern library?” by looking

at how a pattern library can effect mining, reviewing previous choices and exploring techniques

for generating patterns from other patterns or common specifications. We finished with an

overview of the pattern library to be used in evaluation. There are a few outstanding questions;

for example, what role does redundancy play in a pattern library?



Chapter 10

Evaluating the Specification

Mining Technique

In this chapter we evaluate the pattern mining framework introduced in Chapter 8 using the

pattern library developed in Chapter 9. As discussed in Section 2.4.5 there are two general

approaches to evaluating specification mining techniques. The first is an ad-hoc exploration

of code with the aim of finding something interesting. The second measures accuracy against

some predetermined ground truth (known specification). We take the second approach here

using both real-world and automatically generated traces.

We have chosen this evaluation technique as it gives a strong quantitative measure of the

effectiveness of our framework and allows us to explore the effects of targeting different kinds of

specifications with varying levels of information in the traces used. When taking this approach

it is important that the chosen specifications are representative of realistic scenarios, we aim

to achieve this by taking examples from a range of domains and from both real-world projects

and the literature.

Our general evaluation method works by first generating or extracting a set of training

traces and using them to extract a QEA, and then generating a set of testing traces and using

them to measure accuracy.

In Section 10.1 we introduce the ground truths, or models, we will target, including some

specifications we monitored in Chapter 7. Section 10.2 then considers the traces we will be

using. As well as generating automatically generating traces from known specifications, we

also extract traces from the DaCapo benchmark suite where appropriate. Finally, Section 10.3

presents our results using different pattern libraries and traces with different properties.

10.1 Selecting models

In this section we select the models to target in our evaluation. We begin by discussing our

selection process and then present the chosen models.

240
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10.1.1 Selection process

In an attempt to make our evaluation representative we aim to select models from a range of

different domains, focussing on those represented by possible application domains. Our selection

process consists of the following three searches.

Specification studies. We review previous studies [BKA11, LJMR12] that have looked at

common protocol specifications. These studies typically focus on the correct usage of the classes

in the Java standard library.

Previous mining techniques. We consider properties mined by previous tools in both struc-

tured evaluations like ours and ad-hoc evaluations where the technique is applied to code to

find interesting properties. We are specifically interested in the comparable JMiner [LCR11]

and Tark [LRRV12] tools, and use specifications identified in this work. Pradel et al. [PBG10]

developed a set of ground truths of Java standard library properties for their specification

mining evaluation approach.

Other work using specifications. We look at previous academic work that formally speci-

fies temporal behaviour. One obvious area of literature is that of runtime verification. We take

specifications from the planetary rover examples given in previous work [BH11b] and used in

our runtime verification evaluation. We also look at applications of runtime verification, such

as the Orchids intrusion detection system [GLO08] .

This selection process has led to a range of models, however we accept that it is biased

towards Java programming properties as this is an area where there has been a concentration

of work formalising trace properties.

10.1.2 The models

The models we have selected are summarised in a table at the end of this section. For each

model the table gives a description and reports the number of states, size of alphabet, number

of quantified variables and cylcomatic complexity (explained in Sec. 7.1.2).

We discuss these models below, organised into a number of different domains. As well as

covering a variety of domains, these models also capture different levels of complexity, although

we note that the majority of specifications only use universal quantification.

Java API

The first domain we consider is the most popular for current specification mining techniques:

the Java standard library. We divide the properties used here into two kinds: summary and

full. The summary specifications only refer to the methods relevant to the behaviour being

captured and have been taken from our work formalising Java API properties (Appendix A.3).

The full specifications capture similar kinds of behaviour but include all methods of the relevant

classes and have been taken from [PBG10].
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The summary specifications we consider are JFreeChart, SocketOutput, ColIter, HasNext,

InputStream and OutputStream. These represent both singly and doubly quantified properties.

We will use the last three with extracted traces from the DaCapo benchmark suite.

The full specifications we consider are Formatter, URL and Socket. These contain many

methods that are not constrained by the order in which they occur with respect to other

methods. For example, getUserInfo for URL. We expect these to be more difficult to learn

due to the large alphabets. Socket is also the most complex model we have with 15 states and

39 events.

Communication

We consider models related to communication. The James model is taken from early work in

the development of JMiner [CR08] and is a specification extracted from the Apache James mail

server program. To extract the specification they took a nonstandard mapping of method calls

to events, requiring some understanding of the program being analysed.

The other models in this category are about communication between entities, these were

previously discussed in our planetary rover case study (Appendix A.4). The Satellites-All and

Satellites-Each models are the only ones using existential quantification in our set. The Com-

mands and NestedCommands models represent singly and doubly quantified nested alternation

respectively.

Rovers

We also consider examples from our planetary rover case study that relate to the internal

behaviour of the rovers. We have chosen the ResourceLifecycle, ReleaseResource, and Respect-

Conflicts properties as they have reasonably complex behaviour, for example, ReleaseResource

uses three quantifiers.

Concurrency

In this category we consider descriptions of common desired concurrent behaviour. The Mu-

tualExcl and ReadWriter models capture the standard and many-reader-one-writer forms of

mutual exclusion respectively. The LockOrder model captures the previously discussed lock or-

dering property. Both LockOrder and ReadWriter are complex properties; ReadWriter requires

5 quantifications and LockOrder needs 12 states to capture all possible interleavings.

Security

Here we use a single model that captures a slightly simplified version of the ptrace attack

[GLO08], a local-to-root exploit giving root privileges to a user with local access via a sequence

of ptrace system calls. This specification was introduced in the context of runtime monitoring

for intrusion detection and is a validation property i.e. acceptance indicates an attack.
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Drivers

The last three models we consider are based on rules described in the SDV (Static Driver

Verifier) tool [SDV]. These are all models mined by the Tark tool [LRRV12] and capture the

expressive capabilities of this tool.

The following table summarises the chosen models; these are illustrated in Appendix D.2.

Name Description ∣Q∣ ∣A∣ ∣X ∣ CC

Java API

HasNext Calls of next and hasNext alternate on an iterator 4 3 1 3

SocketOutput A stream is used after being connected to a socket and not

after that socket is closed

6 3 2 13

ColIter An iterator created from a collection is not used after the

collection is updated

10 5 2 32

Socket The correct behaviour of a Socket with respect to connections

and input/output streams, also a Socket must be closed

15 39 1 188

URL Only call getContent or openStream at most once 6 16 1 58

Formatter A Formatter if used must be flushed and must eventually be

closed

5 6 1 8

JFreeChart If a chart and plot are connected then they notify each other

if they are changed

10 5 2 15

InputStream An InputStream should not be read from after being closed 4 3 1 4

OutputStream An OutputStream if used must be flushed and must eventually

be closed

5 4 1 5

Communication

James The SMTP protocol (without authentication) as used in the

Apache JAMES mail server

7 5 1 8

Satellites- All Every field unit establishes a communication link with some

satellite

4 2 2 5

Satellites-

Leader

There exists a satellite that has established a communication

link with all known field units

4 2 2 5

Commands Issued commands succeed and are only reissued after failure 4 4 1 3

Nested- Com-

mands

Command sending and acknowledgment should nest 6 4 2 13

Rovers

ResLifecycle The lifecycle of a resource - from being requested to granted

to canceled

4 5 1 6

ReleaseRes Resource taken by a task completing a command must be

released before that command is finished

5 4 3 7

RespectConf Conflicts between resources should be respected when grant-

ing resources to tasks

5 5 2 11

Concurrency

MutualExcl No lock should be held by two threads at the same time 4 4 3 7

LockOrder Locks are always taken in a consistent order. 12 4 2 31

ReadWriter Many readers may access a file but only one writer 7 8 5 18
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Security

PTrace The sequence of system calls that identifies a local-to-root

exploit

7 6 2 32

Drivers

IOCallDriver The I/O stack must be setup before calling the IOCallDriver 4 2 1 6

KeAcquire-

SpinLock

Locks and releases of a spin lock alternative, with two alter-

nate locking calls

3 3 1 3

ZwRegistry-

Create

Registry keys are created before being used, open when used

and not used after being deleted

5 5 1 10

10.2 Traces

This section describes the traces used for training and testing. We first consider the problem

of generating random traces from the language of a QEA before presenting some statistics

about the selected traces. Whilst the generation task is straightforward for state machines, the

quantifications, and how they relate to event parameters, make this a complex task for QEA.

10.2.1 Trace generation

We consider how to generate traces from Target QEA (Def. 58 on page 190). To randomly

generate traces we require a set of possible values for each quantified variable to give a set of

possible ground events. Given a Target QEA Q over alphabet A using quantified variables X,

and a map D from X to sets of values, let AD be the set of ground events {e(v1, . . . , vn) ∣
e(x1, . . . , xn) ∈ A ∧ ∀i ≤ n ∶ vi ∈ D(xi)}.

The general trace-generation method randomly generates traces overAD and checks whether

they are accepted by the given Target QEA; we will want to generate both correct and incorrect

traces (the latter are used in testing).

Targeting coverage levels

To explore how the mining process is effected by the quality of the data provided we consider

two coverage criteria for traces. This is similar to the approach taken by Lo et al. [LMS12],

however is updated for our scenario with quantifications and non prefix-closed automata. The

coverage levels we consider are as follows:

• State coverage - All non-ultimately failing states are visited at least once by a projection

of the trace

• Path coverage - All paths to non-ultimately failing states are visited at least once by a

projection of the trace

• None - does not satisfy either coverage condition
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A trace with path coverage will have state coverage. Some models only permit path coverage,

i.e. a trace is only accepted if it visits every path. By ‘a projection of the trace’ we mean that

one projection can visit one half of the sates and another projection visit the other half; all

states are visited but not necessarily by one projection.

Targeting trace lengths

We also consider four different lengths of trace: shortest, short, medium and long. For each

level we set a maximum trace length and number of bindings and traces are randomly generated

within these limits. We do not provide a minimum trace length, otherwise we would find that

important information is lost (this was observed in [RBR13b]). The shortest category is set to

give the shortest valid trace and the long category is supposed to reflect a realistic scenario.

Test traces

We generate both positive and negative traces for testing. Positive traces for testing are selected

equally from different trace levels and coverage categories. Negative traces for testing are

restricted so that they only have a few different bindings, although the related trace slices can

be short or long. We restrict negative traces in this way so that they contain minimal errors. If

we did not do this then we might have a case where there are, say, five different kinds of error

and all negative traces capture all five and an extracted QEA only rejects one of them. Then,

because all negative testing traces capture this one error, it will look like the extracted QEA

can reject all kinds of error.

Refinements

We refine our general generation approach. Firstly, we avoid selecting events that would auto-

matically lead to an undesired strong verdict by verifying the trace incrementally. To do this

we compute the set of strong states (Def. 48 on page 121) and ensure that a chosen event would

not take us to such a state. Secondly, we note that if the alphabets for different bindings are

disjoint (see Sec. 6.5.2 for a discussion of disjoint alphabets) then we can generate a trace per

binding and merge these together. Finally, we target different coverage levels in the disjoint

alphabet case by generating more per-binding traces than required and selecting a suitable

subset to satisfy the given coverage level.

Limitations of generated traces

We note that this trace generation method is limited. Firstly, as it is random it is costly to

generate traces with certain lengths and coverage criteria, by randomly selecting a next state

(even one that does not immediately lead to failure) the chances of generating a successful

trace can be low. The main reason for this is that subtraces interact i.e. adding an event to

one trace projection may also add that event to another trace projection, causing failure. The

traces generated for this study took almost a week to generate (although there was a lot of

redundancy in the results).
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Model Number Length Number of objects
Total Average Total Average

HasNext 6 (72) 66,873,215 928,794 9,912,671 137,675
InputStream 12 2,029,910 169,159 199,887 16,657
OutputStream 10 1,848,196 184,819 2,373 237

Table 10.2: Statistics about the extracted traces.

This is the issue of observability. Walkinshaw et al. [WBJ08] note that if traces are con-

structed randomly there may still be aspects of the automaton that are not explored (as they

have low observability), meaning that the probability of generating a trace to identify that be-

haviour by random exploration is very low. To mitigate this we have introduced the different

coverage criteria.

10.2.2 The extracted traces

For a subset of the Java API models we extract traces from the DaCapo benchmark suite

[BGH+06] (see Sec. 7.2.1 for a detailed description). To extract these traces we wrote cus-

tom AspectJ to detect occurrences of the methods and then output these to a file, using

Identity.hashCode to record the identity of the callee and parameter objects. In cases where

we know there are errors with respect to our ground truth (for example with HasNext) we do

not extract traces. Multiple traces are created if the benchmarks run with multiple class loaders

(see Sec. 7.2.1).

Table. 10.2 gives details of our extracted traces. These traces are very long (hundreds of

thousands to millions of events) and contain many different objects. Therefore, whilst the

behaviour is mostly simple we expect mining to take a long time to process all traces. Addi-

tionally, if there are any errors in the traces we will fail to extract a specification as our current

method cannot cope with imperfect traces (see Chapter. 11).

To deal with the very long HasNext traces we split them up into equivalent shorter traces

(around 1M events each) by performing a slicing preprocessing step. This is necessary as the

checking part of our framework cannot rely on garbage information and would struggle to deal

with this many data values. The preprocessing step is very fast as it does not need to carry out

any checking. We indicate the number of traces after preprocessing in brackets and the average

lengths and objects for HasNext are given for these preprocessed traces, not the extracted ones.

10.2.3 The generated traces

We aim to generate 10 traces for each training set and 100 traces for each testing set. We

choose to generate considerably more testing traces than training traces to reflect the limited

information present in test suites whilst maintaining good coverage in the testing set. We gave

the generation algorithm a week to generate traces, and any categories that do not have the

required number of training traces are removed. Out of a possible 288 categories we have 163

with enough traces. As noted earlier, there are cases where categories are not valid (should be

empty) as path coverage is required for successful traces, or the length can only be achieved



10.3. RESULTS 247

through path coverage. The number of testing traces varies as in some cases there are only a

limited number of unique positive or negative traces.

A table giving the average length of traces is given in Appendix D.3. The average trace length

varies as longer traces are produced for simpler specifications as, firstly, this is generally more

straightforward and, secondly but more importantly, these specifications are often associated

with repeated behaviour i.e. reading from a file or using an iterator. In general positive testing

traces are a lot longer than training traces, whilst negative testing traces are typically very

short (for reasons discussed earlier). The number of objects used in traces is generally small,

ranging from the tens to the low hundreds.

10.3 Results

We use the models and traces from the previous two sections to evaluate our mining framework.

10.3.1 Research questions

We begin by discussing the questions we aim to answer in our evaluation. We are generally

concerned with the accuracy and efficiency of our approach. Accuracy is the ability of extracted

specifications to accept correct and reject incorrect traces, we discuss how we measure this later.

The questions we aim to answer are as follows:

1. Do longer traces lead to more accurate specifications?

2. Do traces with better coverage lead to more accurate specifications?

3. Does our approach scale with trace length?

4. How concise are extracted specifications?

5. Are there structural properties of the models that effect the effectiveness of our technique?

6. How does the pattern library effect the accuracy of extracted specifications, and the

efficiency of the extraction process?

7. Does mining in connected mode lead to more accurate specifications? What are the

repercussions for efficiency?

8. Can we deal with real world traces i.e. process such traces efficiently?

In the following four sections we will discuss our evaluation setup and present results for gen-

erated traces, connected mode and extracted traces respectively.

10.3.2 Evaluation setup

Let us give an overview of our evaluation setup.
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Figure 10.1: Evaluation framework for specification mining tool

Evaluation framework

Figure 10.1 illustrates our evaluation framework. It has the following components:

• Reference QEA. This is the model we are attempting to reconstruct, these were pre-

sented in Sec. 10.1.

• Traces. As discussed in Sec. 10.2 we have generated four sets of training traces (with

three coverage levels) and both positive and negative testing traces, and for some models

we also extracted a set of traces from DaCapo.

• Tool. This is our mining framework introduced in Chapter 8. As well as a set of traces

it takes a pattern library (discussed below) and a connectedness mode.

• Trace checker. Our runtime verification algorithm developed earlier in this work.

• Precision-recall. This is our result, we discuss how this is computed below.

The framework selects a set of training traces, library and connected mode, extracts a QEA

and uses it to check the testing traces to produce precision and recall measures.

Pattern libraries

We use three different pattern libraries in this work:

• Ad-Hoc. These patterns were developed in a first iteration of our tool. An ad-hoc method

was used of writing down variations of patterns seen during development, with no struc-

tured approach. Consequently this library is large and allows us to measure whether a

structured approach to library design is required.

• Designed. This is the library discussed in Section 9.5, designed in Chapter 9.

• Designed and Augmented. As explained in Section 9.5, we automatically apply the library

augmentation techniques of Sec. 9.3 to the designed library.

The following table summarises the number of patterns in each library with a given number

of symbols in their alphabet (not including the ● symbol).
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Library 1 symbol 2 symbol 3 symbol

Ad-Hoc 50 270 2

Designed 12 34 4

Designed and Augmented 24 596 8

Measuring accuracy

To measure the accuracy of the mining process we use the common precision-recall evaluation

measures taken from the field of information retrieval [vR79, MRS08]. We take the refined

measures of both positive and negative precision and recall proposed by Walkinshaw et al.

[WBJ08]. These measures separate precision and recall for positive and negative behaviour, to

account for differing numbers of positive and negative test traces. Precision is a measure of

correctness and recall is a measure of completeness.

To compute these measures we test the extracted QEA on the testing traces and add these

traces to one or more of four sets as follows:

Extracted QEA Reference QEA Ret+ Rel+ Ret− Rel−

accept accept add add

accept reject add add

reject accept add add

reject reject add add

The positive and negative versions of precision and recall can then be given by:

precision+ =
∣Ret+ ∩Rel+∣

∣Ret+∣
recall+ =

∣Ret+ ∩Rel+∣
∣Rel+∣

precision− =
∣Ret− ∩Rel−∣

∣Ret−∣
recall− =

∣Ret− ∩Rel−∣
∣Rel−∣

To understand what these measures mean in terms of our specification mining task consider

a system that is correct for QEA A and a QEA B extracted from traces of that system. In

our setup our training traces will be t+ ⊆ L(A) and t− ⊆ L(A) where we use the notation L to

represent traces not in the language of some QEA. We then have

p+ =
∣t+ ∩L(B)∣

∣(t+ ∩L(B)) ∪ (t− ∩L(B))∣
r+ =

∣t+ ∩L(B)∣
∣t+∣

p− =
∣t− ∩L(B)∣

∣(t+ ∩L(B)) ∪ (t− ∩L(B))∣
r− =

∣t− ∩L(B)∣
∣t−∣

Here we can see why we have introduced the positive and negative versions of precision and

recall. If the comparative sizes of t+ and t− vary greatly then the measures will be skewed. As

patterns have a next semantics the default behaviour is to reject traces, therefore we expect r−

to be very high. If we have high r− but low p+ it means that we rejected the majority of the

negative test traces (making t− ∩L(B) small) but that t− must be larger than t+, showing that

even a few incorrectly accepted traces effects p+.
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Table 10.3: Overview of success and failure of results, to=timeout.

AdHoc Designed DesignedAug
suc to no pass suc to no pass suc to no pass

Shortest
N 14 2 1 13 0 4 14 2 1
S 13 2 2 13 0 4 14 1 2
P 16 1 0 15 0 2 17 0 0

Short
N 7 3 1 7 0 4 8 2 1
S 9 1 1 5 0 6 9 2 0
P 17 3 0 13 0 7 19 1 0

Medium
N 5 1 1 0 1 6 5 1 1
S 6 3 0 2 1 6 6 3 0
P 18 2 2 13 0 9 17 3 2

Long
N 4 0 0 0 0 4 4 0 0
S 5 2 1 1 1 6 6 1 1
P 17 2 1 11 1 8 17 2 1

Total 131 22 10 93 4 66 136 18 9

We can view these measures in terms of over-specification and under-specification (discussed

in Sec. 9.1). If p+ and r− are high but r+ and p− are low then we only accept correct traces,

but also reject correct traces. This means that the extracted specification is too restrictive

and over specifies the behaviour. If r+ and p− are high and p+ and r− are low then we do not

reject traces we are supposed to accept, but we also accept traces we are supposed to reject.

This means that the extracted specification is too general and under specifies the behaviour.

Whether under or over specification is more of an issue depends on the application.

Experiments

Therefore, in the next three sections we carry out the following experiments. For generated

traces we have 24 models in total with 163 non-empty categories, so extracting a specification

for each library makes 489 experiments. For connected mode only 5 of the models qualify

for connected mode, so with 47 non-empty categories this makes a further 141 experiments.

For extracted traces we use three models, making another 9 experiments. Experiments from

generated and extracted traces are limited to a maximum of 30 and 120 minutes respectively.

10.3.3 Generated traces

We first examine the results of our evaluation for generated traces (in non-connected mode).

The results are summarised in Tables 10.3 to 10.6 giving average pass-rates, precision-recall

measures, timings and conciseness measures for each pattern library and trace coverage and

length criterion. Appendix D.4 gives the full results i.e. reports all of these measures for each

individual experiment. We begin by giving an overview of the results and then address the

relevant questions listed above.

Overview

We extract 10 of the 24 specifications perfectly, these are HasNext, InputStream, OutputStream,

SatellitesAll, SatellitesLeader, ResLifecycle, IOCallDriver, URL, Formatter, ZwRegistryCreate
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Table 10.4: Precision-recall results - reported as positive/negative in each case.

Precision

AdHoc Designed DesignedAug
p+ r+ p+ r+ p+ r+

Shortest
N 0.21 ± 0.41 0.03 ± 0.11 0.15 ± 0.36 0.15 ± 0.36 0.21 ± 0.41 0.00 ± 0.00
S 0.38 ± 0.48 0.13 ± 0.28 0.44 ± 0.48 0.38 ± 0.48 0.28 ± 0.45 0.01 ± 0.03
P 0.76 ± 0.40 0.64 ± 0.43 0.75 ± 0.38 0.73 ± 0.44 0.58 ± 0.49 0.43 ± 0.47

Short
N 0.42 ± 0.49 0.07 ± 0.14 0.38 ± 0.39 0.43 ± 0.48 0.25 ± 0.43 0.06 ± 0.15
S 0.78 ± 0.31 0.27 ± 0.37 0.69 ± 0.35 0.61 ± 0.47 0.66 ± 0.47 0.29 ± 0.40
P 0.87 ± 0.27 0.65 ± 0.35 0.87 ± 0.26 0.83 ± 0.29 0.92 ± 0.22 0.61 ± 0.33

Medium
N 0.48 ± 0.41 0.23 ± 0.33 - - 0.6 ± 0.48 0.05 ± 0.08
S 0.77 ± 0.35 0.57 ± 0.42 0.5 ± 0.5 0.02 ± 0.02 0.83 ± 0.37 0.58 ± 0.43
P 0.94 ± 0.13 0.75 ± 0.32 0.93 ± 0.09 0.89 ± 0.20 0.85 ± 0.32 0.72 ± 0.36

Long
N 0.12 ± 0.21 0.01 ± 0.02 - - 0.25 ± 0.43 0.00 ± 0.00
S 0.76 ± 0.38 0.44 ± 0.46 1.0 ± 0.0 1.0 ± 0.0 0.49 ± 0.49 0.22 ± 0.36
P 0.90 ± 0.25 0.74 ± 0.33 0.94 ± 0.08 0.97 ± 0.09 0.91 ± 0.24 0.77 ± 0.34

Recall

AdHoc Designed DesignedAug
p− r− p− r− p− r−

Shortest
N 0.59 ± 0.14 1.0 ± 0.0 0.64 ± 0.20 1.0 ± 0.0 0.59 ± 0.13 1.0 ± 0.0
S 0.60 ± 0.17 0.98 ± 0.04 0.71 ± 0.24 0.95 ± 0.10 0.58 ± 0.12 0.99 ± 0.01
P 0.84 ± 0.21 0.99 ± 0.01 0.91 ± 0.15 0.96 ± 0.06 0.77 ± 0.21 1.0 ± 0.0

Short
N 0.67 ± 0.09 1.0 ± 0.0 0.78 ± 0.22 0.84 ± 0.21 0.63 ± 0.15 1.0 ± 0.0
S 0.70 ± 0.17 0.98 ± 0.01 0.79 ± 0.26 0.89 ± 0.08 0.71 ± 0.19 0.99 ± 0.00
P 0.82 ± 0.18 0.97 ± 0.06 0.87 ± 0.18 0.96 ± 0.06 0.79 ± 0.19 0.99 ± 0.01

Medium
N 0.71 ± 0.13 0.98 ± 0.01 - - 0.65 ± 0.08 1.0 ± 0.0
S 0.78 ± 0.23 0.97 ± 0.02 0.48 ± 0.15 1.0 ± 0.0 0.79 ± 0.24 0.99 ± 0.00
P 0.89 ± 0.15 0.98 ± 0.03 0.90 ± 0.18 0.94 ± 0.08 0.85 ± 0.19 0.99 ± 0.01

Long
N 0.64 ± 0.11 0.99 ± 0.01 - - 0.64 ± 0.11 1.0 ± 0.0
S 0.76 ± 0.19 0.98 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 0.64 ± 0.19 0.99 ± 0.00
P 0.89 ± 0.13 0.97 ± 0.06 0.96 ± 0.10 0.95 ± 0.07 0.90 ± 0.14 0.99 ± 0.00

and KeAcquireSpinLock. All of these required path coverage but did not depend on the length

of traces. All are extracted by the DesignedAug pattern library with the exception of URL.

A model for James is extracted and reported to be correct (i.e. perfect precision and recall)

but on closer inspection it is imprecise i.e. there are incorrect traces it should reject but does

not. This is a failing of our randomly generated testing traces, they were not able to capture

all negative behaviour. Let us now review the tables of results before addressing the questions

set out above.

Firstly, Table 10.3 gives an overview of the successful and failing experiments. Failure is

separated into timeout (to) and no patterns passing (no pass). Firstly we note that 360 out

489 experiments were successful i.e. extracted some specification. The AdHoc pattern library

saw the most timeouts, with the Designed pattern library seeing the fewest, and the Designed

pattern library saw the most cases where no patterns passed. The number of failures seems

directly related to the size and diversity of the pattern libraries, we discuss this below. On

inspection all timeouts occurred during the combination stage and were a result of attempting

to combine many patterns, in some cases tens of thousands.

Next let us consider Table 10.4 which gives an overview of the average negative and positive

precision and recall for successful experiments. Note that failing experiments are not included
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and that we also report the standard deviation. Firstly, we see a lot of variance in results due

to extracted specifications generally either being highly accurate or highly inaccurate. Overall

extracted specifications have greater positive precision (on average 0.66) than positive recall

(on average 0.48) and, therefore as expected, higher negative recall (on average 0.99) than

negative precision (on average 0.77). Therefore, our technique appears to overspecify, rather

than underspecify, the behaviour. We see more accurate specifications extracted with better

coverage and longer trace length has a positive effect, but does not appear essential.

In Table 10.4 we give results relating to efficiency. The first thing to note is that, on

average, both checking and combining phases complete in a matter of seconds, 8.4 and 5 seconds

respectively for successful experiments. The maximum checking time was just under 9 minutes

and the maximum combining time was under 8 minutes. Again we see a large variance with

a third of experiments completing in under two seconds. We also report on the number of

patterns passed and, as expected, we generally see more patterns passing for shorter traces and

for pattern libraries containing more patterns.

Finally, Table 10.6 summarises the difference in size and complexity between the original and

extracted QEAs. Generally extracted specifications are larger and more complex. The AdHoc

pattern library extracted larger models, whereas those extracted by the Designed pattern library

are typically smaller than the originals. On average, extracted specifications are roughly 3 times

more complex than the original specification, with the most complex extracted specification

being roughly 45 times more complex than the original.

Do longer traces lead to more accurate specifications?

To answer this question let us consider the average precision and recall for different trace

lengths, as given in the following table.

precision+ precision− recall+ recall− success rate

Shortest 0.44 0.70 0.30 0.99 0.89

Short 0.72 0.77 0.49 0.97 0.82

Medium 0.83 0.83 0.64 0.98 0.73

Long 0.78 0.85 0.63 0.98 0.75

Shorter traces have a higher success rate as they are more likely to match general patterns,

but these will generally lead to inaccurate specifications. Medium traces tend to lead to the most

accurate specifications, with the shortest traces not providing enough information to provide

specifications of any real accuracy. The positive measures suffer most with shorter traces as

behaviour that is not observed in the traces is assumed to be incorrect. The long traces suffer as

this set is less likely to contain short traces as well as long traces (whilst the medium category

has a higher chance), we illustrate the effect this can have below.

When inspecting the extracted specifications we observe that in some cases we see specifi-

cations ‘unrolled’ as the training sets did not contain any traces short enough to restrict the

unrolling. This behaviour will be caused by a pattern capturing the behaviour that an event

occurs at least a certain number of times. For example, in Fig. 10.2 we have the simple IO-

CallDriver model (on the left) which is perfectly extracted using shortest traces but is unrolled
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Table 10.5: Efficiency results for generated traces.

Timing results - times in seconds.

AdHoc Designed DesignedAug

check combine check combine check combine

Shortest
N 1.58 ± 0.53 14.9 ± 41.2 11.3 ± 32.8 0.28 ± 0.53 1.88 ± 1.05 4.67 ± 5.23
S 1.47 ± 0.60 4.05 ± 4.63 1.56 ± 1.19 0.09 ± 0.14 1.73 ± 0.75 2.18 ± 1.92
P 1.77 ± 0.45 12.0 ± 29.8 1.70 ± 0.45 0.04 ± 0.04 2.11 ± 0.94 2.88 ± 5.30

Short
N 1.37 ± 0.64 2.80 ± 3.03 71.5 ± 167. 0.30 ± 0.43 1.80 ± 1.29 4.43 ± 4.36
S 1.81 ± 0.74 3.76 ± 3.94 4.44 ± 7.25 0.15 ± 0.14 2.14 ± 1.42 1.66 ± 0.88
P 1.38 ± 0.92 30.3 ± 105. 1.11 ± 0.63 0.04 ± 0.03 2.11 ± 2.39 1.78 ± 2.45

Medium
N 2.66 ± 2.40 1.93 ± 2.11 - - 2.86 ± 2.70 1.38 ± 0.88
S 3.85 ± 3.57 3.44 ± 2.96 14.1 ± 10.5 0.35 ± 0.17 4.30 ± 3.87 2.23 ± 1.35
P 32.7 ± 119. 9.51 ± 14.7 40.4 ± 130. 0.06 ± 0.04 3.12 ± 2.36 1.35 ± 1.54

Long
N 2.33 ± 0.79 9.26 ± 7.36 - - 2.90 ± 1.50 1.97 ± 0.86
S 1.69 ± 0.87 5.73 ± 7.16 0.75 ± 0.0 0.03 ± 0.0 1.58 ± 0.71 2.70 ± 2.74
P 10.5 ± 20.2 10.8 ± 25.4 22.0 ± 33.0 0.06 ± 0.03 15.9 ± 28.9 1.42 ± 1.37

Patterns passed

AdHoc Designed DesignedAug

Shortest
N 356 ± 355 65 ± 74 801 ± 752
S 120 ± 101 29 ± 22 338 ± 260
P 93 ± 61 24 ± 15 265 ± 157

Short
N 233 ± 278 64 ± 60 611 ± 626
S 89 ± 75 44 ± 15 278 ± 203
P 79 ± 57 26 ± 13 224 ± 140

Medium
N 37 ± 13 - 121 ± 30
S 42 ± 29 62 ± 9 158 ± 111
P 115 ± 114 30 ± 15 238 ± 141

Long
N 42 ± 19 - 169 ± 69
S 40 ± 16 18 ± 0 148 ± 70
P 81 ± 63 28 ± 12 232 ± 146

1 2 3

∀x

setup(x) call(x,0)
setup(x)

1 2 3 4

∀x

setup(x) call(x,0) setup(x)
setup(x)

Figure 10.2: An example of loop unrolling.

(on the right) for longer traces as setup(x) was observed to occur at least twice. A similar

effect occurred with other specifications. In the case of KeAcquireSpinLock the set of long

traces contained one very short trace that prevented this pattern from matching.

In the cases where we have more complex looping behaviour between multiple events, such

as LockOrdering, MutualExclusion and NestedCommand, we fail to fully generalise these order-

ings. For example, for NestedCommand we frequently extract models capturing exactly a small

number of unrollings of the specification, as shown in Fig. 10.3. These are typically extracted

for shorter traces as longer traces contain too many iterations to be captured concisely and

general, simplifying, patterns fail to match.

In summary, we need a range of lengths to cover all kinds of behaviour. If traces are too

long then we might assume a minimal level of occurrence and if traces are too short we may

unroll looping behaviour a limited number of times.
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Table 10.6: Conciseness results - Times larger or more complex.

AdHoc Designed DesignedAug

∣Q∣ CC ∣Q∣ CC ∣Q∣ CC

Shortest
N 1.71 ± 1.07 1.90 ± 2.45 1.02 ± 0.48 1.02 ± 0.88 1.52 ± 0.78 1.25 ± 1.09
S 3.33 ± 4.25 4.62 ± 7.83 1.15 ± 0.80 1.07 ± 1.34 2.64 ± 1.91 2.64 ± 2.91
P 3.00 ± 4.00 4.00 ± 7.48 0.94 ± 0.22 0.72 ± 0.37 3.82 ± 5.83 4.77 ± 10.5

Short
N 1.57 ± 0.71 1.45 ± 1.24 0.73 ± 0.41 0.45 ± 0.26 1.45 ± 0.71 1.24 ± 1.16
S 3.25 ± 2.93 5.02 ± 5.05 0.72 ± 0.17 0.63 ± 0.24 1.63 ± 0.81 2.06 ± 1.58
P 4.09 ± 5.58 6.29 ± 11.9 1.12 ± 0.52 0.95 ± 0.85 3.10 ± 3.49 3.67 ± 5.88

Medium
N 1.99 ± 0.80 3.20 ± 1.45 - - 1.91 ± 1.11 2.21 ± 1.61
S 3.18 ± 2.01 5.82 ± 4.33 0.92 ± 0.07 0.85 ± 0.10 3.53 ± 4.73 6.94 ± 10.9
P 3.14 ± 4.56 4.83 ± 9.78 1.05 ± 0.56 0.77 ± 0.62 1.92 ± 3.05 2.49 ± 6.59

Long
N 2.41 ± 0.82 3.75 ± 1.85 - - 2.55 ± 1.68 3.55 ± 3.73
S 2.68 ± 2.14 4.04 ± 3.03 0.57 ± 0.0 0.75 ± 0.0 2.00 ± 1.28 2.81 ± 2.25
P 3.69 ± 4.04 5.38 ± 7.93 0.96 ± 0.32 0.78 ± 0.56 2.27 ± 2.86 2.84 ± 4.86

1

2 3 4

5 6 7

8

∀c1∀c2

send(c1)
send(c2) ack(c1)

ack(c2)

send(c2) send(c1) ack(c2) ack(c1)

Figure 10.3: One iteration of nested command.

Do traces with better coverage lead to more accurate specifications?

The different coverage categories relate to different methods of trace generation i.e. whether

we use techniques to generate traces with certain coverage guarantees. The following table

demonstrates that good coverage is not required to extract a specification, but it is necessary

to give an accurate specification. As noted earlier, only in the case of traces with path coverage

did we manage to perfectly reconstruct the original model.

precision+ precision− recall+ recall− Success rate

None 0.28 0.65 0.1 0.99 0.77

State 0.55 0.69 0.3 0.98 0.75

Path 0.85 0.87 0.72 0.98 0.86

We only see reasonable recall with path coverage and both recall and precision are greatly

improved with better coverage. Recall is very low with no coverage, suggesting that we have an

issue of overspecification. This makes sense as transitions not covered in the traces will not be

included in the extracted specification. We also see a better success rate with path coverage,

although the success rate for State and No coverage remains reasonable.

In some cases even path coverage failed to give an extracted specification, especially for the

larger, more complex models. This may be due to our definition of path coverage, which only

requires paths to be covered across trace slices not within trace slices. This seemed reasonable as

path coverage within a single trace slice implies an object is used in all possible ways. Further
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work could explore different coverage criteria further, for example per slice-trace versions of

path and state coverage.

In summary, coverage is important and should be considered when collecting traces.

Does our approach scale with trace length?

It is important that our approach scales to large traces. Figure 10.4 plots checking time against

trace length for successful experiments for different pattern libraries. Both axes are logarithmic

so the relation is linear. We see that the majority (94%) of experiments complete the checking

stage in under 10 seconds. The longest checking time is 525.7 seconds and is for a set of training

traces with a total length of 14.6k events. As shown in the figure, and the following table, the

AdHoc and Designed pattern libraries have the longest running experiments, with the Designed

pattern library having the longest checking time on average. But this information is misleading

as the Designed pattern library has the largest number of unsuccessful experiments due to

no patterns passing and these experiments, generally, had quick checking times for the other

libraries.

Overall AdHoc Designed DesignedAug

Min 0.39 0.5 0.39 0.55

Mean 8.39 7.2 16.45 4.02

Max 525.7 525.7 492.8 98.11

Figure 10.4 shows a weak trend i.e. adding additional events tends to lead to a sublinear

increase in checking time. On inspection, the outliers are caused by models with large alphabets

such as URL as the checking structures are typically larger, which supports claims made in

Sec. 8.5.3.

In summary, our approach scales well with trace length. We did not incorporate all of the

monitoring optimisations discussed in our previous work on monitoring so there is scope to

increase efficiency further.

How concise are extracted specifications?

Overall extracted specifications are not particularly concise. Table 10.7 captures, for different

experimental categories, the minimum, mean, and maximum number of states and transition

complexity. We also give the standard deviation in each case and emphasize the most concise.

The transition (cyclomatic) complexity of extracted specifications is generally more inflated

than the number of states. This tells us that we are more likely to include extra transitions

than extra states. This can be caused by patterns passing with unused transitions, and those

transitions being incorporated into the final model leading to underspecification. Alternatively

over restrictive patterns can introduce new restrictions on behaviour, inadvertently present in

the traces leading to overspecification.

Longer traces typically lead to slightly larger specifications due to the higher chance of

different orderings being present. However, shorter traces occasionally lead to very large spec-

ifications that fail to generalise from the limited information. For trace coverage we see larger

specifications extracted when we have more information and path coverage can lead to very large
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Figure 10.4: Plotting checking time against trace length for different pattern libraries.

Table 10.7: Summary of conciseness results by category.
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min 0.41 0.26 0.41 0.57 0.26 0.41 0.41 0.41 0.26 0.41
∣Q∣ mean 2.18 2.33 2.29 2.43 1.55 2.37 2.56 3.0 0.99 2.45

stdv 3.19 3.27 3.27 2.86 0.99 2.72 3.85 3.83 0.51 3.25
max 25.4 18.6 16.8 14 5.2 17 25.4 18.6 3.6 25.4
min 0.06 0.15 0.27 0.33 0.06 0.16 0.15 0.06 0.06 0.06

CC mean 2.52 2.97 3.4 3.32 1.69 3.3 3.3 4.41 0.84 3.0
stdv 5.7 6.36 7.11 5.28 1.91 5.23 7.44 7.68 0.79 6.04
max 45.5 42.2 37.6 26.7 19 30.9 45.5 42.2 5.5 45.5

specifications as we are more likely to capture irrelevant orderings. The largest specification we

extract is from the shortest traces with path coverage.

The pattern library used has a large effect on the conciseness of the extracted specification.

Patterns extracted with the AdHoc pattern library are the largest and those extracted with the

Designed pattern library are the smallest. This is not surprising as the patterns in the AdHoc

pattern library are generally larger and are more diverse overall, leading to lots of different

patterns of behaviour being captured, on the other hand the Designed pattern library contains

many small and similar properties, leading to many transitions or states being missed.

In summary, when we have more information in the traces often fail to generalise, reducing

conciseness.
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Figure 10.5: Plotting different structural properties against success rate.

Are there structural properties of the models that effect the effectiveness of our

technique?

We consider the number of states, size of alphabet, number of quantified variables and the

transition complexity of models and ask whether these effect the accuracy of our technique.

Figure 10.5 plots these four different structural properties against success rate and the rate of

experiments that lead to a specification with at least 0.5 in each accuracy measure, which we

call minimum accuracy success rate.

The number of states does not appear to correlate with success rate, but there is a negative

correlation with the minimum accuracy success rate suggesting that smaller models are easier

to extract accurately. We see the same trends with transition complexity, although the complex

Socket model makes this difficult to see on the graph. Models with two or three events in their

alphabet typically saw a very high success rate and minimum accuracy success rate. Models

with a single quantified variable were easier to mine and we see a negative correlation between

the number of quantified variables and minimum accuracy success rate.

Four models have a zero minimum accuracy success rate: PTrace, ReadWrite, ReleaseRe-

source and Socket, all of which have complex structures. On one hand we have Socket, with

one quantified variable but a large alphabet and high transition complexity, on the other we

have ReleaseResource, which has three quantified variables and a relatively small alphabet and

transition complexity. With large alphabets we will produce more patterns and are more likely

to timeout. With many quantified variables each trace slice contains less information.

In summary, unsurprisingly, more complex properties are more difficult to mine. However,

our technique for generating traces may overly penalise such properties.
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Figure 10.6: Plotting accuracy against patterns passed for different pattern libraries.

How does the pattern library effect the accuracy of extracted specifications, and

the efficiency of the extraction process?

The choice of pattern library determines which patterns are successful, which in turn determines

whether any specification is returned, and if so, how long it takes to produce and how well it

reflects the behaviour in the traces. The following table shows the average accuracy measures

(with standard deviation) and success rate broken down by pattern library.

precision+ precision− recall+ recall− success rate

AdHoc 0.68 ± 0.46 0.77 ± 0.2 0.46 ± 0.44 0.99 ± 0.04 0.80

Designed 0.66 ± 0.44 0.82 ± 0.23 0.63 ± 0.47 0.95 ± 0.09 0.57

Des-Aug 0.62 ± 0.48 0.74 ± 0.2 0.40 ± 0.44 0.99 ± 0.009 0.83

The large variance in results is due to a polarisation; many experiments either have 0 or 1 in

each accuracy measure. Variance is lower in the negative cases as specifications tend to be more

consistent in the behaviours they reject.

The DesignedAug pattern library sees the most specifications extracted; this can be ex-

plained as this library has the most patterns and is most likely to capture some behaviour. No

pattern library stands out as giving us more precise specifications, but the Designed pattern

library generally extracts specifications with the highest negative precision and positive recall,

suggesting underspecification. The Designed pattern library was designed with a particular

set of behaviours in mind and contains relatively small and specific patterns, leading to gen-

eralisation in some cases and failure to extract a specification in others. For example, if we

refer back to Table 10.4 we see that, in the case of long traces with no coverage, the AdHoc

and DesignedAug libraries extract specifications when the Designed library does not. The four

models in this category are complex and the Designed pattern library did not have the range

of patterns to extract any of their behaviour.

Table 10.5 shows that the number of patterns in each library directly relates to the number

of patterns extracted. Next we consider whether the number of patterns passed is important,
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Figure 10.7: Plotting combining time against patterns passed for different pattern libraries.

perhaps a lot of patterns passing indicates a lot of evidence for our specification, or maybe it

suggests a lack of clear information. Figure 10.6 plots accuracy measures against the number

of patterns passed for the AdHoc library. We do not plot r− as it is exclusively close to 1. We

see a very similar pattern for the other libraries so do not illustrate them here, although the

passed patterns are fewer and greater for the Designed and DesignedAug libraries respectively.

For positive precision and recall a large number of extracted patterns seems to imply either

complete inaccuracy or complete accuracy, and a very large number (>500) seems to imply

inaccuracy. In reference to our previous hypothesis we can see that both cases are supported.

In the case of inaccuracy (and also the timeouts caused by combining many patterns) the

information is too general and confused to extract an accurate specification. In the case of

accuracy we have a large set of patterns supporting our result.

Negative precision is more varied, and we do not see any low (<0.3) results as some negative

test traces are always rejected. For all three pattern libraries we see experiments with many

passing patterns achieving roughly 0.6 negative precision. These data points are connected to

those with very low positive recall and indicate that these specifications based on the general

and confused set of patterns also fail to reject behaviours correctly.

Next we consider efficiency. We showed previously that checking time does not vary greatly

for different pattern libraries. Figure 10.7 shows the number of patterns passed plotted against

the combination time for each pattern library. We see a correlation between the two, as would

be expected. This graphs supports the previous observation that fewer patterns are extracted

with the Designed pattern library. Combination times vary more with the AdHoc library and

tend to take longer with respect to the number of patterns. This can be attributed to the

diversity of the pattern library; similar patterns take less time to combine as shared parts will

collapse into each other quickly.
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Table 10.8: Overview of successful experiments in connected mode

AdHoc Designed DesignedAug
suc to no pass suc to no pass suc to no pass

Shortest
N 5 0 0 3 0 2 5 0 0
S 4 0 0 3 0 1 4 0 0
P 2 0 0 1 0 1 2 0 0

Short
N 3 0 0 1 0 2 3 0 0
S 4 0 0 1 0 3 4 0 0
P 4 0 0 0 0 4 4 0 0

Medium
N 4 0 0 2 0 2 4 0 0
S 5 0 0 1 0 4 5 0 0
P 4 0 0 0 0 4 4 0 0

Long
N 3 0 0 0 0 3 3 0 0
S 5 0 0 1 0 4 5 0 0
P 4 0 0 0 0 4 4 0 0

10.3.4 Connectedness

We now consider the effects of running in connected mode. Our research question asks whether

connected mode leads to more accurate specifications and what the repercussions for efficiency

are. We address both concerns here.

Overview

Only five of the 24 models are suitable for use with connected mode i.e. they have more than one

quantified variable and all variables are transitively connected within the model. The models

are ColIter, JFreeChart, SocketOutput, RespectConflicts and ReleaseResource. The first three

were taken from settings where connected mode was assumed and the last two do not present

connected behaviour. We should therefore expect better results from the first three and poorer

results from the last two, which is what we find generally.

TheSocketOutput model was almost perfectly extracted, the only error being not marking

the initial state as final. This lead to some test traces not exhibiting any connected behaviour

being incorrectly classified and therefore less than perfect accuracy results. We also saw reason-

able overspecifications of ColIter and ReleaseResource where some unimportant orderings were

captured. In both cases the extracted specifications in connected mode were far more accurate

then their counterparts in non-connected mode.

Table 10.8 reports on the number of successful experiments. We avoid timeouts here as

the models that saw timeouts previously are not suited to connected mode. Both the AdHoc

and DesignedAug pattern libraries completed all experiments successfully because, in general,

connected behaviour is simpler than unconnected behaviour. The Designed pattern library did

not perform as well; it struggles with RespectConflicts and ReleaseResource in particular. This

is because of the simple nature of the patterns in this library. For the selected models the

Designed pattern library also failed to extract specifications in the non-connected mode.
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Table 10.9: Improvement in precision in connected mode

Precision

AdHoc Designed DesignedAug
p+ r+ p+ r+ p+ r+

Shortest
N 0.73 ± 0.46 0.18 ± 0.13 1.0 ± 0.0 0.23 ± 0.15 0.51 ± 0.51 0.14 ± 0.12
S 0.56 ± 0.45 0.17 ± 0.09 0.49 ± 0.36 0.27 ± 0.17 0.33 ± 0.43 0.10 ± 0.07
P 0.05 ± 0.03 0.0 ± 0.07 - - 0.0 ± 0.02 0.0 ± 0.06

Short
N 0.16 ± 0.62 0.01 ± 0.04 - - 0.11 ± 0.68 0.02 ± 0.04
S 0.08 ± 0.11 -0.1 ± 0.16 - - 0.18 ± 0.47 -0.3 ± 0.37
P 0.02 ± 0.05 -0.2 ± 0.35 - - 0.0 ± 0.04 0.04 ± 0.11

Medium
N 0.12 ± 0.55 -0.1 ± 0.23 - - 0.0 ± 0.06 0.10 ± 0.14
S 0.0 ± 0.03 -0.1 ± 0.22 - - 0.0 ± 0.04 -0.2 ± 0.27
P 0.02 ± 0.02 0.0 ± 0.07 - - 0.34 ± 0.39 0.10 ± 0.16

Long
N 0.76 ± 0.20 0.22 ± 0.10 - - 0.58 ± 0.42 0.22 ± 0.11
S 0.23 ± 0.44 -0.1 ± 0.24 - - 0.32 ± 0.49 -0.1 ± 0.22
P 0.26 ± 0.42 0.10 ± 0.20 - - 0.32 ± 0.41 0.11 ± 0.20

Accuracy

Table 10.9 reports the average improvement in precision i.e. the average amount higher the

given measure is when using connected mode. Generally this is positive (we emphasize the three

cases where it is not) but in many cases it is not very large. However, in a few cases we see

a vast improvement in precision. Notably with SocketOutput where we see a the specification

perfectly extracted. We do not report recall as improvement is generally small (at most 0.08).

We see the greatest improvements where we saw the lowest precision previously i.e. in

shorter traces and lower coverage. This is because connected mode seems less effected by trace

length and coverage criteria. This is most likely due to the fact that traces were not generated

in connected mode, and the coverage criteria do not apply to the connected versions of the

models.

Efficiency

The main issue we want to address is whether it takes more time to mine in connected mode.

Detailed efficiency results are given in Appendix D.5. If we compare these to the results given

in Table 10.5 for non-connected mode we can see that checking times are typically shorter and

the number of patterns passed typically less. As connected mode only considers trace slices

belonging to connected bindings we will generally inspect fewer events and the behaviour will

be less complex, leading to fewer patterns being extracted.

Summary

In summary, connected mode can increase precision without negatively effecting efficiency. This

mode could be used whenever it is applicable but we are more likely to get positive results if

the property concerns objects being created from other objects.
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Table 10.10: Precision-recall results for InputStream and OutputStream with extracted traces
- together as one and an average of each trace individually.

InputStream

library precision+ precision− recall+ recall−

AdHoc 0.87 1.0 1.0 0.93
Designed 0.80 1.0 1.0 0.89
DesignedAug 0.87 1.0 1.0 0.93

AdHoc (each) 0.7 ± 0.31 0.87 ± 0.18 0.6 ± 0.54 0.96 ± 0.02
Designed (each) 0.9 ± 0.07 0.95 ± 0.13 0.84 ± 0.39 0.94 ± 0.05
DesignedAug (each) 0.66 ± 0.3 0.74 ± 0.13 0.2 ± 0.4 0.98 ± 0.01

OutputStream

library precision+ precision− recall+ recall−

AdHoc 0.0 0.64 0.0 0.94
Designed 0.86 1.0 1.0 0.92
DesignedAug 0.0 0.64 0.0 0.94

AdHoc (each) 0 ± 0 0.64 ± 0.005 0 ± 0 0.97 ± 0.02
Designed (each) 0.52 ± 0.48 0.86 ± 0.19 0.6 ± 0.55 0.95 ± 0.05
DesignedAug (each) 0 ± 0 0.64 ± 0.005 0 ± 0 0.98 ± 0.02

10.3.5 Extracted traces

We now consider the three models that have extracted training traces, we still use the generated

traces for testing. The extracted traces are very large (we already preprocess some of them, see

Sec.10.2.2) and would take up too much memory if loaded directly. Therefore, we extend our

framework so that it can read traces from file incrementally. This is made possible due to our

incremental monitoring algorithm introduced earlier in this work.

InputStream and OutputStream

Firstly, let us consider the similar InputStream and OutputStream models. We extract models

for the full set of traces and each trace individually. Table. 10.10 reports the precision-recall

results.

For InputStream precision and recall are high, although the specifications mined from the

full set of traces slightly underspecify behaviour. The more precise of these is as follows:

1 2 3

∀i init(i)
read(i)

read(i)

close(i)

close(i)

Here we incorrectly allow an InputStream to be read before being created and do not require

it to be closed. The specifications mined individually are overall more accurate, although there

is some variance. We do not extract the specification exactly but the following three extracted

specifications are close:
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1 2 3

∀i

init(i)

read(i)

close(i)

close(i)

1 2 3

∀i init(i)
read(i)

read(i)

close(i)

close(i)

1 2 3 4 5

∀i

init(i) read(i) read(i) close(i)
read(i)

These are all very close to the original model.

For OutputStream the specifications mined from the full set of traces are poor. The speci-

fications for the AdHoc and DesignedAug pattern libraries are far too restrictive, not allowing

alternations of write and flush. The specification for the Designed pattern library is as follows:

1 2

∀o

init(o)

write(o)
flush(o)
close(o)

This is underspecified, not capturing any ordering between write, flush and close. The

specifications extracted from each trace on average did worse but a few traces produced spec-

ifications with good accuracy. Two traces do not use flush or close at all, leading to the

following restrictive specification.

1 2 3∀o
init(o) write(o)

write(o)

We also saw calls of flush to System.out and System.err being intercepted, without associ-

ated init and close calls, leading to many extracted specifications capturing this additional

behaviour.

In both cases the Designed pattern library performed the best. The simple patterns were

best suited for capturing the simple orderings required here. We note that the DesignedAug

pattern library contains the Designed pattern library, yet failed to extract a specification with

any precision. This is because additional patterns in this library matched and restricted the

behaviour detected by the patterns from the Designed library.

Finally, we verify the extracted specifications against the original extracted traces. The

following table gives the percentage of extracted traces accepted by a certain number of the

extracted specifications.

InputStream OutputStream

Number % passed Number % passed

9 100 9 100

3 50 2 80

2 30 5 20
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Table 10.11: Efficiency results for InputStream and OutputStream with extracted traces. Times
in seconds.

InputStream OutputStream

library checking combination passed checking combination passed

AdHoc 364.2 5.774 38 490.2 1.182 71
Designed 269.9 1.963 1 480.6 0.024 4
DesignedAug 584.5 14.46 108 507.9 0.974 150

AdHoc (each) 30.16 1.4 67.17 47.4 1.32 296.0
Designed (each) 23.18 0.1725 6 49.49 0.034 22.3
DesignedAug (each) 48.1 2.45 170.3 49.98 1.7 636.2

Table 10.12: Precision-recall results for HasNext with extracted traces .

library precision+ precision− recall+ recall−

AdHoc (each) 0.28 ± 0.44 0.78 ± 0.2 0.4 ± 0.55 0.82 ± 0.38
Designed (each) 0.62 ± 0.43 0.9 ± 0.17 0.75 ± 0.46 0.86 ± 0.24
DesignedAug (each) 0.25 ± 0.5 0.72 ± 0.19 0.25 ± 0.5 1.0 ± 0.005

In both cases 9 extracted specifications accept all traces (this is not surprising as the specifica-

tions were mined from the trace) but we also see a few specifications that only accept a small

number of traces. The traces for OutputStream varied more and some extracted specifications

were very restricted. We also verify our ground truth against the extracted traces and find

that it fails to hold on any traces as there are some input streams that are not closed in each

trace. This shows us that, firstly, we should not have expected to extract the original models

as they were not completely present in the traces, and secondly, that specifications extracted

from individual traces could generalise to others.

Table 10.11 gives the checking and combination times and number of patterns passed. We

see that checking is only slightly more efficient for InputStream than OutputStream even though

the traces for OutputStream are far shorter and less complex. This can be explained by the

slightly larger alphabet of OutputStream as this determines the number of pattern checkers

we must update for each event, again, supporting the claims made in Sec. 8.5.3. Across all

experiments we process an average of 4.6k events per second. Generally the number of patterns

passing is small; in one case only one pattern passes, and forms the final specification.

HasNext

We now consider the HasNext model. Here we have a lot more data, with over 66M events. Ta-

ble 10.12 gives the precision-recall for the three different pattern libraries. Again, the Designed

pattern library extracted the most accurate specifications.

In total 26 specifications are extracted across all of the experiments. We fail to extract the

perfect specification, but only because the majority of occurrences of iterators in our traces end

with a call to hasNext(i,false). Therefore, we extract the following two specifications frequently:
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Table 10.13: Efficiency results for Hasnext with extracted traces. Times in seconds.

library checking combination passed

AdHoc 301.94 7.27 62.3
Designed 290.76 2.34 11.96
DesignedAug ) 214.81 10.49 220.48

1 2

3

∀i
hasNext(i, true)

next(i)

hasNext(i, false)

1

2 3

4∀i

hasNext(i, true)
next(i)

hasNext(i, true)

hasNext(i, false)

hasNext(i, true)

The first is our perfect specification restricted so that every trace must end with hasNext(i,false)

and hasNext(i,true) can only be called once. The second also restricts the perfect specification

by including this end condition, as well as unrolling it once.

Much of the inaccuracy reported in Table 10.12 is due to most extracted specifications only

allowing traces to end with hasNext(i,false) and most positive test traces including bindings

that do not. As the results show, these specifications are overspecified but they do capture the

most common usage case of iterators i.e. loop until the iterator returns false.

Number % passed

5 100

2 90

12 80

13 0

Again we verify the extracted specifications against the orig-

inal traces. The original HasNext model only accepts 68% of

the traces, which means we included some incorrect traces in

our training set. The table on the right gives the percentage of

extracted traces accepted by a certain number of the extracted

specifications.

We can see the majority accept over 80% of the training set. The main reason extracted

specifications failed to accept any traces was the restriction on the number of iterations allowed.

This is also the main reason specifications received zero positive precision and recall.

Table 10.13 reports on the efficiency of these experiments. On average we processed 3.5k

events per second. This shows that our technique can extend to the very large traces observed

in some real world systems.

10.3.6 Summary of results

In this section we have demonstrated that our mining framework can efficiently extract accurate

specifications. We revisit the research questions posed at the beginning of this section and

summarise what we have learned.

1. Longer traces do not necessarily lead to more accurate specifications; it is more important

to have a range of lengths.

2. Traces with better coverage do lead to more accurate specifications; if a path is not covered

in the traces it cannot be extracted.
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3. Out approach scales well with trace length and could still be improved further.

4. Extracted specifications are not very concise, if concise specifications are required then

further work may be needed. The pattern library determines how concise specifications

are; the more varied and complex a pattern library, the larger and more complex the

extracted specifications.

5. Generally it is harder to extract specifications with larger alphabets and more quantified

variables as a trace of a given length will hold less information, and more patterns may

be produced, leading to a higher likelihood of timeout and capturing undesired orderings.

6. A pattern library that has been designed for a certain kind of property is more likely to

overspecify. A pattern library that is more diverse is more likely to extract a specification

(which may not be accurate). Larger pattern libraries tend to lead to more patterns

passing and higher combination times.

7. If connected mode is applicable it can lead to higher accuracy with no efficiency impli-

cations. Although it may be difficult to distinguish between cases where it is applicable

because of connected behaviour or a different transitive relationship between variables.

8. Our technique can process real world traces and extract accurate specifications from them.

An important observation is that when selecting a pattern library it is best to choose a

combination of design plus augmentation i.e. select patterns well designed for common cases,

and then augment these to capture variants of this common behaviour. As the pattern library

can effect whether we tend towards over or under specification, the use case should be considered

i.e. whether we would rather ignore behaviours or include extraneous information. Another

take away message is that the structure of the training traces is important. Ideally this mining

technique should be combined with trace extraction methods that explore the target system

systematically. For example, certain automated testing techniques.

These experiments have highlighted a possible improvement. Mined specifications are not

concise so further work could explore methods for minimising or ‘coring’ extracted specifications.

We can use approaches that have been suggested elsewhere such as adding weights (probabil-

ities) to transitions during mining and removing transitions with low weight, or just checking

the training traces with the extracted specifications and removing any unused transitions.

Reflection on evaluation

Finally, we note that there are ways in which this evaluation could be improved. However, due to

time limitations it was not possible to repeat or extend experiments. Firstly, it was noted earlier

that it would have been interesting to explore a larger range of coverage levels that specified

coverage in a single trace slice. It would also be useful to improve the trace generation methods

so that they reflected real programs by, perhaps, adding weights to transitions to indicate

frequency. Test traces should be generated to represent all positive or negative behaviours,

rather than being generated randomly, perhaps using ideas developed in conformance testing.

We noted other issues with the random traces generated; namely that this sometimes led to
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training sets not covering certain kinds of traces. If we had cross-validated our technique

(compared the results between different sets of training traces), this issue would not have been

observed. Future evaluation of this kind should therefore consider cross-validation.

10.4 Summary

This chapter has evaluated our pattern mining framework for QEA. We introduced a range of

models that we aimed to reconstruct and a method for generating traces from these models. We

then applied our technique to these models and answered a number of research questions. The

results are summarised at the end of the previous section - overall these results were positive and

showed that we have achieved what we set out to. As our set of ground truths contained models

mined by other tools (JMiner and Tark) we argue that we can extract similar specifications to

these tools, although we acknowledge that the setting is different, and that a direct comparison

would be preferred.



Chapter 11

Dealing with Imperfect Traces:

an initial study

The previous three chapters introduced, explored and evaluated a pattern-based specification

mining approach. We identified a particular limitation to this approach; the requirement that

the given traces are in some sense perfect i.e. belong exactly to the conceptual target specifi-

cation. However, this is unrealistic. In this chapter we introduce a technique for dealing with

so-called imperfect traces.

Let us begin with a short motivating example. Consider the following pattern:

1 2

a

b

We can apply this pattern to the following trace by considering six instantiations, with each

pair of symbols in the trace instantiating the pattern.

connect.open.close

We extract three patterns (1) [a ↦ connect, b ↦ open], (2) [a ↦ connect, b ↦ close] and (3)

[a↦ open, b↦ close]. These can then be combined to form the larger specification:

1 2 3
connect open

close

Now imagine if we had a trace with the above sequence repeated a thousand times followed by

the two events connect and open i.e. missing the final close. We would fail to extract the

two patterns involving close and therefore not extract the above specification. The problem

is that this approach assumes perfect traces i.e. that the correct behaviour is contained exactly

within the given traces. This assumption is not realistic as we would like to be able to deal

with cases where there are small errors in traces. The notion is that a programming pattern

may hold for the majority of a program but the program may contain one or two bugs.

One approach [GS08b] to dealing with this issue is to reset a pattern being checked to its

initial state when an error occurs. However, this technique would not extract the required

268
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patterns in our above example . Instead we want to be able to measure how closely a trace

matches a pattern. Our approach extends the automata-based pattern mining approach to

imperfect traces by considering so-called edit distances between a trace and a pattern’s language.

This work considers propositional specification mining only, not the parametric mining we

were concerned with in the previous chapters. This is so that we can consider the issue of

imperfect traces without the additional mechanisms required for dealing with data values. The

ideas introduced can be lifted to the parametric setting as we have seen previously.

11.1 Propositional pattern checking

In this section, we introduce a propositional pattern checking framework. The ideas presented

here are similar to those seen in Chapter 8 but we repeat them here within our propositional

context. We first describe how patterns are extracted from traces, then we consider how this

can be done efficiently, and finally discuss how extracted patterns are combined.

11.1.1 Checking patterns

In this account, a pattern is a regular language over symbols i.e. a set of traces (finite sequences)

of symbols. We consider patterns as automata:

Definition 79 (Pattern). A pattern p = ⟨Q,Σ, δ, q0, F ⟩ is an automaton where Q is a finite set

of states, Σ is a finite alphabet of symbols, δ ∈ Q ×Σ → Q is a transition function, q0 ∈ Q is an

initial state and F ⊆ Q is a set of accepting states. The language of a pattern, L(p) is the set

of traces it accepts i.e. τ ∈ L(p) iff there exists a path q0
τÐ→ q and q ∈ F where → is δ lifted to

traces.

The process of checking a pattern against a trace considers all possible combinations of

symbols in the trace as replacements for the pattern’s current symbols. To replace a pattern’s

symbols we instantiate it.

Definition 80 (Instantiation). Given a pattern p and a map ϕ from p.Σ to Σ′, the instantiated

pattern ϕ(p) has alphabet Σ′ and is the result of applying ϕ to every symbol in p.

The checking process then checks if each particular instantiation of the pattern holds on the

trace. We say an instantiated pattern holds on a trace if the trace appears in the instantiated

pattern’s language after we remove irrelevant symbols. To remove irrelevant symbols we project

the trace.

Definition 81 (Projection). The projection τ ↓Σ of trace τ over alphabet Σ is defined as τ with

all elements not in Σ removed.

Therefore, the extracted instantiated patterns are given as follows.

Definition 82 (Extracted patterns). Given a pattern p and trace τ the extracted patterns are

extract(p, τ) = {ϕ(p) ∣ dom(ϕ) = p.Σ ∧ ∀(a↦ s) ∈ ϕ ∶ s ∈ τ ∧ τ ↓ϕ(p).Σ∈ L(ϕ(p))}
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11.1.2 Checking patterns efficiently

We discuss two approaches that allow us to check patterns efficiently; both techniques were

used in Chapter 8, but we describe them here in our propositional setting.

Checking many instantiations

For each pattern we need to check all possible instantiations. Typically we restrict this technique

to patterns over 2 or 3 symbols. We can then compute the extracted instantiated patterns for

a pattern using a 2 or 3 dimensional grid of reached states. This approach was first used by

Yang et al. [YEB+06]. For the introductory example the following matrix would represent the

states reached in the pattern after checking the trace.

a

connect open close

b

connect 2 - -

open 1 2 -

close 1 1 2

The restriction of patterns to 2 or 3 symbols is for efficiency reasons as this approach is

O(nm) given an alphabet of size n and pattern with m symbols.

Checking many patterns

If we want to check multiple patterns we would currently need to repeat the above process

multiple times i.e. for each pattern. However, given a set of patterns with the same set of

symbols we can construct a pattern checker that checks all these patterns simultaneously by

taking the union of the patterns and labelling states with the patterns that are accepting at

that state. This general approach was previously presented in Section 8.4.2.

Definition 83 (Propositional pattern checker). Given an alphabet of symbols Σ and a set of pat-

terns p1, . . . , pn over Σ let the (propositional) pattern checker for these patterns be C(p1, . . . , pn) =
⟨Q,Σ,⇒,Γ⟩ where

Q = p1.Q × . . . × pn.Q
⇒ (a, (q1, . . . , qn)) = (p1.δ(a, q1), . . . , pn.δ(a, qn))
Γ((q1, . . . , qn)) = {pi ∣ qi ∈ pi.F}

The patterns extracted by pattern checker C in trace τ are therefore

C(τ) = {p ∣ q0
τ⇒ q ∧ p ∈ Γ(q)}

We can extend the notion of instantiation to pattern checkers and define extracted patterns

for a pattern checker as follows.

Definition 84 (Pattern checker extracted patterns). Given a pattern checker C and trace τ
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the extracted patterns are

extract(C, τ) = {p ∣ ∃ϕ ∶ dom(ϕ) = p.Σ ∧ ∀(a↦ s) ∈ ϕ ∶ s ∈ τ ∧ p ∈ ϕ(C)(τ ↓ϕ(p).Σ)}

For example, if we call the pattern in the introductory example p1 and call the following

pattern p2

1 2

a

b

a

then the pattern checker for p1 and p2 would be

{p1, p2} {} {p2} {}
a

b

a

a
b

a

where states are labelled using the output function Γ.

11.1.3 Combining patterns.

Once we have extracted a set of patterns we can combine them together using standard au-

tomata intersection. However, this operation is only defined when two automata have the same

alphabet. To give two automata the same alphabet we can expand them by placing self-looping

transitions on each state for the missing symbols. For example, the three extract patterns from

the introductory example become:

1 2

connect

open

close close

1 2

connect

close

open open

1 2

open

close

connect connect

The intersection of these three patterns is the specification given in the introduction. For-

mally, combination is defined as follows.

Definition 85 (Combination). Given a set of instantiated patterns p1, . . . , pn with combined

alphabet Σ, define their combination as

combine(p1, . . . , pn) = expandΣ/p1.Σ(p1) ∩ . . . ∩ expandΣ/pn.Σ(pn)

where ∩ is automata intersection and expandΣ′

is a function that adds self-looping transitions

to a pattern for symbols in Σ′.

We can either apply this combination operator or directly or use it to define specific com-

bination rules. To use combination directly we can saturate the set by repeated application or

extract a specification for each alphabet of events in the trace by combining together patterns

with the same alphabet.
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11.2 Dealing with imperfect traces

The previous framework will only extract a pattern if it matches exactly with an input trace.

In this section we consider how it can be extended so that patterns are extracted if they match

almost all of the input trace.

11.2.1 What are imperfect traces?

To say that a trace is ‘imperfect’ we assume that there is an implicit specification that the

program that produced the trace follows and there is some bug in the program that deviates

from this specification. The process of specification mining is therefore to extract this implicit

specification. Alternatively, the program might be correct but the trace recording process may

be faulty; either way, identifying a specification and the trace imperfections can aid debugging.

We could view these imperfections as uniform noise, however, in the case of programming

bugs, it is likely that these imperfections are introduced by common mistakes such as forgetting

to close a resource or check a condition, or accidentally calling the wrong method. We can

therefore think of imperfections as small edits that involve the removal, addition or substitution

of events from a ‘perfect’ trace.

In Sec. 7.2.2 we saw that real systems often contain few (repeating) errors and the general

idea here is to allow for those few errors in the mining process.

11.2.2 The restart approach

Previous approaches deal with imperfect traces by ‘restarting’ the pattern and counting the

number of such restarts. With small patterns such as the simple alternation pattern this can

be effective. Let us consider the following common 3-symbol resource usage pattern.

1 2

a

c
b

Consider checking the following (imperfect) trace for the instantiation [a ↦ open, b ↦ use, c ↦
close]. The checking would fail after the fifth event as an open event is omitted. If we restart

here then we immediately fail again.

open.use.use.close.use.close.open.use.close

Instead, we would like to detect that the open event is missing and flag this as a potential bug.

11.2.3 Edit distance

As an alternative to the restart approach we consider replacing our previous condition that a

trace must exactly match a pattern with the requirement that the edit-distance between the

trace and any trace in the language of the pattern must be below some limit.



11.2. DEALING WITH IMPERFECT TRACES 273

The edit-distance we consider uses the following “edit” operations: inserting a new symbol;

deleting an existing symbol; and substituting an existing symbol for a new symbol. The edit-

distance between two traces is then given by the (minimum) number of edits that transform

one trace into the other. This is sometimes called the Levenshtein distance [Lev66]. Formally,

this distance is given as follows.

Definition 86 (Levenshtein distance). The Levenshtein distance between traces τ1 and τ2 is

distance(τ1, τ2), defined as

distance(τ1, ε) = ∣τ1∣
distance(ε, τ2) = ∣τ2∣

distance(aτ1, bτ2) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

distance(τ1, bτ2) + 1

distance(aτ1, τ2) + 1

distance(τ1, τ2) + 1 if a ≠ b
distance(τ1, τ2) if a = b

We define an updated notion of extracted patterns using this metric.

Definition 87 (Imperfect extracted patterns). Given a pattern p, trace τ and integer γ > 0,

which we call the tolerance, the imperfect extracted patterns are

imperfect extract(p, τ, γ) =
⎧⎪⎪⎨⎪⎪⎩

ϕ(p) ∣ dom(ϕ) = p.Σ ∧ ∀(a↦ s) ∈ ϕ ∶ s ∈ τ∧
∃τ ′ ∈ L(ϕ(p)) ∶ distance(τ ′, τ ↓ϕ(p).Σ) < γ

⎫⎪⎪⎬⎪⎪⎭

We extend this definition for pattern checkers as we did before (Sec. 11.1.2).

11.2.4 Detecting bugs

So far our approach has been abstract, considering traces of symbols generated by a program.

But our motivation has been to extract specifications that allow us to detect potential bugs.

To do so we need to be able to access information about the part of a program that generates

a trace; we assume this is contained in a so-called program trace.

Definition 88 (Program trace). A program trace is a finite sequence of pairs of the form

(code point, event) where code point identifies the point in the program that generates the event.

It is easy to extend our previous constructions to work on these program traces by ignoring

the code point information. Our goal is to identify points in the program trace that should

be ‘edited’ for a mined specification to hold. These edits will follow those described above i.e.

the removal of an event, addition of an event between two existing events or replacement of

one event with another. The solutions we describe in the following two sections will produce

so-called rewrites.

Definition 89 (Rewrite). A rewrite ρ is a finite sequence of indexes and rewrite operations

that can be applied to a program trace to produce an ‘edited’ version.

A rewrite can then be used to identify the code points that may contain bugs, and suggest

potential solutions i.e. edits.
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11.3 Editing on failure

We first consider an approach that does not use the true edit-distance, but introduces a new

‘restart’ operation inspired by the metric. The idea is to introduce edit operations only when

a trace fails to match a pattern.

11.3.1 Failing-edit-distance

In the following we introduce an alternative formulation of the edit-distance that only applies

edits when we fail. We say a pattern fails for a trace if no extensions of the trace can satisfy

the pattern.

For pattern p and trace τ let τ = good(τ).a.rest(τ) where good(τ) is longest prefix of τ such

that

(∃τ ′.good(τ).τ ′ ∈ L(p)) ∧ (∀τ ′.good(τ).a.τ ′ ∉ L(p)

Let edit be a function on symbols that non-deterministically replaces the symbol by the

empty trace, a trace consisting of another symbol from the trace followed by the original symbol

or another symbol in the trace i.e. it can pick one of the three edit operations discussed above.

An edited trace is defined recursively as

edited(τ) = edited(good(τ).edit(a).rest(τ)) if τ ∉ L(τ)
τ otherwise

i.e. the repeated application of the edit function to the event causing failure. As edit is non-

deterministic the failing-edit-distance is given as the minimum number of times the edited

function must be applied to a trace. This is still an edit-distance, but not necessarily minimal.

11.3.2 Computing the failing-edit-distance

To compute the failing-edit-distance we explore the non-deterministic edit operations by main-

taining a number of possible configurations of the instantiated pattern. A configuration is a

pair consisting of a rewrite (Def. 89) and state. We say that a trace reaches a configuration

⟨ρ, q⟩ for pattern p iff q0
ρ(τ)ÐÐ→ q where q0 and → are the initial state and transition relation of

p.

Algorithm 16 decides failing-edit-distance by computing the set of configurations reached

by a trace. The algorithm uses a tolerance γ to restrict the size of rewrites and therefore the

algorithm will only find the edit-distance if it is below this tolerance. The algorithm uses a

function failing that returns true if a final (accepting) state is not reachable from the given

state.

The use of γ helps restrict the exponential blow-up introduced by the non-determinism of

edit functions. Other optimisations that can reduce this blow-up include restricting the number

of edits allowed in a row and combining similar rewrites together.
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Algorithm 16 Computing the failing-edit-distance with tolerance γ for pattern p =
⟨Q,Σ, δ, q0, F ⟩ and trace τ .

C ← {⟨[], q0⟩}
for i in 1 to ∣τ ∣ do

a ← τ(i), C’ ← {}
for ⟨ρ, q⟩ in C do

q′ ← δ(q, a)
if failing(q′) then

if ∣ρ∣ < γ then
C ′ ← C ′ ∪ {⟨(i,−).ρ, q⟩, ⟨(i,+b).ρ, δ(a, δ(b, q))⟩, ⟨(i,%b).ρ, δ(b, q)⟩ ∣ b ∈ Σ}

else
C ′ ← C ′ ∪ {⟨ρ, q′⟩}

C ← {⟨ρ, q⟩ ∈ C ′ ∣ ¬failing(q)}
return min({∣ρ∣ ∣ ⟨ρ, q⟩ ∈ C ∧ q ∈ F})

11.3.3 Example of computing failing-edit-distance

Let us take the resource usage pattern introduced in Sec. 11.2.2 and consider the trace

open.open.use.close.use

for the instantiation [a ↦ open, b ↦ use, c ↦ close]. Checking this pattern will fail on the

second event as there is no a transition from the second state. Two edit operations can be

applied here: removal of the second event or addition of a close event immediately before the

second open. This leads to two alternative configurations:

{⟨[(1,−)],2⟩, ⟨[(1,+close)],2⟩}

We continue checking and fail again on the fifth event, the final use. Here there are also

three edit operations that can be applied: removal of the event, addition of a open event or

substitution of the use event with an open event. This leaves us with six final configurations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨[(1,−), (5,−)],1⟩, ⟨[(1,−), (5,+open)],2⟩,
⟨[(1,−), (5,%open)],2⟩, ⟨[(1,+close), (5,−)],1⟩,

⟨[(1,+close), (5,+open)],2⟩, ⟨[(1,+close), (5,%open)],2⟩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Therefore, the instantiated pattern matches with failing-edit-distance 2.

11.4 Using the true edit distance

We now consider an approach that uses the true edit distance between the trace and language.

We consider a technique that uses weighted transducers to compute the edit-distance between

a trace and a finite automaton [AM09]. The general idea is that we model the trace and

pattern as weighted transducers T and P and model the edit operations as a transducer X.
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The composition T ○X ○ P will capture the different ways that the trace can be rewritten to

match the pattern and the minimal edit-distance is the shortest path to an accepting state.

11.4.1 Weighted transducers

A weighted transducer has transitions labelled with an input symbol, output symbol and weight;

for this application we take weights as being 0 or 1. We allow ε input and output transitions

that can be taken without consuming or producing a symbol.

Definition 90 (Weighted transducer). A weighted transducer is a 5-tuple T = ⟨Q,Σ,∆, δ, F ⟩
where Q is a finite set of states, Σ is a finite input alphabet of symbols, ∆ is a finite output

alphabet of symbols, δ ⊂ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × {0,1} ×Q is a finite set of transitions and

F ⊆ Q is a set of final states.

We translate traces into weighted transducers by creating a transition to a new state per

event, adding self-looping ε transitions and only making the last state final. For example, the

trace a.a.b.c.b would become the following weighted transducer where transitions are written

input/output ∶ weight . Note that we use a weight of 0 as there is no cost associated with

following the trace.

1 2 3 4 5 6
a/a ∶ 0 a/a ∶ 0 b/b ∶ 0 c/c ∶ 0 b/b ∶ 0

ε/ε ∶ 0 ε/ε ∶ 0 ε/ε ∶ 0 ε/ε ∶ 0 ε/ε ∶ 0 ε/ε ∶ 0

Patterns are translated by keeping the structure and labelling transitions with the same

input and output symbols using a weight of 0, and adding self-looping ε transitions

The edit transducer consists of a single state and looping transitions for each of the edit

operations it can perform; for an alphabet of {a, b, c} this would be as follows. Note how ε is

used to model deletions and additions and all edit operations have a weight of 1.

1

a/a ∶ 0, b/b ∶ 0, c/c ∶ 0,
a/ε ∶ 1, b/ε ∶ 1, c/ε ∶ 1, ε/a ∶ 1, ε/b ∶ 1, ε/c ∶ 1
a/b ∶ 1, a/c ∶ 1, b/a ∶ 1, b/c ∶ 1, c/a ∶ 1, c/b ∶ 1

11.4.2 Composition

The composition T ○X of two transducers T and X considers all transitive matchings between

strings of T and strings X i.e. if a/b.a/c is a string of T and b/d.c/a is a string of X then a/d.a/a
is a string of T ○X. Here we consider a three-way composition i.e. T ○X ○P . We compute as a

single operation for efficiency reasons; if we computed T ○X and then (T ○X)○P it is likely that

(T ○X) would contain many superfluous transitions. An approach for doing this is presented

by Allauzen and Mohri [AM08]. Algorithm. 17 gives an algorithm for three-way composition.
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Algorithm 17 Computing the three-way composition of transducers T , X and P with the
same input and output alphabets Σ and ∆.

Enqueue(S, (T.q0,X.q0, P.q0))
Q ← {(T.q0,X.q0, P.q0)}
δ,F ← ∅
while ¬isEmpty(S) do

(q1, q2, q3) ← Dequeue(S)
if (q1, q2, q3) ∈ T.F ×X.F × P.F then

F ← F ∪ {(q1, q2, q3)}
for (q1, i1, o1,w1, q

′
1) ∈ T.δ and (q3, i3, o3,w3, q

′
3) ∈ P.δ do

for (q2, i2, o2,w2, q
′
2) ∈X.δ where i2 = o1 ∧ o2 = i3 do

if (q1, q2, q3) ∉ Q then
Q ← Q ∪ {(q1, q2, q3)}
Enqueue(S, (q1, q2, q3))

δ ← δ ∪ ((q1, q2, q3), i1, o3,w1 +w2 +w3, (q′1, q′2, q′3))
return ⟨Q,Σ,∆, δ, F ⟩

11.4.3 An example of computing true edit-distance

Let us take the same example we used for the failing edit-distance i.e. the trace

open.open.use.close.use

and the resource usage pattern introduced in Sec. 11.2.2. For ease of presentation we translate

the trace using a for open, b for use and c for close. This gives us the trace used as an example

in Sec. 11.4.1 above. We therefore already have our weighted transducer T . We then compute

the weighted transducer P for the resource usage pattern as follows.

1 2

a/a ∶ 0

c/c ∶ 0
b/b ∶ 0

ε/ε ∶ 0 ε/ε ∶ 0

We now compute T ○X ○ P , using the edit transducer X presented in Sec. 11.4.1 above.

This gives us the weighted transducer in Figure 11.1. We then use Dijkstra’s shortest path

algorithm to find a shortest path between the initial state and an accepting trace. We indicate

one such shortest path with a dashed line, this corresponds to the string a/a.a/b.b/b.c/c.b/a
with a weight of 2. This gives two edits to our string: replacing the second open event with a

use event and the last use event with an open event. Note that there are multiple paths with

a weight of 2 here, and therefore multiple ways we can rewrite our trace.

A shortest path through the composition will always be at least as long as the trace and will

give a rewrite by relating the projected trace back to the original trace. If a pattern checker is

used then, instead of computing the shortest distance to an accepting state, for each pattern

we compute the shortest distance to an accepting state labelled with that pattern.
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1 4

23

56

78

910

1112

a/a ∶ 0a/ε ∶ 1

ε/a ∶ 1

a/c ∶
1

ε/c ∶ 1
a/b ∶ 1, a/ε ∶ 1

ε/b ∶ 1
a/a ∶ 0a/ε ∶ 1

ε/a ∶ 1
a/c ∶

1
ε/c ∶ 1

a/b ∶ 1, a/ε ∶ 1

ε/b ∶ 1

b/b ∶ 0, b/ε ∶ 1
ε/c ∶ 1

ε/b ∶ 1

b/c ∶
1b/a ∶ 1b/ε ∶ 1

ε/a ∶ 1

c/ε ∶ 1, c/b ∶ 1c/c ∶
0

ε/c ∶ 1
ε/b ∶ 1

c/a ∶ 1c/ε ∶ 1

ε/a ∶ 1

b/b ∶ 0, b/ε ∶ 1
ε/c ∶ 1

ε/b ∶ 1

b/c ∶
1b/a ∶ 1b/ε ∶ 1

ε/a ∶ 1

ε/b ∶ 1
ε/c ∶ 1

ε/a ∶ 1

Figure 11.1: An example of the composition T ○X ○ P

11.5 Combining imperfect patterns

The previous two sections presented two different techniques for extracting ‘imperfect’ patterns

from imperfect traces. Each pattern is given a set of rewrites that tell us how to edit the input

trace to make it match the pattern. When combining patterns we now need to consider these

rewrites. In this section we present an approach for combining a set of imperfect patterns

that are compatible i.e. have a set of rewrites that do not clash. We then discuss a saturation

approach to producing a set of pattern combinations.

11.5.1 The approach

We first define what we mean by imperfect pattern. If we took an imperfect pattern as a pair

of a pattern and its shortest rewrite then when combining two patterns we might find that

these shortest rewrites are incompatible, but that if we had chosen, say, the second shortest

rewrite we would be able to combine the two patterns. Therefore, we consider all rewrites up

to a certain size for a pattern.

An imperfect pattern is a pair ⟨p,R⟩ where p is a pattern and R is a set of rewrites. In the

case of the failing edit-distance approach R is given by the reached configurations. In the case

of true edit-distance approach R is given by the language of the composition, therefore can be

infinite, but in practice we use a breadth-first search to select the k-shortest paths.

A set of imperfect patterns {. . . ⟨pi,Ri⟩ . . .} is compatible if there exists a set of rewrites
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Algorithm 18 Computing the minimum compatibility between sets of rewrites R1 and R2

from imperfect patterns extracted from trace τ where Ri relates to a pattern with alphabet Σi.

G ← {R1 ∪R2}
for i from 1 to ∣τ ∣ do

G′ ← ∅
for g ∈ G do

D ← {ρ ∣ ρ(i) is defined }
M ← [e↦ {ρ ∈D ∣ ρ(i) = e}]
M ← M ∪ [τ(i)↦ {ρ ∈ g/D ∣ τ(i) ∈ Σi ∧ ρ ∈ Ri]
if D = ∅ then G′ ← G′ ∪ g
else G′ ← G′ ∪ {(g/D) ∪ d ∣ (e↦ d) ∈M}

G ← G′

Gokay ← {g ∈ G ∣ ∃ρ1 ∈ R1, ρ2 ∈ R2 ∶ ρ1, ρ2 ∈ g}
if Gokay = ∅ then return ”incompatible”
else return min({∣⋃ g∣ ∣ g ∈ Gokay})

{. . . ρi . . . ∣ ρi ∈ Ri} such that every pair of rewrites is compatible. Two rewrites are compatible

if they do not attempt to make different rewrites at the same relevant points in a trace. We

interpret no edit as an identity edit. A point in the trace is relevant to a rewrite if it is in the

alphabet of the associated pattern. The edit-distance of ⟨pn,Rn⟩∩ . . .∩ ⟨pn,Rn⟩ is ∣ρ1 ∪ . . .∪ρn∣
i.e. the number of (non identity) edits when all rewrites are combined. Therefore, given a set

of compatible patterns we want to find the set of rewrites that minimizes this distance.

11.5.2 Computing compatibility

We compute the compatibility between two sets of rewrites R1 and R2 by taking the the set

R1 ∪R2 and repeatedly splitting it based on conflicts between rewrites and then checking that

there is a set of rewrites with a rewrite in R1 and R2. An algorithm for computing compatibility

between two rewrites is given in Algorithm 18. This can be extended to a set of sets of rewrites.

The algorithm will return “incompatible” if the two sets of rewrites are incompatible and

the smallest number of edits that makes them compatible otherwise. Let min be the function

that returns this minimum distance and is undefined otherwise.

11.5.3 Saturating the set of patterns

Given a set of imperfect patterns P0 extracted from a trace we compute the ith saturation of

P0 as follows, recalling that min(R1,R2) is only defined if R1 and R2 are compatible.

Pi+1 = {⟨p1 ∩ p2,min(R1,R2)⟩ ∣ ⟨p1,R1⟩⟨p2,R2⟩ ∈ Pi}

In general, ∣Pi∣ = 1
2
∣Pi−1∣(∣Pi−1∣ − 1). However, many combinations in Pi1 will be trivial and can

be removed. However, the saturation can grow exponentially. Let P∞ be the fixed-point of Pi

i.e. the set Pi such that Pi+1 = Pi. To make saturation practical we take the following steps:

• Limit - We place an upper limit on the saturation set i.e. P3
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1 send ( ” serverA ” ,new St r ing [ ] { ” s t a r t ” , ”45” } ) ;
2 send ( ” serverB ” , null ) ;
3 send ( ” serverC ” ,new St r ing [ ] { ”end” , ”23” } ) ;
4
5 void send ( St r ing address , S t r ing [ ] l i n e s ){
6 Connection C = connect ( address ) ;
7 Stream S = C. open ( ) ;
8 try{
9 for ( S t r ing l i n e : l i n e s ) S . send ( l i n e ) ;

10 }
11 catch ( Nul lPo interExcept ion e ){
12 send ( ”empty” ) ; C. c l o s e ( ) ;
13 }
14 C. c l o s e ( ) ;
15 }

Figure 11.2: A hypothetical piece of Java code.

• Prune - We filter patterns if:

– Subsumption - they are subsumed by another pattern.

– Maximal alphabet - they do not use all symbols.

– Minimum distance - their edit distances is > 1.5x the minimum.

• Rank - We rank patterns by edit-distance and size.

11.6 Experiments

In this section we explore our new technique by first applying it to a hypothetical code snippet

and then carrying out an experiment to evaluate accuracy where we attempt to recreate a

known specification from imperfect traces.

11.6.1 Application to example code

Consider the Java code in Figure 11.2. This gives a hypothetical method for sending an array

of lines to an address by first connecting to that address, opening a stream, sending the lines

and then closing the stream. This example contains a bug; in the case where a null array of

lines is given the connection is closed twice.

Let us assume we execute the above code, which calls the method three times with different

inputs, recording the occurrences of the connect, open, send and close events. The resulting

trace would be as follows.

connect.open.send.send.close.connect.open.send.close.close.

connect.open.send.send.close.

We now consider mining this trace with two patterns; the alternating pattern given in the

introduction and the resource usage pattern given in Section 11.2.2. We take the alternating

pattern first.
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The following table gives the failing and true edit-distances (failing/true) for the above trace

and the different instantiations of the alternating pattern; a ‘-’ represents that no distance should

be given (we do not consider the case where a = b) and an ‘x’ represents that no distance is

returned.

a

connect open send close

b

connect - x/2 3/3 4/3

open 0/0 - 3 4/3

send 2/2 2/2 - 4/3

close 1/1 1/1 3/3 -

The instantiation [a↦ open, b↦ connect] does not have a failing edit-distance as it finishes in

a non-final state that can be extended to a final state; this is one drawback of the failing edit-

distance approach. For [a ↦ close, b ↦ connect] and [a ↦ close, b ↦ open] there is a shorter

true edit-distance as this approach is allowed to make edits without failure, here removing the

last event to bring the pattern into an accepting state. Note that all other distances are the

same, this shows that in failing edit-distance can be a good approximation of true edit-distance.

For one case, [a ↦ connect, b ↦ open] there is a distance of 0 because this instantiated

pattern matches the trace exactly. If we consider the two cases where there is an edit-distance

of 1 and look at the rewrite generated we see that all of these produce the same rewrite; the

removal of the ninth event (the second close).

Combining the three instantiated patterns with an edit distance of 0 or 1 we get the following

pattern.

1 2 3
connect open

close

Now let us consider the resource usage pattern. The following table gives the failing and true

edit distances as before, with each entry in the table representing the c dimension using a

4-tuple. Here, again, computed distances are the same but the true edit-distance approach

generates some distances where the failing edit-distance approach does not.

a

connect open send close

b

connect (-,-,-,-) (-,-,5/5,4/4) (-,3/3,-,5/5) (-,2/2,4/4,-)

open (-,-,2/2,1/1) (-,-,-,-) (5,-,-,5) (5/5,-,4/4,-)

send (-,4/4,-,1/1) (1/1,-,-,1/1) (-,-,-,-) (x/6,x/6,-,-)

close (-,4/4,5/5,-) (1/1,-,5/5,-) (3/3,3/3,-,-) (-,-,-,-)

There are five instantiations with an edit-distance of 1, but they represent different rewritings

of the trace. One set removes the ninth event (as before) and one set removes the first connect

event, therefore they are incompatible. When combined they give the following respectively:
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Table 11.1: Results from accuracy experiment. A=accuracy. E = edits. Time gives checking
and saturation time separately in seconds.

Trace Noise Failing-2 Failing-5
length level A E Time P3 A E Time P3

10 0.0 1.0 0 0.06, 0.84 36 1.0 0 0.06, 34.7 34
10 0.05 0.48 1 0.01, 0.96 11 0.83 3 0.01, 195 1
10 0.1 0.58 2 0.01, 2.22 2 0.80 3 0.01, 172 14
100 0.0 1.0 0 0.09, 1.64 35 1.0 0 0.09, 1.47 36
100 0.05 0.33 1 0.01, 4.96 1 0.53 4 0.01, 476 2
1000 0.0 1.0 0 0.17, 11.5 35 1.0 0 0.17, 12.4 32
1000 0.01 0.0 - 0.16, 2.48 0 0.33 2 0.16, 1382 1
Trace Noise Perfect-2 Perfect-20
length level A E Time P3 A E Time P3

10 0.0 1.0 0 0.11, 0.13 36 1.0 0 0.05, 0.11 34
10 0.05 0.86 1 0.04, 0.05 4 0.78 1 0.03, 0.03 4
10 0.1 0.68 2 0.03, 0.06 13 0.87 2 0.03, 0.04 4
100 0.0 1.0 0 0.46, 0.27 33 1.0 0 0.26, 0.16 34
100 0.05 0.66 1 0.27, 0.17 1 0.0 - 0.29, 0.12 0
1000 0.0 1.0 0 3.29, 5.13 33 1.0 0 3.09, 0.70 35
1000 0.01 0.0 - 3.48, 3.67 0 0.16 1 3.11, 3.5 2

1 2 3
connect open

send

close

1 2
open

send,close

connect

The rewrite for the first pattern here is compatible with the rewrite for pattern extracted using

the alternation pattern and we can combine these patterns to form a final specification, which

is the same as the one on the left above, but with only the initial state accepting.

Therefore, we can extract informative specifications that suggest alternative edits. One of

these identifies the error in our code snippet, and is the specification we expected. The fact

that we have two alternative specifications with the same edit distance suggests that manual

inspection is required.

11.6.2 An accuracy experiment

Before we begin we should note that this experiment is not fully measuring the expected usage

of this technique as there is no manual inspection of the produced specifications. We evaluate

the accuracy of our approach by generating traces from the specification in Fig. 11.3.

We generate imperfect traces by first generating perfect traces and then randomly editing

events according to some noise level (probability). We then pass these traces to our techniques

and test the resulting patterns for accuracy using a set of perfect traces generated from the

specification. Table 11.1 gives the average results over three runs. For each approach it reports

the average accuracy, the minimum edit required to produce a pattern with maximum accuracy,

the time taken for checking and then saturation and the size of the pruned 3-saturated set.

Experiments were carried out with a range of trace lengths and noise levels and different γ for



11.7. HOW RELATED WORK DEALS WITH IMPERFECT TRACES 283

1 2

34

document.Document. < init >
document.Field < init > (String,String,Store,Index)

document.Field < int > (String,Reader)

index.IndexWriter.addDocument(Document)

Figure 11.3: A specification for the Lucene tool from [GS08b]

failing and k-shortest paths for perfect.

Every experiment with a non-empty P3 produced at least one pattern with perfect accuracy.

Therefore, if we manually inspected the set P3 we would always be able to find this specification.

However, this set will also contain other specifications with the same edit distance. Therefore,

we report the average accuracy for this set.

As expected, with zero noise we achieve perfect accuracy. In some cases we see empty P3 for

Failing as the tolerance γ is not high enough. In some cases we see empty P3 for Perfect as the

relevant rewrites are not in the top k-shortest rewrites. These parameters can be increased, but

they currently have a high impact on running times. As expected, as noise increases accuracy

generally decreases and in general the larger γ or k the better accuracy. A noise level of 0.1

represents a case where 10% of relevant lines of code contain bugs and, as most lines of code

in the program will not be relevant, this represents a very buggy system. Therefore, obtaining

reasonable results at this level suggests we could handle normal levels of bug occurrence.

Generally checking times are very fast, with saturation dominating the process. The main

cost in saturation is the computation of comparability between rewrites, which is why we saw the

highest saturation times with Failing-5. Further work should consider methods for optimising

this process and trimming the set of rewrites considered.

It is clear that saturation of this kind is too costly. If we combine this approach with the

open automata of Chapter 8 we would combine together compatible patterns directly, without

saturation. Alternatively, the introduction of specific combination rules would reduce the cost

of saturation.

11.7 How related work deals with imperfect traces

Here we consider how alternative techniques discussed in Chapter 2 deal with imperfect traces,

we replicate a summary of the relevant techniques here for completeness.

Ammons et al. [ABL02] developed an early approach that used a probabilistic finite au-

tomata learner from the field of grammar inference and requires the alphabet of the inferred

specification to be known beforehand. Imperfect traces require human experts to check viola-

tions of the inferred specification in a coring phase. Lo et al. [LK06b] extend this approach;

one extension that is relevant here is the introduction of a stage that attempts to filter out

erroneous traces before learning. In contrast we attempt to use this information to extract a

specification and identify the error.
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Techniques that use frequent-itemset mining (i.e. [LZ05a]) and closed frequent sequential

pattern mining (i.e. [LM08]) rely on computing support and confidence values where support

reflects the level of imperfection, and therefore can handle imperfect traces. However, the

properties extracted are not as strict as automata-based specifications as in the first case symbols

are only related by frequent association, not order, and in the second the ordering relation is

simple. These techniques scale very well and require minimal information to be provided.

The automata-based pattern-mining technique was first used by Engler et al. [ECH+01].

They focus on the alternating pattern (ab)∗ and deal with imperfect traces by counting the

number of times that a and b occur together in order, and a occurs without b and compute

the likelihood that they form a specification. Goues and Weimer [GW09] extend this approach

with techniques for pruning false positives by examining the source code.

Yang et al. [YEB+06] introduced a template-based technique focusing on extracting specifi-

cations from imperfect traces. They use the alternating pattern and deal with imperfect traces

by partitioning a trace into sequences of one event followed by another, i.e. a+b+, performing

mining on each subtrace and then counting the number of subtraces the pattern holds for. This

is similar to restarting the pattern on failure but allows for a larger range of failures. They also

introduce a chaining heuristic for combining their alternating patterns.

Gabel and Su. [GS08b, GS08a] extend this approach by introducing a symbolic method for

specification mining using binary decision diagrams and the Javert tool that uses two patterns

(ab)∗ and (ab∗c)∗ and combination rules based on automata combination to extract large

patterns. They deal with imperfect traces by restarting a pattern to the initial state on failure.

Later [GS10] they extend this approach to infer and enforce temporal properties at runtime

over a finite window, thus detecting potential bugs at runtime.

Li et al. [LFS10] extend this approach to mine specifications with timing bounds and more

complex pattern combination rules, but cannot handle imperfect traces. Instead their focus is

on mining specifications from perfect traces and using these to detect bugs in imperfect ones.

Finally, recent techniques [LCR11, LRRV12] consider the parametric case, including our

own work in previous chapters. JMiner [LCR11] extends the approach taken by Ammons et al.

[ABL02] and therefore use the same coring technique to deal with imperfect traces and Tark

[LRRV12] uses the notions of support and confidence from data mining.

11.8 Summary

We have introduced a new approach for mining specifications from imperfect traces. Two

techniques are introduced that use the notion of edit-distance to compute the number of changes

that would have to be made to a trace for a pattern to hold. We then formalise when it is safe

to combine two imperfect patterns and the process is explored by first applying it to a small

code snippet to demonstrate how it works and then attempting to measure the accuracy of the

approach using traces generated from a known specification.

This technique not only produces specifications, but also a description of how a program

should be updated to make the specification hold. This would be useful in bug detection and

location but a case study is required to establish applicability.
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Further work is required to improve the efficiency and applicability of the approach. This

may involve the combination of this approach with an existing technique, for example the sym-

bolic mining technique of Gabel and Su [GS08a], and combination rules explored previously

[GS08b, LFS10]. The lifting of this technique to the parametric approach should also be for-

malised and implemented (discussed in Sec. 12.2.9). As this approach uses open automata all

extracted patterns can be soundly combined to form a specification i.e. we would use pattern

combination directly, rather than introducing pattern composition rules.



Chapter 12

Conclusion

This work has explored the automata-based monitoring and mining of execution traces by

developing a new specification formalism, quantified event automata, and applying it in the

fields of runtime monitoring and specification mining. We have developed two associated tools

and, through extensive evaluation, shown that they perform well.

In the following we revisit and summarise the contributions of this thesis and then discuss

further avenues of research.

12.1 Overview of work

In Section 1.1 we outlined the aim of this work as developing an expressive formalism with

an efficient trace checking mechanism suitable for use in monitoring and mining. We have

developed quantified event automata by combining the concept of extended finite automata with

the logical notion of quantification to extend the efficient trace slicing approach. We have then

implemented and optimised a monitoring algorithm, showing that it can outperform the more

expressive techniques and compete with the more efficient techniques. Finally, we introduce a

mining technique that makes use of this efficient trace checking procedure to efficiently extract

accurate specifications from traces. We have, therefore, achieved our original aim.

In the following we revisit these three contributions and discuss the results in each area.

12.1.1 Expressive and elegant specification

We have introduced quantified event automata (Chapter 3) as a parametric trace specification

formalism. These capture both a quantified and free view on data. Event automata are used

to specify properties using free variables; a general notion of guards and assignments labelling

transitions creates a Turing-complete language that allows us to express common properties

elegantly. Quantifications are added to create quantified event automata, which specify families

of event automata based on the domains of quantified variables (given by the trace).

We have introduced many examples of using QEA to represent properties from a variety of

domains, and more are given in the Appendices. We have explored (Chapter 4) the complexity

of the trace checking process for QEA in both the big-step and small-step semantics. This

286
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showed that this is, at worst, exponential in the number of quantified variables and dependent

on the reuse of values in the trace. This was validated during evaluation. Finally, we have

considered the expressiveness of QEA, comparing it with other languages.

12.1.2 Efficient runtime monitoring

We then turn to the issue of monitoring QEA. The problem here was that QEA were defined

using a big-step style semantics i.e. to decide if a trace satisfies a QEA we needed the whole

trace. This is not suitable for incremental monitoring, so we introduced a small-step style

semantics and proved it equivalent to the big-step version (Chapter 5). This allowed us to give

a basic incremental monitoring algorithm.

This incremental approach is an improvement on the big-step semantics, but is still not

suitable for efficient runtime monitoring. Therefore, we consider a collection of techniques to

improve the effectiveness and efficiency of our approach (Chapter 6). Firstly, we introduce a

refined notion of verdict, allowing us to detect success or failure earlier than we could before.

We then consider redundancies in the monitoring algorithm, indexing strategies and methods

for dealing with pragmatic issues such as object equality and garbage collection.

The novel contributions in this part of work are a full account of the incremental trace

slicing approach extended with full quantification and free variables, an incremental method

for checking that is extended to the five-valued verdict domain via a notion of strong states, an

extension of the value-based indexing strategy to this setting, an introduction of an effective

symbol-based indexing strategy that incorporates the notion of maximality necessary for trace

slicing, and an algorithm selection mechanism based on the structure of the monitored QEA.

Finally, we showed that our monitoring techniques were efficient (Chapter 7) for both a

hypothetical case study and a real-world benchmark suite. We did not beat the world-leader

(JavaMOP) on their home turf but remained competitive. We also vastly outperformed a very

expressive system (RuleR) in a number of cases. We show that removing garbage redundant

bindings is very important (and more work is required in this area). We also concluded that the

number of quantified variables has a large impact on monitoring overhead for any trace-slicing

technique, so should be reduced where possible.

12.1.3 Accurate specification mining

There are many different methods used for specification mining, as seen in Chapter 2, and we

chose a generate-and-check approach that leveraged our efficient monitoring algorithm. Our

framework (Chapter 8) introduces the novel contributions of pattern checkers and open au-

tomata. Pattern checkers allow us to check many patterns at once, by combining them together

in a single structure. Open automata tackle a previously identified issue with pattern combi-

nation: patterns that do not capture their context lead to imprecise combination. We explore

the notion of pattern combination and show that the set of patterns identifiable with open

automata is strictly larger than that identifiable with finite state automata.

The performance of our framework is dependent on the pattern library used. Therefore,

we explore the kinds of patterns we might want to include in a pattern library (Chapter 9).
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We review previous pattern used and methods for automatically augmenting a set of existing

patterns. Lastly, we take a set of common specification patterns and de-combine them to see

what patterns are required to identify them.

We show that our framework can accurately and efficiently extract specifications (Chap-

ter 10). As expected, more accurate specifications are extracted from traces containing more

information (greater coverage, with a range of lengths) and our technique scales well to long

traces, including those extracted from real world programs. The connectedness mode is effec-

tive where we see connected behaviour. The pattern library has a large effect on the kinds of

patterns mined; their accuracy and conciseness. In general, extracted specifications were large,

and future work is suggested that could reduce this if it were an issue.

During development and evaluation of our mining framework we noticed that it was highly

sensitive to imperfections, or bugs, in the extracted traces. In the last part of this work

we introduce a new technique for dealing with these imperfections in a propositional setting

(Chapter 11). This idea of this approach is to measure the edit-distance between the language

of a pattern (or pattern-checker) and an extracted trace. Each imperfection, or bug, in the

trace is represented as an edit and the (minimal) sequence of edits can suggest fixes to the code

to make the specification true.

12.2 Future directions

Here we discuss, in detail, possible extensions to the work described in this thesis. Some of this

work has already been partly developed but is not discussed in the main text as it has not been

fully implemented and evaluated.

12.2.1 Explore guard and assignment languages

We have (informally) parameterised the QEA specification language with a guard and assign-

ment language. Future work could consider formalising this by adding a formal theory T to the

definition of a QEA and restricting guards and assignments to those drawn from this theory.

This would then allow complexity and expressiveness issues to draw on information about this

theory. Furthermore, operations on QEA, such as reachability, could make use of this theory

to ask certain questions, such as where one guard implies another. An extension of this idea

would be to embed QEA into some logic also able to express our theory T .

12.2.2 Completing QEA as a specification formalism

At the end of Chapter 4 on page 90 we discussed further work required to make QEA a well-

rounded specification formalism. These can be split into two concerns. The first area is that of

different decision problems we might wish to address with QEA, for example the empty language

problem. The second area is that of language operations such as negation and intersection.

Defining and exploring these further aspects of QEA would mean that it could be used as a

general purpose specification language. These actions may also give further insights into how

QEA compares with other well-defined languages.
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12.2.3 Discrimination tree indexing

Our symbol-based indexing technique bears some similarities to the tree-based term-indexing

method used in automated theorem proving [SRV01, Gra95]. In general, tree-based indexing

organises terms into a single tree and uses the structure of the tree to carry out queries. This

further direction briefly considers an alternative implementation of the symbol-based indexing

idea that makes use of these tree-based indexes.

Currently the symbol-based indexing technique makes use of a (hash)map to store an index

from events to lists of bindings (see Sec. 6.5.4). The idea is to replace this map with a tree-based

indexing structure such that the list of bindings for an event can be found deterministically

without hashing and dealing with collisions. We demonstrate this approach using an example.

Consider a QEA with alphabet {f(x),g(x, y)}. After observing the events f(5).g(6,1).g(6,2)
we would have domains [x↦ {5,6}, y ↦ {1,2}] and an indexing map of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f( ) ↦ [ ] g(6, ) ↦ [x↦ 6]
g( , ) ↦ [ ] g(5,1) ↦ [x↦ 5, y ↦ 1]
f(5) ↦ [x↦ 5, y ↦ 1].[x↦ 5, y ↦ 2].[x↦ 5] g(5,2) ↦ [x↦ 5, y ↦ 2]
f(6) ↦ [x↦ 6, y ↦ 1].[x↦ 6, y ↦ 2].[x↦ 6] g(6,1) ↦ [x↦ 6, y ↦ 1]
g(5, ) ↦ [x↦ 5] g(6,2) ↦ [x↦ 6, y ↦ 2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

this indexing map can be captured in the following tree:

ε

[ ] [ ]

[x↦ 5, y ↦ 1].
[x↦ 5, y ↦ 2].

[x↦ 5]

[x↦ 6, y ↦ 1].
[x↦ 6, y ↦ 2].

[x↦ 6]
[x↦ 5] [x↦ 6]

[x↦ 5, y ↦ 1] [x↦ 6, y ↦ 1] [x↦ 5, y ↦ 2] [x↦ 6, y ↦ 2]

f( ) g( , )

f(5) f(6)
g(5, ) g(6, )

g(5,1) g(6,1) g(5,2) g(6,2)

Previously to gather the bindings to use for an incoming event such as g(5,3) we would query

the index structure for the events g(5,3), g(5, ) and g( , ) in that order, appending the results

together (to maintain maximality). Now we can gather this list with one simple traversal of

the indexing tree instead of three separate lookups in the (hash)map; we start at the root and

take the g( , ) branch then the g(5, ) branch before finally taking the g(5,3) branch, appending

the results in reverse order. In some cases there will be alternate routes through the tree, but

this should still result in a faster lookup. Updating the tree still requires an insertion per new

symbol, but as we saw previously updates happen infrequently in comparison to lookups.
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12.2.4 State based indexing

Dwyer et al. [PDE12] have described three forms of indexing for runtime monitoring: value-

based, symbol-based and state-based. In this work we have explored value-based and symbol-

based indexing but not state-based. We note that the TraceMatches tool uses state-based

indexing.

A note

This previous work ([PDE12]) captures events as being of the type 2O×Σ and monitors as being

of type 2O × S where O are the objects in the trace, and Σ and S are the alphabet and sates

of the monitored finite state property respectively. They then categorise indexing schemes as

different strategies for implementing the transition relation (2O × S × Σ) → S. In this scheme

value (or object) based monitoring is given as 2O → ((S × Σ) → S), symbol-based monitoring

is given as Σ → ((2O × Σ) → S) and state-based monitoring is given as S → ((2O × Σ) → S).
Dwyer et al. were the first to discuss symbol-based indexing.

However, this presentation is flawed in its treatment of values; by only discussing sets of

values they make the same error JavaMOP makes in not allowing f(x) and f(y) to both appear

in a specification’s alphabet. Therefore, we should consider bindings instead of sets of objects.

Advantages and disadvantages

The advantage of value and symbol based indexing is that they can use the incoming event to

immediately lookup the relevant information to update. At first it appears that state-based

indexing does not allow this, as an event does not give any information about states. However,

if we construct, for each state, the set of event names that are enabled at that state (i.e. have

an outgoing transition) then we can use the event name (symbol) to identify the states that we

need to inspect. One disadvantage of the state-based approach is that when a monitor (binding)

changes state then the indexing structures need to be modified.

It would be interesting to explore a state-based indexing approach for QEA, but it is unlikely

to be more efficient than either the value or symbol based approaches.

12.2.5 Parallel monitoring

We have previously explored the notion of parallel runtime monitoring within the context of

the RuleR runtime verification tool [Reg10]. In this work we concluded that parallelising the

internals of a monitor will not gain a significant reduction in overhead as the work carried out

in each step is generally not significant.

One important conclusion was that it is important to desynchronise the monitor from the

monitored application, allowing the monitor to make use of time between events. To do this

we can identify synchronisation events on which we must allow the monitor to catch up; in-

tuitively these events are those that could lead to a verdict we care about. If we want pure

synchronous monitoring then all events are synchronisation events, alternatively if we want pure

asynchronous monitoring no events are synchronisation events.
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Given a set of interesting verdicts we can automatically detect synchronisation events in a

QEA as those events labelling a transition into a state that can give that verdict i.e. a strong

failure state if the verdict is failure. Alternatively we could add a notion of such states being

live i.e. we either produce a static over-approximation or we dynamically track such states.

One approach that seems promising is to create a network of communicating nodes running

in parallel with each node processing a subset of events. We can use the two event orderings

previously discussed to organise nodes. The first being the ⊑ relation on bindings and the

second being the lexicographical ordering on events used in tree-based indexing. Each node

would check to see if an event is relevant to it and then decide whether it should pass the

event to nodes containing bindings lower in the given order. This parallelism can be seen as an

alternative to indexing; instead of identifying the exact part of the monitor space relevant to

an incoming event we carry out a directed parallel search of the space.

In the case where we have a single quantified variable this scheme would not provide any

advantage. Therefore, like indexing, we would select an appropriate parallel scheme depending

on the structure of the monitored QEA.

12.2.6 Replacing event automata

As discussed in Sec. 4.4.2 we could replace event automata with an alternative event formalism

and maintain the ‘quantified’ part of our semantics. There are two kinds of formalism we could

consider replacing event automata with: so-called propositional formalisms where events are

treated as symbols, possibly with free variables, and parameterised formalisms where specifica-

tions can take parameters determining the monitored states, as in RuleR.

We can consider regular expressions, context-free grammars, temporal logics and general

rewriting systems. But to effectively deal with free variables we need to be able to define a

rewrite system, which may not be as intuitive for some languages such as temporal logic. We

cannot combine free variables with any form of past time reasoning.

12.2.7 Identifying likely alphabets

As discussed in Sec. 8.9.1 a limitation of our mining approach is that we must know the alphabet

of the mined specification in order to extract the relevant traces. JMiner [LCR11] uses a

technique called event specification mining to identify likely alphabets through source code

heuristics i.e. two methods are likely to occur in the same alphabet if they are used in the same

method together. However, this approach would fail to detect intra-procedural properties.

They also make use of the concept of connectedness to ensure that the extracted alphabet is

connected (as they only mine in this mode). One approach might be to extract traces from a

much larger alphabet and then identify alphabets that lead to non-trivial subtraces.

12.2.8 Free variables in mining

The presented mining technique does not allow us to extract QEAs that make use of free

variables. Here we firstly demonstrate why we cannot immediately extend our current approach
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to free variables, and then explore possible methods that allow us to incorporate free variables,

guards and assignments into the mining process.

Limitation of open automata combination

We show that the current notion of open automata combination is not compatible with free

variables.

Let us consider one possible extension of our current framework where patterns can be

instantiated with events containing free variables associated with guards. Now consider the

following two patterns, which we will call p1 and p2 respectively.

1 2

●

●

a
1 2 3

a ●

b

Let our ‘event-guard alphabet’ be {(e(x, y), true), (f(y), y > x), (g(x), x = y)} where x and

y are free variables. In this setting we would then instantiate p1 with each event-guard pair,

and p2 with each pair of event-guard pairs, giving us nine pattern instances. Now, the following

trace

e(0,0).f(1).g(0)

will be successful for (only) the following two pattern instances:

1 2

●

●

(f(y), y > x)
1 2 3

(e(x, y), true) ●

(g(x), x = y)

We assume uninstantiated variables are mapped to zero. The first pattern instance accepts the

trace as the f(y) matches f(1) and 1 > 0. The second pattern instance accepts the trace as

e(0,0) matches e(x, y), saving 0 into x and y, and g(0) matches g(x) and 0 = 0. At this point

the reader should be able to see where the error will occur; in the second pattern the event

matching ● updated the value of y.

Using our current notion of pattern combination we would get the following specification

when combining these two pattern instances:

1 2 3
(e(x, y), true) (f(y), y > x)

(g(x), x = y)

As noted earlier, this does not accept our original trace and the mining process is no longer

sound. Our problem is that the combination process does not consider how free variables may

be updated by events replacing hole symbols.
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Free variable extension

Before presenting our two alternative solutions we give an overview of the general free variable

extension.

The main difference is that we can include guards in the input alphabet, can specify some

variables as free and may have guards in the extracted QEA. Firstly, we introduce the notion

of a guard alphabet that associates a set of guards with each event, this set may consist only

of the single guard true.

Definition 91 (Guard Alphabets). A guard alphabet AG is a set of pairs ⟨a,G⟩ where a is an

event and G a set of guards.

Our notion of Target QEA is extended and we can update our notion of instantiation

accordingly.

The following two sections introduce two solutions to the combination problem discussed

earlier. The first introduces local guards that do not allow guards to consider variables intro-

duced previously, effectively removing the outlined issue. The second introduces an updated

notion of open automata combination that labels holes with the variables they are allowed to

update.

Local guards

One notion of guard that would work with our current definition of combination is a local

guard, as used recently by Walkinshaw et al. [WTD13], who used classifiers to construct local

transition guards when learning extended finite state machines.

A local guard for an event is allowed to refer to any quantified variable and the free variables

of that event.

Definition 92 (Local Guard). A guard g is local to an event e(x) for quantified variables X

iff the set of variables Y that g refers to is a subset of x ∪X. Let LGuard(a,X) be the set of

such local guards.

A guard alphabet AG is local for set of quantified variables X if and only if ∀⟨a,G⟩ ∈ AG.G ⊆
LGuard(a,X).

The influential Daikon tool [ECGN01, NE02] extracts invariants containing parameters that

can be set during the mining process. For example, they use the invariant x > c where the

constant c is inferred such that the invariant holds. To allow for this behaviour we introduce

a third kind of variable (beyond quantified and free); a constant variable. This contradictory

term captures the idea that the value can only vary during the mining process and will be

constant in the final specification.

To clarify, if we use the local guard x > c then every time we see it we might assign c to be

1 less than the value of x so that at the end of the mining process the guard will always have

been true. For more complex guards it may not be possible to relax the constant variables to

ensure that the guard passes, in this case the guard must be false.

Definition 93 (Guard with Constants). A guard with constants is a function from bindings

to pairs of boolean values and bindings, i.,e. a member of Binding → B ×Binding. The boolean
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value indicates whether the guard is true and the resultant binding gives the values for constant

variables necessary to make the guard true.

We can now extend our notion of trace checking to include guards with constants by using

the binding in a configuration to store the value of constant variables and allowing guards to

update this.

When we combine successful patterns we can either treat guards as symbols that cannot be

merged or attempt to combine them in some way, by either taking the conjunction, or checking

that one is subsumed in the other.

We can consider a number of optimisations, such as ordering guards (via logical implication)

and only introducing a more general guard when a more specific one fails. We could also combine

many guards together, in a similar method to our pattern checker technique.

Labeling holes

Before we discuss a new form of combination we note that one straightforward approach would

be to name apart all free and constant variables, so that the variables from the two patterns

could not interact. This would achieve correctness, but may lead to a very large number of

variables in the extracted specification.

Alternatively, we can consider a new notion of combination that labels each hole with the

variables it is allowed to update and only allows the hole to be replaced with events that

have a subset of those variables. Consequently, combination is no longer deterministic as some

combinations are disallowed.

The general idea is to define the updated variables of an event (or assignment) and the used

variables of a guard and use these to define the used and updated variables for each transition.

We then define combination such that an inserted transition does not update anything the next

transitions use.

Guard and Assignment library

Both of the above approaches would work with a library of guards (and in the second case

assignments). Here we discuss suitable candidates for such a library.

Following from notions in register automata we can introduce guards based on equality. For

a set of n free variables we generate a set of n(n − 1) guards of either form x = y or x ≠ y.

However, if we introduce the notion of typed variables we can reduce this set (equality between

variables of the same type) and include type-specific guards. For example, if we have integer

variables i and j we can introduce the guards i = c, i < c, i > j or i = cj for some parameter c.

If we have string variables s and t we can introduce the guards s.subString(t) or s.isEmpty.

A set of events can automatically be expanded with guards, if the set of free variables are

identified. If we consider only local guards then the set of variables to consider are those used

in each event, otherwise all backward-reachable free-variables are used.

Assignments would have to be highly domain specific. One kind of assignment we can

introduce is one that saves the previous value of a variable in an auxiliary variable, which can
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be added to the set of variables used in guards. We may also wish to design particular patterns

to capture notions such as counting.

Learning guards

An alternative approach would be to learn guards rather than use patterns as we have here.

This has been explored previously. Xiao et al. [XSL+13] use support vector machines (SVM)

to learn a linear function that separates two sets of data; each distinguishing some different

behaviour. Walkinshaw et al. [WTD13] use classifiers to generate local guards. In both cases,

the general idea is to train the classifiers on the input traces and then use the classifier as a

guard.

12.2.9 Extending imperfect work to the parametric setting

Ideally we would extend the work done for imperfect traces in Chapter 11 to the parametric

setting. One question to answer is how we compute the final edit-distance if we have trace slices

with different edit distances i.e. if we have one slice with an edit distance of 5 and one with an

edit distance of 0 what should the overall edit distance be? One solution would be to take the

maximum edit distance for universal quantification, and the minimum for existential.
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runtime verification framework. J Software Tools for Technology Transfer, pages
1–41, 2011.

[MLL05] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws
using PQL: A program query language. SIGPLAN Not., 40(10):365–383, October
2005.

[MP95] O. Maler and A. Pnueli. On the learnability of infinitary regular sets. Inf. Comput.,
118:316–326, May 1995.

[MP08] L. Mariani and F. Pastore. Automated identification of failure causes in system
logs. In Proceedings of the 2008 19th International Symposium on Software Relia-
bility Engineering, ISSRE ’08, pages 117–126, Washington, DC, USA, 2008. IEEE
Computer Society.
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Appendix A

Further Examples

Here we give further examples of QEAs to support the description given in Chapter 3. We

begin in A.1 by giving further examples that demonstrate the definition of QEA. We then give

a number of examples that demonstrate different trace checking processes in A.2. next we

introduce sets of QEAs from two different domains - the Java Standard library (in A.3) and

a hypothetical planetary rover case study (in A.4). Finally, we use an example related to file

usage to comment on different styles of writing QEA in A.5.

A.1 Building up to QEA

These examples support those given in Chapter 3.

A.1.1 SQSEA

SQSEA are defined in Section 3.3. We give a worked example for simple file usage.

In this example we consider the proper usage of files - which is slightly more involved than

the alternating open/close example given in Section 3.3. Here file f is used correctly if

1 2 3 4

5

∀f

open(f)

close(f)

write(f) save(f)

write(f)

close(f)

close(f),read(f),
write(f),save(f)

open(f)
open(f),
close(f)

open(f)

Figure A.1: SQSEA for proper usage of files
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322 APPENDIX A. FURTHER EXAMPLES

1. f is only used when open

2. f is not closed when open or open when closed and starts closed

3. If f is opened then it must be closed before the end of the program

4. If f is written to then it must be saved before being closed

The SQSEA QF = ⟨{f},F⟩ for this property is given in Fig. A.1. The first thing to note is that

state 5 is a sink failure state i.e., it has no outgoing transitions and is non-final and therefore if

we get to state 5 we cannot succeed. Let us consider the following trace where files are identified

by integers:

τ = open(1).read(1).read(1).open(2).write(2).save(2).read(2).write(1).
save(1).close(1).open(3).read(3).write(2).close(3).close(2)

We want to decide whether τ ∈ L(QF). The first step is to construct relevant(τ,{f}), in this

case it is easy to see that Dom(τ) = [f ↦ {1,2,3}] and therefore relevant(τ,{f}) = {[f ↦
1], [f ↦ 2], [f ↦ 3]}. We can now evaluate each binding as described in Def. 17 i.e., we must

check τ ∈ L(F[f ↦ i]) for i ∈ {1,2,3}. To do this we must look at the general language of each

instantiated SEA.

For each binding [f ↦ 1], [f ↦ 2] and [f ↦ 3] we need to compute the projections of τ .

This simply involves removing events that do not refer to the value of interest, as described in

Def. 6. In this case we get the following projections:

τ ↓F([f↦1]) = open(1).read(1).read(1).write(1).save(1).close(1)
τ ↓F([f↦2]) = open(2).write(2).save(2).read(2).write(2).close(2)
τ ↓F([f↦3]) = open(3).read(3).close(3)

The next question is whether these projected traces have a sequence of transitions ending in

a final state. Let us consider [f ↦ 1] first. Firstly, F([f ↦ 1]) is constructed by replacing

instances of f in F with 1. Then, for a trace to be in the language of F([f ↦ 1]) there needs

to be a sequence of transitions using →F([f↦1]) that ends in a final state. We find the following

sequence of transitions that achieves this:

1
open(1)ÐÐÐÐ→F([f↦1]) 2

read(1)ÐÐÐÐ→F([f↦1]) 2
read(1)ÐÐÐÐ→F([f↦1]) 2

write(1)ÐÐÐÐ→F([f↦1]) 3
save(1)ÐÐÐÐ→F([f↦1]) 4

close(1)ÐÐÐÐ→F([f↦1]) 1

Therefore τ ↓F([f↦1])∈ L(F([f ↦ 1])). Next let us consider [f ↦ 2]. As F is deterministic

there is only one sequence of transitions for a given trace - for our projected trace this is as

follows:

1
open(2)ÐÐÐÐ→F([f↦2]) 2

write(2)ÐÐÐÐ→F([f↦2]) 3
save(2)ÐÐÐÐ→F([f↦2]) 2

read(2)ÐÐÐÐ→F([f↦2]) 2
write(2)ÐÐÐÐ→F([f↦2]) 3

close(2)ÐÐÐÐ→F([f↦2]) 5

As this does not finish in a final state we have that τ ↓F([f↦2])∉ L(F([f ↦ 2])) and therefore

our original trace τ is not correct. For completeness we can see that the projected trace for
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1 2 3 4

∀f

open(f)

close(f)

write(f) save(f)

write(f)

close(f)

read(f) read(f),
write(f)

read(f),
save(f)

Figure A.2: SQSEA for proper usage of files using next states

[f ↦ 3] is accepted using this sequence of transitions:

1
open(3)ÐÐÐÐ→F([f↦3]) 2

read(3)ÐÐÐÐ→F([f↦3]) 2
close(3)ÐÐÐÐ→F([f↦3]) 1

The trace τ is not accepted as the file with identifier 2 is written to and then closed without

being saved.

Earlier we noted that it can be useful to use a next-style semantics and that this would be

introduced using the graphical notation of a rectangular state. The SQSEA in Fig. A.2 gives an

equivalent SQSEA for the simple file usage property using next states - note that this requires

us to introduce some looping transitions for when the previous SQSEA would stay in the same

state. This alternative way of representing SQSEA can be more concise.

A.1.2 EA

EA are defined in Section 3.4. We give a worked example for SQL Injection and two further,

short examples.

SQL Injection

This example demonstrates how the non-determinism of EA can be used, along with free vari-

ables, to capture a property about connectedness in time.

The setting is that of SQL injection. Consider a program that runs the following SQL script

given a user input $EMAIL.

SELECT fieldlist

FROM table

WHERE field =’$EMAIL’;

This is open to an SQL injection attack if the input is not sanitized - consider an input1 of

“sometext’ OR ’x’=’x”. This leads to the following command being executed.

SELECT fieldlist

FROM table

WHERE field =’sometext’ OR ’x’=’x’;

1Or perhaps consider the input “x’; DROP TABLE table; –” as a more dangerous example.



324 APPENDIX A. FURTHER EXAMPLES

1 2

3

4
enter(s)

enter( ) connect(sold, snew) s=sold
s∶=snew

,connect( , )

clean( , sold) sold=s

use(sold) sold=s

Figure A.3: An EA capturing an SQL injection property that makes use of non-determinism.

The WHERE clause will now always evaluate to true, giving access to all fields and not

just the fields associated with a given email address. The normal defence against this kind

of attack is to pass all user inputs through a clean function that sanitizes inputs by removing

problematic characters. Therefore, a property we want to check is that every user input passes

through this function before being used. Let us consider a system that produces the following

trace where four different kinds of events are monitored - those that introduce a string through

user input (enter), those that create a new string from an old (connect), those that sanitize a

string (clean) and those that use a string (use).

enter(“xxx′ OR ′x′ =′ x ”).
connect(“xxx′ OR ′x′ =′ x”,“xxx′ or ′x′ =′ x”).
enter(“REGERG@cs.man.ac.uk”).
connect(“REGERG@cs.man.ac.uk”,“regerg@cs.man.ac.uk”).
clean(“regerg@cs.man.ac.uk”,“regerg@cs.man.ac.uk”).
use(“REGERG@cs.man.ac.uk”).
use(“xxx′ OR ′x′ =′ x”)

Two strings are entered into the system and both are passed through a lowercasing function

(here noted with connect) producing new strings. Neither string that is used is previously

cleaned; the system evidently having some control path that avoids this step. Note that by

passing through the lowercasing function we are not tracking the original string, but strings

created from them.

An event automaton for this property is given in Fig. A.3. Let us consider how the above

trace is processed by this EA. We begin with the initial configuration, as usual:

{ ⟨1, [ ]⟩ }

Then after receiving enter(“xxx′ OR ′x′ =′ x ”) we match two transitions from state 1. The

first returns to state 1, we use the notation to represent a variable that can be ignored,

ensuring that the initial configuration is retained. The second takes us to state 2, binding the

entered string.
⎧⎪⎪⎨⎪⎪⎩

⟨1, [ ]⟩,
⟨2, [s↦ “xxx′ OR ′x′ =′ x ”]⟩

⎫⎪⎪⎬⎪⎪⎭
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The next event, connect(“xxx′ OR ′x′ =′ x”,“xxx′ or ′x′ =′ x”) also matches two transitions.

The first, again, retains the configuration and the second binds the new value to s through the

use of two auxiliary variables.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨1, [ ]⟩,
⟨2, [s↦ “xxx′ OR ′x′ =′ x”]⟩

⟨2,

⎡⎢⎢⎢⎢⎢⎢⎣

sold ↦ “xxx′ OR ′x′ =′ x”]
snew ↦ “xxx′ or ′x′ =′ x”]
s ↦ “xxx′ or ′x′ =′ x ”]

⎤⎥⎥⎥⎥⎥⎥⎦

⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

As sold and snew are only used as auxiliary variables we will omit them from now on. The

next event, enter(“REGERG@cs.man.ac.uk”), introduces a new string and the following

event, connect(“REGERG@cs.man.ac.uk”,“regerg@cs.man.ac.uk”), introduces a string cre-

ated from this. Again, self-loops are used to retain the starting configurations whilst introducing

new ones.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨1, [ ]⟩,
⟨2, [s↦ “xxx′ OR ′x′ =′ x ”]⟩
⟨2, [s↦ “xxx′ or ′x′ =′ x ”]⟩
⟨2, [s↦ “REGERG@cs.man.ac.uk”]⟩
⟨2, [s↦ “regerg@cs.man.ac.uk”]⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The next event, clean(“regerg@cs.man.ac.uk”,“regerg@cs.man.ac.uk”) causes the configu-

ration for that string to be moved to state 3. As this is a skip state any future usage of this

string would keep it in this accepting state.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨1, [ ]⟩,
⟨2, [s↦ “xxx′ OR ′x′ =′ x ”]⟩
⟨2, [s↦ “xxx′ or ′x′ =′ x ”]⟩
⟨2, [s↦ “REGERG@cs.man.ac.uk”]⟩
⟨3, [s↦ “regerg@cs.man.ac.uk”]⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The events use(“REGERG@cs.man.ac.uk”) and use(“xxx′ OR ′x′ =′ x”) then both use a

string that has not been cleaned, causing their respective configurations to move to state 4. As

this is not accepting the trace fails.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨1, [ ]⟩,
⟨2, [s↦ “xxx′ OR ′x′ =′ x ”]⟩
⟨4, [s↦ “xxx′ or ′x′ =′ x ”]⟩
⟨4, [s↦ “REGERG@cs.man.ac.uk ”]⟩
⟨3, [s↦ “regerg@cs.man.ac.uk”]⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In this example, we have captured our property entirely without quantification. This demon-

strates that there are some properties where the quantification setup is required and some where

it is not. In general, quantifications are needed when describing a general property for some

set of well-defined objects.
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We could have used quantification here and the self-loop on the initial state is effectively

what the universal quantification is achieving in SQSEA - every time a new ‘quantified’ variable

is met a new configuration is created. In fact, EA can encode SQSEA, although not necessarily

concisely as multiple quantifications can become complex. Additionally, modelling quantifi-

cation in this way would not allow us to perform the monitoring optimisations discussed in

Chapter. 6.

Acknowledging messages in time

Let us revisit the EA described as motivation earlier in Fig. 3.4. Recall that the property is that

a message m must be acknowledged with 100 units of time or resent and can only be resent

up to 10 times. Note how a is introduced as an auxiliary variable in an assignment rather

than through matching with an event - this demonstrates that assignments can be used to keep

track of derived values, not just those seen in the trace. This property could be simplified if we

assume that the guard/assignment language has access to the current time as we could use this

function directly and not need to contain the information in the trace. However, care would

need to be taken when monitoring especially if this were offline.

Talking philosophers

The next example is another property that requires only free variables to capture the desired

behaviour. Consider a ‘talking philosophers’ problem (as an allegory for mutual exclusion)

where there are a number of philosophers wishing to speak but only a single philosopher may

be speaking at any one time. The event automaton in Fig. A.4 captures this property where we

have two events start(p) indicates that philosopher p begins speaking and stop(p) indicated

that philosopher p stops speaking. The EA states that if philosopher p has begun speaking

then the next event that must occur is for philosopher p to stop talking, and then some other

(possibly the same) philosopher can start speaking.

Consider the following (incorrect) trace:

τ = start(1).stop(1).start(2).start(1)

Let T P be the EA in Fig. A.4. The (only) transition sequence for this trace is

⟨1, [ ]⟩ start(1)ÐÐÐÐ→T P ⟨2, [p↦ 1]⟩
stop(1)ÐÐÐÐ→T P ⟨1, [p↦ 1, q ↦ 1]⟩
start(2)ÐÐÐÐ→T P ⟨2, [p↦ 2, q ↦ 1]⟩
stop(1)ÐÐÐÐ→T P ⟨q�, [p↦ 2, q ↦ 1]⟩

as this ends in the implicit failure state q� (which is added when using next-style states) the

trace is not in the language of T P. Recall that we assume that the implicit closure for next-

style states uses assignments such that the binding remains unchanged - therefore, to record

the philosopher that spoke out of turn we would need to add a transition 2
stop(q) p≠q

ÐÐÐÐÐÐ→ 3 where

3 is a non-final state.



A.1. BUILDING UP TO QEA 327

1 2

start(p)

stop(q)p=q

Figure A.4: An EA capturing the property that only one philosopher (p) can be talking at any
time.

1 2 3A)

∀x ∶ N∃y ∶ N.x ≠ y

send(x, y) ack(y, x)

1 2 3B)

∀x∃y

send(x, y) ack(y, x)

Figure A.5: Two possible QEAs for describing acknowledgements

Note that, as free variables are rebound whenever they are encountered we need the guard on

the transition from state 2 to state 1 - without it the EA would accept any trace of alternating

start and stop events regardless of philosopher.

A.1.3 QEA

QEA are introduced in Section 3.5 we give further examples of different kinds of QEA here.

Acknowledgements

The property described here is similar to the motivational property described in Section 3.5.1

and also demonstrates the need for type variables. Let us return to our general scenario where

we have nodes (physical or virtual) sending messages to each other. A new property we may wish

to specify is that every node sends a message and has it acknowledged i.e. it communicates

with another node at some point. This is, of course, a very weak property, but suffices to

demonstrate the point at hand.

Fig A.5 gives two QEA that present two different interpretations of this property - let us call

them C1 = ⟨∀x ∶ N,∃y ∶ N.x ≠ y,E1, [ ]⟩ and C2 = ⟨∀x∃y,E2, [ ]⟩. To understand the difference

between these QEA let us consider the following trace:

τ = send(A,B).send(B,A).send(A,C).ack(C,A).ack(A,B)

Neither QEA accepts τ . To see why let us consider the domains of x and y for each QEA:

DomE1(τ) = [N ↦ {A,B,C}]
DomE2(τ) = [x↦ {A,B}, y ↦ {A,B,C}]

For C2 the node C is not in the domain of x as it never sends and therefore it does not need to
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have a message acknowledged. This may be what we intended - it is not clear from the informal

description above what constitutes a node i.e. whether it is only the sending node or also the

nodes that acknowledge messages. Additionally, it is not clear whether a node must send a

message to itself - the global guard x ≠ y is used in C1 to enforce this but not in C2. To see that

C1 does not accept τ note that C never sends a message. To see that C2 does not accept τ note

that no node sends a message to itself.

Here we have seen that an informal description can seem to match a formal specification

whilst the specification does not have the intended effect. It is important that descriptions are

precise and do not leave behaviours undefined or assumed. It should be noted that the alphabet

of a QEA and the type variables can have a large, perhaps expected, impact on the language

of the QEA.

Mutual Exclusion

We capture the property of mutual exclusion i.e. that an object may be locked by at most

one thread. Fig. A.6 give two equivalent QEA for this property that use different levels of

quantification - which will have an effect on how efficiently they can be monitored, as discussed

later in Sec. 4.3. Interestingly, the less efficient QEA is a SQSEA - another motivation for

introducing guards and assignments.

As we have stated that these QEA are equivalent we should demonstrate this. Let us refer

to these two QEA here as A and B. We want to show that

L(A) = L(B)

and will do so by showing that if a trace is in the language of one then it is in the language of

the other. Let us begin by showing that for any trace τ

τ ∉ L(A)⇒ τ ∉ L(B).

As τ ∉ L(A) there must exist an object O and thread T such that τ ↓θ1∉ EA(θ1) where θ1 = [o↦
O, t1 ↦ T]. The sequence of states passed through by τ ↓θ1 must end in state 3 and will be of

the form (12)+3+. Let a1.σ.a2 be the subtrace of τ covering the transition from state 1 to state

3 passing through state 2 only i.e., passing through states 12+3. By definition a1 must match

with lock(o, t1) and a2 must match with lock(o, t2) such that t1 ≠ t2 - let a2 = lock(O,S). To

demonstrate that τ ∉ L(B) we must find a binding θ2 such that τ ↓θ2∉ EB(θ2). Let θ2 = [o ↦
O, t1 ↦ T, t2 ↦ S]. τ ↓θ2 must contain a1.σ.a2 as the ground alphabet of EA(θ1) is a subset of

the ground alphabet of EB(θ2). As a1 = lock(O,T), a2 = lock(O,S) and σ does not contain

unlock(O,T) the sequence of transitions must visit the implicit failure state - and therefore τ

is not accepted by B.

The argument that

τ ∉ L(B)⇒ τ ∉ L(A)

follows in a symmetric manner i.e., there must be a binding θ2 such that τ ↓θ2∉ EB(θ2) from

which we can construct a binding θ1 such that τ ↓θ1∉ EA(θ1). Note that θ2 must contain
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1 2 3

∀o∀t1

lock(o, t1 )

unlock(o, t1 )

lock(o, t2 ) t1≠t2
1

2

3

∀o∀t1∀t2

lock(o, t1 )

unlock(o, t1 )

lock(o, t2 )

unlock(o, t2 )

Figure A.6: Two QEA expressing the mutual exclusion property

1 2 3

∀u∀̂f

login(u)

logoff(u)

open(u, f)

close(u, f)

Figure A.7: A user logging in and out and opening and closing files.

different values for t1 and t2 as due to the non-determinism of B in the special case where

t1 = t2 the trace must be accepted.

Another example of partial binding

The following example makes use of this partial quantifier. Consider a property about users

and files that states that:

1. A user starts logged off and can only log in if logged off and only log off if logged in,

2. A file starts closed and can only be opened if closed and closed if opened,

3. A user can only open a file if logged in.

The QEA in Fig. A.7 captures this property using a partial quantifier for f . The following trace

demonstrates a trace that can violate the property without introducing a value for f .

login(Giles).login(Giles)

Without the partial quantifier this trace would be accepted even though it violates the property

we wanted to capture. As the domain of f is empty the partial quantifier ensures a dummy

value is added, allowing a binding to be constructed.

A.1.4 Quantifier stripping

The QEA at the top of Fig. A.8 describes a property about channels and messages. The

property is that after a channel has been closed we should not send a message to it. The QEAs

at the bottom of Fig. A.8 give a simple example of how we can construct a QEA to capture
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1 2 3∀c∀m
close(c) send(c,m)

1 2 3

∀c∃m

close(c) send(c,m)
1 2 3

∀c

close(c) send(c,m)

Figure A.8: A simple example of quantifier stripping.

this property using one quantifier - we first take the complement of the QEA (and therefore

would monitor for success instead of failure) and then strip the final existential quantification.

A.2 Further examples related to trace checking

In this section we give a number of examples that demonstrate concepts related to trace checking

for QEA.

A.2.1 Binding extensions further example

We give an example that demonstrates the binding extensions definition given in Section 5.2.3.

To help us understand what the binding extensions function is doing let us consider an

alphabet A = {a(x,x, y),a(z, y, x)} where x, y and z are quantified, a ground event a =a(1,1,2)

and a binding θ = [z ↦ 1] and compute extensions(θ,a,A). The first thing we need to do is

construct from(θ,a,A) by matching a(1,1,2) with a(x,x, y) and a(z, y, x) to get

from(θ,a,A) = {[x↦ 1, y ↦ 2], [x↦ 2, y ↦ 1, z ↦ 1]}

We then close this set by first adding all submaps and taking the lub-closure:

all from(θ,a,A) = close⊔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[x↦ 1], [x↦ 2], [y ↦ 1], [y ↦ 2], [z ↦ 1],
[x↦ 1, z ↦ 1], [y ↦ 1, z ↦ 1], [x↦ 1, y ↦ 2],
[x↦ 2, y ↦ 1, z ↦ 1]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x↦ 1], [x↦ 2], [y ↦ 1], [y ↦ 2], [z ↦ 1],
[x↦ 1, z ↦ 1], [y ↦ 1, z ↦ 1], [x↦ 1, y ↦ 2],
[x↦ 2, y ↦ 1, z ↦ 1],[x↦ 2, z ↦ 1],
[x↦ 1, y ↦ 1], [y ↦ 2, z ↦ 1], [x↦ 1, y ↦ 1, z ↦ 1],
[x↦ 2, y ↦ 2, z ↦ 1], [x↦ 1, y ↦ 2, z ↦ 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The set of extensions is the set of bindings we get by adding θ ([z ↦ 1]) to every binding in
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[z ↦ 1]

[x↦ 1, z ↦ 1][y ↦ 1, z ↦ 1] [x↦ 2, z ↦ 1] [y ↦ 2, z ↦ 1]

[x↦ 1, y ↦ 1, z ↦ 1]

[x↦ 2, y ↦ 1, z ↦ 1] [x↦ 2, y ↦ 2, z ↦ 1]

[x↦ 1, y ↦ 2, z ↦ 1]

Figure A.9: Lattice of binding extensions

all from(θ,a,A):

extensions(θ,a,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[x↦ 1, z ↦ 1], [y ↦ 1, z ↦ 1]
[x↦ 2, y ↦ 1, z ↦ 1], [x↦ 2, z ↦ 1],
[y ↦ 2, z ↦ 1], [x↦ 1, y ↦ 1, z ↦ 1],
[x↦ 2, y ↦ 2, z ↦ 1], [x↦ 1, y ↦ 2, z ↦ 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

The subtle part of this definition is how, in all from we take submaps of bindings in from rather

than taking the full bindings only. If we had instead defined all from as the lub-closure of from

then in our example case we would not have constructed the binding [x↦ 1, y ↦ 2, z ↦ 1], which

is necessary to ensure that no information is lost as the event a is relevant to this binding:

relevant(a(1,1,2), [x↦ 1, y ↦ 2, z ↦ 1],{a(x,x, y),a(z, y, x)}) as

matches(a(1,1,2),a(x,x, y)) ∧ [x↦ 1, y ↦ 2] ⊑ [x↦ 1, y ↦ 2, z ↦ 1]

Sec. 6.4 shows that there are circumstances where we can reduce the number of bindings

that need to be created.

A.2.2 Demonstrating small-step semantics

We give a worked example for the small step semantics, as defined in Section 5.3.

As a worked example let us consider the lock ordering property (see page 346). Adjusting

this QEA for type variables leaves it the same. Let us consider the following trace

τ = lock(1).lock(2).unlock(2).lock(2).unlock(1).lock(3).lock(1).

We will first build up the monitor lookup for each trace prefix and then consider the acceptance

of each monitor lookup.

Using τi to denote the prefix of τ of length i, we first construct Lτ1 = lock(1) ∗ [[ ] ↦
{⟨1, [ ]⟩}]. As the domain of the initial monitor lookup consists only of [ ] this collapse to

Lτ1 = [ ]† Add1† [[ ]↦ next([ ],lock(1),{⟨1, [ ]⟩})]
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We will now construct this first monitor lookup by considering every step involved. We will

then omit most of these details when constructing the remainder of the monitor lookups.

Firstly, let us compute the extending monitor lookup Add1 as

Add1 = [(θ′ ↦ C ′) ∈ extend(lock(1), [ ],{⟨1, [ ]⟩}) ∣ θ′ ∉ dom([ ])].

To construct this we must first compute extend(lock(1), [ ],{⟨1, [ ]⟩}), which is given as

[θ′ ↦ next(θ′,lock(1),{⟨1, [ ]⟩}) ∣ θ′ ∈ extensions([ ],lock(1))]

i.e. the mapping of extending bindings to their next configurations. Let us compute the

extending bindings

extensions([ ],lock(1) = {θ†θ′ ∣ θ′ ∈ all from([ ],lock(1) ∧ θ′ ≠ [ ]}

This requires us to construct the the closed set of from:

from([ ],lock(1)) = {quantified(match(lock(1),b))
∣ b ∈ A([ ]) ∧matches(lock(1),b)

As

A([ ]) = {lock(l1),lock(l2),unlock(l1),unlock(l2)}

we can construct the extending bindings as follows:

from([ ],lock(1)) = {[l1 ↦ 1], [l2 ↦ 1]}
all from([ ],lock(1)) = {[l1 ↦ 1], [l2 ↦ 1], [l1 ↦ 1, l2 ↦ 1]}
extensions([ ],lock(1)) = {[l1 ↦ 1], [l2 ↦ 1], [l1 ↦ 1, l2 ↦ 1]}

Note that the closure of from([ ],lock(1)) includes the binding [l1 ↦ 1, l2 ↦ 1] - this is necessary

as without it we would not have every total binding required for deciding acceptance.

The map extend(lock(1), [ ],{⟨1, [ ]⟩} is therefore

⎡⎢⎢⎢⎢⎢⎢⎣

[l1 ↦ 1] ↦ next([l1 ↦ 1,lock(1),{⟨1, [ ]⟩})
[l2 ↦ 1] ↦ next([l2 ↦ 1,lock(1),{⟨1, [ ]⟩})
[l1 ↦ 1, l2 ↦ 1] ↦ next([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩})

⎤⎥⎥⎥⎥⎥⎥⎦

Let us first consider how to construct next([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩}), this next set of

configurations is given by

move([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩} ∪ stay([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩}.

move([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩} = {⟨2, [ ]⟩}
stay([l1 ↦ 1, l2 ↦ 1],lock(1),{⟨1, [ ]⟩} = {}

The set next([l1 ↦ 1],lock(1),{⟨1, [ ]⟩}) is constructed in a similar fashion. We now consider

how to construct next([l2 ↦ 1],lock(1),{⟨1, [ ]⟩}), as before we construct the sets of moving
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and staying configurations.

move([l2 ↦ 1],lock(1),{⟨1, [ ]⟩} = {}
stay([l2 ↦ 1],lock(1),{⟨1, [ ]⟩} = {⟨1, [ ]⟩}

After computing next configurations the map extend(lock(1), [ ],{⟨1, [ ]⟩}, and therefore

the map Add1, is
⎡⎢⎢⎢⎢⎢⎢⎣

[l1 ↦ 1] ↦ {⟨2, [ ]⟩}
[l2 ↦ 1] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 1] ↦ {⟨2, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎦
We must now construct next([ ],lock(1),{⟨1, [ ]⟩}). As the event is not relevant to [ ] we

stay in the same configuration.

move([ ],lock(1),{⟨1, [ ]⟩} = {}
stay([ ],lock(1),{⟨1, [ ]⟩} = {⟨1, [ ]⟩}

This finally gives

Lτ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1] ↦ {⟨2, [ ]⟩}
[l2 ↦ 1] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 1] ↦ {⟨2, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We will now construct the rest of the monitor lookups for τ , but will not take such a detailed

approach. The monitor lookup Lτ2 = lock(2) ∗Lτ1 is constructed by linearising the domain of

Lτ1 and building a new monitor lookup. As the domain of Lτ1 is partially ordered as follows

[ ]

[l1 ↦ 1] [l2 ↦ 1])

[l1 ↦ 1, l2 ↦ 1]

there are two possible linerisations and it does not matter which we pick. Let us choose

[l1 ↦ 1, l2 ↦ 1], [l1 ↦ 1], [l2 ↦ 1], [ ].

and build up a new monitor lookup by extending each binding in turn. The incoming event

is not relevant to any of these bindings so we do not consider the value of next as it will not

change the configurations - but we do look at binding extensions.

• As [l1 ↦ 1, l2 ↦ 1] is total there are no binding extensions and extend(lock(2), [l1 ↦
1, l2 ↦ 1],{⟨2, [ ]⟩}) is empty.

• There is one binding extension of [l1 ↦ 1], which is [l1 ↦ 1, l2 ↦ 2], we then compute

next([l1 ↦ 1, l2 ↦ 2],lock(2),{⟨2, [ ], ⟩}) = {⟨3, [ ]⟩}

• There is one binding extension of [l1 ↦ 2], which is [l1 ↦ 2, l2 ↦ 1], we then compute

next([l1 ↦ 2, l2 ↦ 1],lock(2),{⟨1, [ ], ⟩}) = {⟨2, [ ]⟩}
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• There are three binding extensions of [ ] - [l1 ↦ 2], [l2 ↦ 2] and [l1 ↦ 2, l2 ↦ 2], each of

them having a next configuration ending in state 2.

This gives us

Lτ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1] ↦ {⟨2, [ ]⟩}
[l2 ↦ 1] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 1] ↦ {⟨2, [ ]⟩}
[l1 ↦ 2] ↦ {⟨2, [ ]⟩}
[l2 ↦ 2] ↦ {⟨1, [ ]⟩}
[l1 ↦ 2, l2 ↦ 2] ↦ {⟨2, [ ]⟩}
[l1 ↦ 1, l2 ↦ 2] ↦ {⟨3, [ ]⟩}
[l1 ↦ 2, l2 ↦ 1] ↦ {⟨2, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now compute Lτ3 = unlock(2) ∗ Lτ2 . In this case there are no binding extensions but

the event is relevant to the bindings that map l1 or l2 to 2. Out of these it is only those that

map l1 to 2 that are updated - as they are in state 2 and the unlock event takes them back to

state 1. This gives us

Lτ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1] ↦ {⟨2, [ ]⟩}
[l2 ↦ 1] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 1] ↦ {⟨2, [ ]⟩}
[l1 ↦ 2] ↦ {⟨1, [ ]⟩}
[l2 ↦ 2] ↦ {⟨1, [ ]⟩}
[l1 ↦ 2, l2 ↦ 2] ↦ {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 2] ↦ {⟨3, [ ]⟩}
[l1 ↦ 2, l2 ↦ 1] ↦ {⟨1, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The last four monitoring states are computed in a similar way to give the following config-

urations for bindings. Note that when we introduce a third lock the binding extensions for the

first two locks extend existing configurations, for example when introducing [l1 ↦ 2, l2 ↦ 3] the

configurations for [l1 ↦ 2] are used, in this case {⟨2, [ ]⟩}.
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Lτ4 Lτ5 Lτ6 Lτ7

Binding lock(2) ∗Lτ3 unlock(1) ∗Lτ4 lock(3) ∗Lτ5 lock(1) ∗Lτ6
[ ] {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩}
[l1 ↦ 1] {⟨2, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨2, [ ]⟩}
[l2 ↦ 1] {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩}
[l1 ↦ 1, l2 ↦ 1] {⟨2, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨2, [ ]⟩}
[l1 ↦ 2] {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨2, [ ]⟩}
[l2 ↦ 2] {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩} {⟨1, [ ]⟩}
[l1 ↦ 2, l2 ↦ 2] {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨2, [ ]⟩}
[l1 ↦ 1, l2 ↦ 2] {⟨4, [ ]⟩} {⟨4, [ ]⟩} {⟨4, [ ]⟩} {⟨5, [ ]⟩}
[l1 ↦ 2, l2 ↦ 1] {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨2, [ ]⟩} {⟨3, [ ]⟩}
[l1 ↦ 3] - - {⟨2, [ ]⟩} {⟨2, [ ]⟩}
[l2 ↦ 3] - - {⟨1, [ ]⟩} {⟨1, [ ]⟩}
[l1 ↦ 3, l2 ↦ 3] - - {⟨2, [ ]⟩} {⟨2, [ ]⟩}
[l1 ↦ 1, l2 ↦ 3] - - {⟨1, [ ]⟩} {⟨2, [ ]⟩}
[l1 ↦ 3, l2 ↦ 1] - - {⟨2, [ ]⟩} {⟨3, [ ]⟩}
[l1 ↦ 2, l2 ↦ 3] - - {⟨3, [ ]⟩} {⟨3, [ ]⟩}
[l1 ↦ 3, l2 ↦ 2] - - {⟨2, [ ]⟩} {⟨2, [ ]⟩}

Let us now consider the acceptance of monitor lookups Lτ1 and Lτ7 - the process is the same

for the lookups in-between. Firstly we are asking if

Lτ1 ⊧[ ] (∀l1 ∶ true)(∀l2 ∶ l1 ≠ l2)

to decide this we must construct DLτ1
= [l1 ↦ {1}, l2 ↦ {1}]. We can then unfold Def. 43 to

read

for all d in {1} if (true)([ ]†[l1 ↦ d]) then Lτ1 ⊧[l1↦1] (∀l2 ∶ l1 ≠ l2)

which becomes Lτ1 ⊧[l1↦1] (∀l2 ∶ l1 ≠ l2), this itself unfolds to read

for all d in {1} if (l1 ≠ l2)([l1 ↦ 1]†[l2 ↦ d]) then Lτ1 ⊧[l1↦1] (∀l2 ∶ l1 ≠ l2)

and as the guard is false the universal quantification is empty and therefore true and the verdict

returned is true.

Now let us ask

Lτ7 ⊧[ ] (∀l1 ∶ true)(∀l2 ∶ l1 ≠ l2)

again we construct DLτ7
= [l1 ↦ {1,2,3}, l2 ↦ {1,2,3}] and this time we unfold Def. 43 once so

that our statement is true iff all of the below hold:

Lτ7 ⊧[l1↦1] (∀l2 ∶ l1 ≠ l2)
Lτ7 ⊧[l1↦2] (∀l2 ∶ l1 ≠ l2)
Lτ7 ⊧[l1↦3] (∀l2 ∶ l1 ≠ l2)
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1 2 3

∀resource∀task

grant(task , resource)

release(task , resource)

grant(other task , resource)

Figure A.10: QEA specifying that a task is granted a resource must release that resource and
no other task may be granted the resource before this.

which can be expanded to become the following:

Lτ7 ⊧[l1↦1,l2↦2] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 1, l2 ↦ 2]) = {⟨5, [ ]⟩} ∶ q ∈ {1,2,3,4}
Lτ7 ⊧[l1↦1,l2↦3] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 1, l2 ↦ 3]) = {⟨2, [ ]⟩} ∶ q ∈ {1,2,3,4}
Lτ7 ⊧[l1↦2,l2↦1] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 2, l2 ↦ 1]) = {⟨3, [ ]⟩} ∶ q ∈ {1,2,3,4}
Lτ7 ⊧[l1↦2,l2↦3] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 2, l2 ↦ 3]) = {⟨3, [ ]⟩} ∶ q ∈ {1,2,3,4}
Lτ7 ⊧[l1↦3,l2↦1] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 3, l2 ↦ 1]) = {⟨3, [ ]⟩} ∶ q ∈ {1,2,3,4}
Lτ7 ⊧[l1↦3,l2↦2] ε iff ∃⟨q,ϕ⟩ ∈ Lτ7([l1 ↦ 3, l2 ↦ 2]) = {⟨2, [ ]⟩} ∶ q ∈ {1,2,3,4}

All of which but the first are true, but as the first is false the verdict is false as the universal

quantification requires this to hold for all total bindings.

A.2.3 A worked example for the basic algorithm

We demonstrate the application of the basic algorithm (defined in Setion 5.6) to a QEA and a

trace.

Let us use the GrantRelease rover property, which we will refer to as GR, introduced in

Sec. A.4 and reproduced in Fig. A.10. Consider the following (incorrect) trace

grant(1,A).grant(2,B).grant(1,A).grant(1,B)

We will begin by considering steps in detail, but will focus only on the interesting points as we

go on.

The first step is to run init in Algorithm 2 that will store the QEA and initialise the monitor

lookup L to be

L = [ [ ] ↦ {⟨1, [ ]⟩} ] .

Next is a call of Step(grant(1,A)), which leads to a call of Update(grant(1,A)) in Algorithm 4.

The first step of this function is a call of Matching(grant(1,A)), which computes the closed

set of bindings that match grant(1,A) with the alphabet of GR, giving

B = {[resource ↦ A], [task ↦ 1], [task ↦ 1, resource ↦ A]}.

Next we step through the domain of L, which currently only contains the empty binding, and

attempt to extend it with each binding in B and add it to L, using Next to compute the
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appropriate configurations. This leads to the following monitor lookup.

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ ] ↦ {⟨1, [ ]⟩}
[resource ↦ A] ↦ {⟨1, [ ]⟩}
[task ↦ 1] ↦ {⟨1, [ ]⟩}
[task ↦ 1, resource ↦ A] ↦ {⟨2, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us briefly consider how Next([task ↦ 1, resource ↦ A],grant(1,A),{⟨1, [ ]⟩}) computed

the configuration {⟨2, [ ]⟩}. This concerns the Next function in Algorithm 1 on page 100.

First the set next is initialised to the empty set, then we consider each configuration in

C = {⟨1, [ ]⟩} in turn - here there is only one configuration. Then we consider each transition

in GR that begins at the relevant state. For state 1 there are two such transitions - the explicit

(1,grant(task , resource), true, id,2) and the implicit (1,release(task , resource), true, id, q�).
Only the event of the first transition matches, and as we apply [task ↦ 1, resource ↦ A] as a

substitution to grant(task , resource) the binding ϕ′ is empty. As quantified(ϕ′) = [ ] and the

true guard is always true we add ⟨2, [ ]⟩ to the next set. As all transitions are considered, and

a transition has been taken, this is the set of configurations we return.

Now let us consider what happens when we apply Next in a case where the event is not

relevant to the binding, for example Next([task ↦ 1], grant(1,A), {⟨1, [ ]⟩}). We follow

the same process as for above but in this case we only apply the substitution [task ↦ 1] to

grant(task , resource), making ϕ′ = [resource ↦ A]. In this case quantified(ϕ′) = [resource ↦ A]
and no transitions are taken and therefore the configuration ⟨q, [ ]⟩ is added back into the next

set.

We then run the Check function. This first computes the domain to be [task ↦ {1}, resource ↦
{A}] and then calls Checking(∀resource,∀task , [ ]). This produces two recursive calls of

Checking(∀task , [resource ↦ A]) and Checking(ε, [task ↦ 1, resource ↦ A]) before return-

ing False as state 2 is not an accepting state.

This completes the processing of the first event by returning False. We then process the

next event with a call of Step(grant(2,B)). This proceeds in a similar way as with the first

event by first computing

B = {[resource ↦ B], [task ↦ 2], [task ↦ 2, resource ↦ B]}

and then stepping through the bindings of L from biggest to smallest again. This time there

are four bindings in L, that lead to the following values for B′ - note that if we had iterated

over B directly then we would have produced these bindings multiple times.

θ ∈ dom(L) B′

[task ↦ 1, resource ↦ A] {}
[task ↦ 1] {[task ↦ 1, resource ↦ B]}
[resource ↦ A] {[task ↦ 2, resource ↦ A]}
[ ] {[resource ↦ B], [task ↦ 2], [task ↦ 2, resource ↦ B]}

The Next function is called appropriately, i.e. with the configurations of the binding that
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is being extended, to add the following entries to L.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[resource ↦ B] ↦ {⟨1, [ ]⟩}
[task ↦ 2] ↦ {⟨1, [ ]⟩}
[task ↦ 2, resource ↦ B] ↦ {⟨2, [ ]⟩}
[task ↦ 1, resource ↦ B] ↦ {⟨1, [ ]⟩}
[task ↦ 2, resource ↦ A] ↦ {⟨1, [ ]⟩}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Check function is called to give a verdict of False again as of the four total bindings only

two are in an accepting state.

The next event is then processed with a call of Step(grant(1,A)). As with the first event,

we have

B = {[resource ↦ A], [task ↦ 1], [task ↦ 1, resource ↦ A]}

and the we get the following B′ when iterating over the domain of L:

θ ∈ dom(L) B′

[task ↦ 2, resource ↦ B] {}
[task ↦ 1, resource ↦ B] {[task ↦ 1, resource ↦ B]}
[task ↦ 2, resource ↦ A] {[task ↦ 2, resource ↦ A}
[task ↦ 1, resource ↦ A] {[task ↦ 1, resource ↦ A]}
[task ↦ 1] {[task ↦ 1], [task ↦ 1, resource ↦ A]}
[task ↦ 2] {}
[resource ↦ A] {[resource ↦ A], [task ↦ 1, resource ↦ A]}
[resource ↦ B] {}
[ ] {[resource ↦ A], [task ↦ 1], [task ↦ 1, resource ↦ A]}

Only existing bindings are generated but we see that the binding [task ↦ 1, resource ↦ A] is

generated many times. However, as it is an existing binding we only update its entry when we

are considering that existing binding when iterating over the domain of L.

There is only one interesting call to Next here - the call Next([task ↦ 1, resource ↦
A],grant(1,A),{⟨2, [ ]⟩}). Two of the outgoing transitions of state 2 match the event grant(1,A)
leading to the configurations ⟨q�, [ ]⟩ and ⟨3, [other task ↦ 1]⟩ being returned. After processing

this event only one entry in L is updated, that is

[ [task ↦ 1, resource ↦ A] ↦ {⟨q�, [ ]⟩, ⟨3, [other task ↦ 1]⟩} ]

The final event is processed with a call to Step(grant(1,B)). This leads to the matching

bindings

B = {[resource ↦ B], [task ↦ 1], [task ↦ 1, resource ↦ B]}

and the following extending bindings:
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θ ∈ dom(L) B′

[task ↦ 2, resource ↦ B] {[task ↦ 2, resource ↦ B]}
[task ↦ 1, resource ↦ B] {[task ↦ 1, resource ↦ B]}
[task ↦ 2, resource ↦ A] {}
[task ↦ 1, resource ↦ A] {[task ↦ 1, resource ↦ A}
[task ↦ 1] {}
[task ↦ 2] {[task ↦ 1], [task ↦ 1, resource ↦ B]}
[resource ↦ A] {}
[resource ↦ B] {[resource ↦ B], [task ↦ 1, resource ↦ B]}
[ ] {[resource ↦ B], [task ↦ 1], [task ↦ 1, resource ↦ B]}

Now the interesting case is Next([task ↦ 2, resource ↦ B],grant(1,B),{⟨2, [ ]⟩) as this is

a case where task 1 is granted a resource currently held by task 2. Consequently we make the

following update to L:

[ [task ↦ 2, resource ↦ B] ↦ {⟨3, [other task ↦ 1]⟩} ]

The final call of Check will now return False as when it creates the binding [task ↦
2, resource ↦ B] in Checking it will find that there are no configurations in M([task ↦
2, resource ↦ B]) with an accepting state.

A.2.4 Demonstrating incremental checking

To demonstrate how the incremental checking process (introduced in Section 6.2) works consider

the quantifier list ∀x.x > 0,∀y,∃z - the QEA it is attached to does not matter. Let us start in

the situation where the domain is [x ↦ {1,2,3}, y ↦ {4,5,6}, z ↦ {7,8}] and enough bindings

accepting for the trace to be accepting. A checking structure for this situation appears at the

top of Figure A.11, let us call this Γ1.

Now let us update the binding θ1 = [x ↦ 1, y ↦ 4, z ↦ 7] with a set of states S1 that

is not accepting. We evaluate update(Γ1,0, θ1, S1). The first two checks fail as 0 ≠ 3 and

1 > 0 so we extract the leftmost subtree of Γ1 as Γ2 and recursively call update(Γ2,1, θ1, S1).
We repeat this process twice to label the leftmost subtree of Γ2 as Γ3 and recursively call

update(Γ3,2, θ1, S1) then update(Leaf of true,3, θ1, S1). Now as we have reached the bottom

of the tree we rebuild the checking state by first returning Leaf of false. At the previous level

(∃z) we add this leaf to the map appropriately and return it in a new node with false as there

are now no subtree with a true value. This continues back up the Γ1 to produce a checking

structure identical to Γ1, except with the highlighted result ( in Fig. A.11) changed to �.

Now consider adding the binding θ2 = [x ↦ 0, y ↦ 4, z ↦ 7]. As the global guard x > 0 does

not hold we do not update the checking structure and the binding θ2 is ignored - this is okay

as this is what would happen in the normal evaluation of the acceptance relation.
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∀x ∶ ⊺

∀y ∶ ⊺∀y ∶ ⊺ ∀y ∶ ⊺
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Figure A.11: An example of an incremental checking data structure.

A.3 Java Library Properties

Here we present QEAs describing properties of the Java standard library i.e. ordering con-

straints on method calls found in the library. In some cases we will use method names as

events directly and in others we will map sets of method names to a single event name to make

specifications more concise.

Most of these properties have been described within the context of runtime verification

elsewhere, and later we will make a comparison with these alternative specification languages.

We call this class of properties API properties as they describe the correct usage of an

API .This is a useful class of properties as it reflects properties that can be used without full

knowledge of the program using the API.

A.3.1 Communicating

Let us first consider properties about classes in java.io and java.net i.e., those used for

communication via writing to and reading from files or sockets.

Reader and Writer.

This is a very straight-forward property related to the usage of java.io.Writer or java.io.Reader

- or any class that subclass them. The property is that a writer or reader should not be used

after it has been closed. To specify this property we map the following events to methods of

Writer and Reader.

Event Methods

new(f) Writer.new(..) and Reader+.new(..)

use(f) Writer.write(..), Writer+.flush(), Reader.read()

close(f) Writer.close(..) and Reader.close(..)

garbage(f) Writer.finalize(..) and Reader.finalize(..)

The QEA for this property is given in Fig. A.12. Note that a writer or reader cannot be reused

once closed. In this QEA we have included garbage collection of the object as an event (but

do not later). This leads to an accepting skip state with no outgoing transitions, which can be
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1 2 3 4

∀f ∶ WriterOrReader

new(f)
use(f)

close(f)
close(f)

garbage(f)

garbage(f)

Figure A.12: QEA for proper usage of java.io.Writer and java.io.Reader (SafeWriter-
Reader)

thought of as a special state that indicates that failure cannot occur. Later (Sec 6.6) we will

discuss an optimization that will allow us to ‘forget’ about bindings when they reach such a

state - tools monitoring Java objects generally do this implicitly.

Socket Usage.

This property is about using a socket, or any input/output streams connected to it, after it has

been closed. Again, we begin by relating methods in the Java standard library to events.

Event Methods Description

output(s, o) SocketImpl.getOutputStream Creating an OutputStream o from a

SocketImpl s

close(s) SocketImpl.close and

SocketImpl.shutdownOutput

Closing the socket s or indicat-

ing we should close its connected

OutputStream

use(o) OutputStream.* Use OutputStream o

connect(s) SocketImpl.connect and

SocketImpl.bind

Connects or binds a socket to an

address

There are two properties we want to capture - that an output stream connected to a socket is

not used after the socket is closed and that a socket is not connected to or bound to an address

after it is closed. Fig A.13 gives a QEA for this property. There is a symmetric property for

InputStream that does not relate the method shutdownOutput with the close event. Note the

use of a partial quantifier for the output stream as we want to detect a failure even if a socket is

not connected to an output stream. Note also that if the initial state were not a skip state then

an unconnected socket and output stream could lead to failure - consider the following trace.

use(M).connect(A,N).use(N).close(A)

According to the quantifiers, the binding [s ↦ A,o ↦ M] must be considered. The demon-

strates that care should be taken when using multiple quantifications to ensure that the correct

relation between them is captured. An alternative, and preferred, approach would be to use

the connected global guard.
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1 2 3 5

4

∀s ∶ SocketImpl∀̂o ∶ OutputStream

output(s, o) close(s) use(o)

close(s) connect(s)

Figure A.13: QEA for proper usage of java.net.SocketImpl and java.io.OutputStream

(SocketUsage)

1 2 3

4

∀t∀f

enter(t)
depth++

,

exit(t)
depth−−

open(t, f)
f depth∶=depth

enter(t)
depth++

,

exit(t)
depth−−

close(t, f)depth==f depth

close(t, f)depth≠f depth

Figure A.14: A QEA for the safe opening and closing of files within the same method.

CloseFiles.

This property is about files and represents a good software design style that says that if a

resource is opened in a method it should also be closed in that method. Here we consider the

use of files as a resource and capture the property that if a file is opened for reading or writing

in a method then it should be closed in that method. To do this we need to capture not only

when a file is ‘opened’ and ‘closed’ but also the start and end of method calls - here we track

the method calls by each thread separately. Therefore, the events are as follows.

Event Methods

enter(t) Start of any method by thread t

exit(t) End of any method by thread t

open(t, f) Writer.new(..) and Reader.new(..) by t

close(t, f) Writer.close(..) and Reader.close(..) by t

Note that we capture the opening of a file as the creation of a reader or writer. A QEA for

this property is given in Fig. A.14. This is a context-free property captured by the following

grammar.

S → SA ∣ ε
A → Aenter(t)Aexit(t) ∣ Aopen(t, f)Aclose(t, f) ∣ ε

We capture this in QEA by keeping track of the depth of the current method call stack using

the depth variable and storing the depth at which the file is opened in the f depth variable.
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1 2

∀i next(i)
remove(c)

next(i)

Figure A.15: A QEA for the safe removal of objects using iterators.

A.3.2 Collections usage

Here we consider properties about collections in java.util. These are the most common form

of API specifications to consider as collections often have some inherent state attached to them

that precludes certain actions being performed on them. Here we also see a set of properties

considering multiple objects where one collection is constructed from another.

Iterator Usage.

Iterators are objects which walk over a collection. The following events map to methods in

java.util.Collection, java.util.Map and java.util.Iterator:

Event Methods Description

create(c) Collection.new Constructs a collection

iterator(c, i) Collection.iterator Constructs on iterator from a collec-

tion

connect(c1, c2) Map.entrySet, Map.keySet,

Map.values

Constructs a collection from a map

update(c) Updates the contents of a collection

hasNext(i, b) Iterator.hasNext Returns false if the iterator is finished

and true otherwise

next(i) Iterator.next Returns the next object

remove(i) Iterator.remove Removes the current object from the

underlying collection

We have chosen not to include the objects added to or removed from the collection or returned by

next as they are not interesting to the specifications considered here. The properties considered

are:

• HasNext - This property states that every call to next should be ‘guarded’ by a call to

hasNext to ensure that a next object exists. We have already seen this in Sec. 3.3.4 in

Fig. 3.2 on page 61.

• RemoveOnce - This property states that for every iterator we can only have one remove

per call to next. A QEA for this property is given in Fig. A.15.

• UnsafeIter - This property states that if an iterator is created from a collection then it

should not be used after that collection has been updated. A QEA for the property is

given in Fig. A.16.
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1 3 4 5

∀c∀i

iterator(c, i) update(c) use(i)

Figure A.16: A QEA for the safe usage of iterators created from collections.

1 2 3 4 5

∀c1∀c2∀i

connect(c1, c2) iterator(c2, i) update(c1) use(i)

Figure A.17: A QEA for the safe usage of iterators created from collections created from maps.

• UnsafeMapIter - This property states that if a set is created from a map (of keys or

values) and an iterator is created from this set then if the map is later updated then the

iterator should no longer be used. A QEA for this property is given in Fig. A.17.

Hash Persistence.

Next we consider data structures that use hashing i.e. HashSet and HashMap. These datas-

tructures work by hashing some input for efficient storage using the object’s hashCode, a value

that every object in Java has. However, hashcodes are computed by a method and are not

necessarily consistent. Therefore, a property we would like to capture about datastructures

that using hashing is that an object’s hashcode remains persistent whilst it is in the collection.

Therefore, the events we monitor are as follows.

Event Methods

add(d, o) Add to datastructure i.e. HashMap.put

observe(d, o) Observe in datastructure i.e. HashMap.get

remove(d, o) Remove from datastructure i.e. HashMap.remove

A QEA for this property is given in Fig. A.18, this assumes that our guard and assignment

languages have access to the Java hashCode function - otherwise we would need to compute

this prior to constructing the event and include it in the event as a free variable.

A.3.3 Concurrency

Let us now consider properties about classes that can be found in java.util.concurrent.

Synchronized collections.

Firstly let us consider the problem of unsynchronized access to synchronized collections - this

can lead to potential problems such as inconsistent internal state of these collections. To monitor

properties related to such access we monitor the following events.
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1 2

∀d∀o add(d, o)
h∶=o.hashCode()

observe(d, o)h==o.hashCode()

remove(d, o)h==o.hashCode()

Figure A.18: A QEA for the safe usage of hashing data structures.

1 2 3

∀c

create(c, ) access(c)

Figure A.19: A QEA for the safe usage of synchronized collections.

Event Methods

create(c1, c2) Create a synchronized collection from an unsynchronized one i.e.

Collections.synchronizedCollection

access(c) Use a collection i.e. Collection.add but also specific methods

such as List.get

iterator(c, i) Collection.Iterator

use(i) Use an iterator i.e. Iterator.next, Iterator.next

The properties we consider are as follows.

• LeakingSync - This property states that If a synchronized collection is created then

the original one should not be used. The notion is that the synchronized collection was

created to protect accesses to the original collection. A QEA for this property is given in

Fig. A.19. Note that we do not need to record the synchronized collection, only the fact

that a synchronized collection was created.

• UnsafeSyncCollection - This property states that we should not iterate over a syn-

chronized collection without holding the lock for that collection. A QEA for this property

is given in Fig. A.20. This property assumes that the guard language has access to the

Java method Thread.holdsLock - if it did not then this information would have to be

included in the event. A similar property can be created for maps, as we did with iterators

previously, as given in Fig. A.21.

Locks.

We consider two properties concerning the locking and unlocking of object monitors. We

monitor two events - lock(t, o) and unlock(t, o) when an object o is locked or unlocked by a

thread t.

• Mutual Exclusion - This property states that an object can be locked by at most one

thread at any point. A QEA for this property has been given previously in Sec. A.1.3 in

Fig. A.6 on page 329.
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1 2

3

4 5

∀c∀i

create( , c)
iterator(i)¬Thread.holdsLock(c)

iterator(i) Thread.holdsLock(c)

use(i)¬Thread.holdsLock(c)

Figure A.20: A QEA for the safe iteration over synchronized collections.

1 2 3

4

5 6

∀m∀c∀i

create( ,m) create(m,c)
iterator(i)¬Thread.holdsLock(c)

iterator(i) Thread.holdsLock(c)

use(i)¬Thread.holdsLock(c)

Figure A.21: A QEA for the safe iteration over synchronized maps.

• Lock Ordering - This property states that if two locks are locked in a given order at

some point in the program’s execution then they should not be locked in the reverse

order at any other point in the program’s execution. A QEA for this property is given in

Fig. A.22.

A.4 Planetary Rover System

We build up a hypothetical system that involves the coordination of a set of planetary rovers

and then show how we can use QEA to write certain properties of this system. Many of

the specifications in this section are taken from work carried out in collaboration with Klaus

Havelund on a tutorial on Runtime Verification at Marktoberdorf 2012 and some can be found

in the related book chapter [FHR13]. We have already discussed some example in this setting

- see page 61.

A.4.1 Description of system

In this section we briefly introduce the hypothetical planetary rover platform. In this system

we have a number of inter-communicating autonomous rovers operating on a remote planet

surface (for example, Mars), a number of satellites orbiting the planet used to relay messages

from a base station on the home planet, Earth.

We consider two forms of behaviour:
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1 2 3 4 5

∀l1∀l2.l1 ≠ l2

lock(l1)

unlock(l1)

lock(l2) lock(l2)

unlock(l2)

lock(l1)

Figure A.22: A QEA specifying that locks should be taken in a consistent order, from [Sto10]

• The internal operations carried out by a rover to achieve given tasks.

• The external communication between rovers, orbitals and the ground station.

We discuss these two forms in the following.

Internal.

The rover runs tasks that use resources. A scheduler manages the task execution and resource

allocation. A task may handle an instrument on board of the rover, such as a camera. Tasks

are commanded by the scheduler and report back whether they succeed or fail. In addition, the

scheduler manages resources (the antenna for example), which can be requested by tasks, and

granted if available and are not in conflict with other granted resources. Tasks must eventually

cancel (hand back) resources they have been granted. Conflicting resources can have different

priorities. A request for a resource with a higher priority than an already granted resource

causes the lower priority resource to be rescinded (the task owning it is asked to cancel it).

A command is scheduled onto a task, and is only ran once with a unique identifier. A

task can be granted a resource, or asked to cancel it again (the resource is rescinded). Tasks

report success or failure back to the scheduler, as well as request and cancel resources. Two

resources can be declared as being in conflict with each other. Furthermore, one resource r1

can be declared as having higher priority than another conflicting resource r2. Finally, the

scheduler can be put to sleep during the dark nights on the foreign planet. The message

sequence diagram in Figure A.23 illustrates a possible sequence of communication events: the

scheduler commands a task to perform a job, the task then requests a resource r1 which has

higher priority than a conflicting resource r2 already granted to another task, the other task is

therefore asked to rescind r2, which it does, after which the resource r1 is granted to the first

task, which subsequently after done job then hands back the resource r1, and reports success.

Therefore, the events are interest are:

• schedule(t, c) - command c is scheduled on task t.

• finish(c) - command c successfully completes.

• request(t, r) - task t requests resource r.

• grant(t, r) - task t is granted resource r.

• deny(t, r) - a request for resource r by task t is denied.

• cancel(t, r) - task t releases the granted resource r.
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Figure A.23: Message sequence diagram illustrating a possible interaction between scheduler
and two tasks.

• rescind(t, r) - task t is asked to cancel resource r.

• conflict(r1, r2) - resources r1 and r2 are in conflict.

• priority(r1, r2) - resource r1 has higher priority than resource r2. Note that this implies

r1 is in conflict with r2, without the need for this to be given explicitly.

External.

Now let us consider external behaviour. The different entities need to communicate with each

other to achieve different tasks. We consider two types of communication - that between

planetary rovers and the base station, and the intercommunication between rovers and satellites.

Fig. A.24 outlines this communication.

The primary form of communication is that between the base station and the planetary

rovers (directed via the satellites), this involves the communication of tasks to individual rovers

in the form of commands. We consider the point-to-point communication and therefore elide

information about the individual rover being targeted i.e. we assume that these low-level

mechanisms function correctly. Rovers and the base station communicate using the following

messages:

• com(id, name, payload, t) - command id given with name and payload

• ack(id, t) - command id acknowledged

• suc(id, result, t) - command id succeeds with result

• fail(id, reason, t) - command id fails with reason

Every messages is given a timestamp t there is an additional message that occurs at startup

which is set ack timeout(t) that sets the required acknowledgment window to t units of time.
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Figure A.24: The different communication

As well as commands sent between the base station and rovers we also consider short-range

intercommunication between rovers and satellites. Later we draw distinctions between whether

a rover or satellite is sending the message, but these messages all take the following form:

• ping(x1, x2) - entity x1 sends a ping request to entity x2

• ack(x1, x2) - entity x1 responds to the ping request of entity x2

• send(x1, x2,msg) - entity x1 sends entity x2 the message msg

• ack(x1, x2, h) - entity x1 acknowledges a message sent by entity x2 using a hash value h

of the sent message

A.4.2 Properties of internal behaviour

We define the following properties of a rover’s internal behaviour.

• GrantCancel. Grant and cancel actions on a resource by a task should alternate, be-

ginning with a grant and ending with a cancel and a resource should only be granted to a

single task at any one time. Fig. A.25 gives two equivalent QEAs for this property - the

first using two quantified variables, and the second using one.

• Resource lifecycle. This property describes the allowing actions on a resource. A

resource can be requested and then either denied or granted. When granted it can be re-

scinded multiple times before it is canceled. A QEA for this property is given in Fig. A.26.
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1 2 3

∀t∀r
grant(t, r)

cancel(t, r)

grant( , r)

1 2 3

∀r
grant(t1, r)

cancel(t2, r) t1=t2

grant( , r)

Figure A.25: Two equivalent QEAs for the GrantCancel property.

1 2 3

∀r
request( , r)

deny( , r)

grant( , r)

cancel( , r)

rescind( , r)

Figure A.26: A QEA for the ResourceLifecycle property.

• ReleaseResource. If a resource is granted during the execution of a command then it

should be released before the command succeeds. A QEA for this property is given in

Fig. A.27.

• Respecting resource conflicts. This property states that conflicting resources cannot

be granted at the same time. We present two alternative QEA for capturing this property.

The first is given in Fig. A.28 and states that for every pair of resources if they are in

conflict then if the first is granted the second cannot be granted before the first is canceled.

Note that for every pair of resources A and B there will be two instantiations of this QEA

- one for r1 = A, r2 = B and one for r1 = B, r2 = A. The second QEA is given in Fig. A.29

and uses a single quantified variable. This is quantified over a single resource r1 and first

collects a set of conflicting resources and then whenever a grant occurs whilst r1 is granted

it checks to ensure the newly granted resource is not conflicting. The second QEA has a

lower monitoring complexity as it produces far fewer bindings - as discussed later.

• Respecting resource priorities. Let us begin by noting that this is a very complex

property to specify. The property is that if a resource r2 has higher priority than resource

1 2 3 4

∀t∀c∀r

schedule(t, c)
grant(t, r)

cancel(t, r)

finish(c)

Figure A.27: A QEA for the ReleaseResource property.
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1 2 3 4

∀r1∀r2
conflict(r1, r2),
conflict(r2, r1)

grant( , r1)

cancel( , r1)

grant( , r2)

Figure A.28: The RespectConflicts property using two quantified variables.

1 2 3 4

∀r1

conflict(r1, r2) rs=Set(r2)

conflict(r1, r2) rs+=r2
grant( , r1)

cancel( , r1)

grant( , r2) r2∈rs

Figure A.29: The RespectConflicts property using one quantified variable.

r1 and r2 is requested whilst r1 is granted then r1 should be rescinded but only if there is

no resource r3 with higher priority than r2 that is also currently granted. It is this second

aspect that introduces the complexity, as we need to keep track of the granted status of all

resources with higher priority than resource r2. Furthermore, note that priority is not a

total order, and is not even transitive i.e. r3 > r2 and r2 > r1 does not imply r3 > r1. The

QEA for this property is given in Fig. A.30. This works by building a set rs of resources

with higher priority than r2 and using this to check whether such a resource is currently

granted. The transitions between states 2 and 3 (and 5 and 8) track a set G of granted

resources and ensure that a request for resource r2 is denied if this set is not empty. The

expected behaviour is then given by the path through states 2, 5, 6 and 7. Note that state

10 is used to record the fact that when resource r2 is granted neither r1 or any resource

in rs can be granted. Finally, note that we do not consider the case where r2 should be

rescinded, as this will be covered in the case where the value for r2 is bound to r1.

A.4.3 Properties of external behaviour

Here we consider properties of external behaviour. These describe the accepted communication

protocols between different entities. We first consider the communication between the base

station and planetary rovers, many of these have been considered previously:

• Exactly one success. Each command succeeds exactly once. A QEA for this property

is given in Fig. A.31. Note that the use of next states preclude the behaviour with two

suc events.

• Nested commands. This property was described in Sec. 3.3.4 and a QEA for the

property was given in Fig. 3.3 on page 61. Note that this QEA only uses the command

identifier part of the com and suc events.

• Increasing command identifiers. To ensure that every command is given a unique



352 APPENDIX A. FURTHER EXAMPLES
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∀r1∀r2

priority(r2, r1)

priority(r3, r2) rs+=r3

priority(r3, r2) rs+=r3

grant( , r3) r3∈rsG+=r3

cancel( , r3)G={r3}G−=r3

grant( , r3) r3∈rsG+=r3
,

cancel( , r3) r3∈G∧∣G∣>1
G−=r3

request( , r2)

deny( , r2)

grant( , r1)

cancel( , r1)

request( , r2)

rescind( , r1)

cancel( , r1)

grant( , r3) r3∈rsG+=r3

cancel( , r3)G={r3}G−=r3

grant( , r3) r3∈rsG+=r3
,

cancel( , r3) r3∈G∧∣G∣>1
G−=r3
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e
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t
(
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2
)

deny( , r2)

grant( , r2)
cancel( , r2)

grant( , r3) r3∉rs ,cancel( , r3) r3∉rs

Figure A.30: A QEA for the RespectPriorities property.

1 2

3

4

∀c

com(c, , , )suc(c, , )

fail(c, , )

Figure A.31: A QEA for the ExactlyOnceSuccess property.
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1 2
com(c1, , , )

com(c2, , ) c2>c1
c1∶=c2

Figure A.32: A QEA for the IncreasingIdentifiers property.
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∀c

set ack timeout(m)

com(c, n1, p1, t1)

ack(c, t2) t2<m ,com( , n2, p2, t2)n1=n2∧p1=p2∧(t2−t1)<2m

Figure A.33: A QEA for the CommandAcknowledgements property.

identifier we enforce the stricter policy that identifiers are strictly increasing. A quantifier-

free QEA for this property is given in Fig. A.32.

• CommandAcknowledgements. Every command should be acknowledged within a

given amount of time m, otherwise a command with the same name and payload should

be sent within 2m. A QEA for this property is given in Fig. A.33. Note that this QEA

has one disadvantage to the event-driven approach of QEA. If we pass 2m time units for

a command c and have not seen an acknowledgment or resend we know that the trace

cannot succeed, however, this QEA will only detect failure at the end of the trace i.e. it

cannot differentiate between failure because the condition has not been met and failure

because the condition cannot be met. One possible extension that could address this issue

is the addition of timers that produced an event after a given amount of time.

Next we consider the short-range intercommunication between satellites and planetary

rovers.

• Exists satellite. This property states that every rover can communicate with at least

one satellite. Communication is established via ping and ack messages. A QEA for

this property is given in Fig. A.34 - the assumption is that all ping requests come from

rovers, and all ack replies come from satellites. We can also strip the innermost existential

quantifier using the technique described in Sec. 4.3.2 - giving the QEA in Fig. A.35.

• Exists rover leader. This is an implicit property. We want to state that after a certain

amount of time there is a rover who has successfully communicated with all known rovers.

1 2 3

∀r∃s

ping(r, s) ack(s, r)

Figure A.34: A QEA for the ExistsSatellite property.
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1 2 3

∀r
ping(r, s)

S={s}

ping(r, s)
S+=s

ack(s, r) s∈S

Figure A.35: A QEA for the ExistsSatellite property with the innermost existential quantifier
stripped.

1 2 3

∃r1 ∶ R∀r2 ∶ R

ping(r1, r2) ack(r2, r1)

Figure A.36: A QEA for the ExistsLeader property.

Again, communication is established via ping and ack messages. A QEA for this property

is given in Fig. A.36 - here type variables are used to ensure that the set of rover considers

consists of all rovers that take part in ping or ack messages. This property was previously

explored in Sec. 3.5.1.

• MessageHashCorrect. The hash of a message in an acknowledgment should match

the actual hash of the message. A QEA for this property is given in Fig. A.37. Here

we quantify over communication between entity x1 and entity x2 (in that direction) and

keep track of the set of sent messages. This approach is necessary as we may have two

messages sent before either is acknowledged.

A.5 Comments on style

In this section we use a file system example to explore the different specification styles that

can be used when writing a QEA this builds on the previous two examples taken from such a

setting by introducing the idea of a file usage mode and version number. Consider a file system

where users can open, read, writer, save and close files. Let us assume the system has been

instrumented to generate the following events:

1 2

∀x1∀x2 send(x1, x2,msg)M={msg}

ack(x2, x1, h)M={msg}∧hash(msg)=h

send(x1, x2,msg)M+=msg
,

ack(x2, x1, h) ∃msg∈M ∶hash(msg)=h
M={msg∈M ∣hash(msg)≠h}

Figure A.37: A QEA for the MessageHashCorrect property.
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∀u∀f

open(f,W, , u)

close(f, u)

write(f, u)

read(f, u)
write(f, u)

save(f, , u)

read(f, u)
save(f, , u)

open(f,R, , u)

close(f, u)

read(f, u)
save(f, , u)

Figure A.38: A QEA describing how files should be opened,closed and saved.

Event Description

open(f, r, n, u) User u opens file f in mode r with version number n

close(f, u) User u closes file f

read(f, u) User u reads file f

write(f, u) User u writes to file f

save(f, n, u) User u saves file f with version number n

We consider and specify the following properties of this system.

Using a file.

A file must be opened to be used or closed and cannot be opened if already open. A file can be

opened in read or write mode. If it is opened in read mode it can only be read or saved but if

it is opened in write mode it can also be written. If it is written then it must be saved before

being closed. A QEA for this property is given in Fig. A.38. Note that this is similar to the

simple file usage property introduced in Sec. A.1.1. This has the hallmarks of a typical safety

property - universal quantification and the use of next states throughout, however as only the

initial state is accepting we have a response property i.e. it is always the case that given some

action (the file is opened) then we expect some response (it is used before being closed). As the

QEA is relatively large it is useful to use next states, as otherwise we would need to include a

failing state and many additional transitions.

Access control.

If a file is opened by one user it cannot be edited by another. Three equivalent QEA for this

property have been given in Fig. A.39. These represent three different styles of specifying

properties. The first (top left) uses universal quantification with a global guard to capture

the behaviour that u2 writes to a file opened by u1. Note that skip states are used as we

are only interested in events that take us towards the failing condition - this is a typical style

for describing a property via reachability of some undesirable state. The second (bottom left)

replaces the quantification of u2 with a free variable - this is referred to as the quantifier

stripping trick in Sec. 4.3.2 and achieves the same effect as the first style as we are asserting
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1 2 3

∀f ∀u1∀u2 .u1 ≠ u2

open(f, , , u1)

close(f, u1)

write(f, u2)

1 2 3

∀f ∀u1

open(f, , , u1)

close(f, u1)

write(f, u2)u1≠u2

1

2

3

∀f ∀u1∀u2

open(f, , , u1) close(f, u1)

write(f, u1),
open(f, , , u2),
close(f, u2)

open(f, , , u2) close(f, u2)
write(f, u2),
open(f, , , u1),
close(f, u1)

Figure A.39: Three equivalent QEA for proper file access.

1 2 3

4

∀f open(f, , n, )

close(f, )

close(f, )

save(f, n′, )n′=n
write(f, )

write(f, )

save(f, n′, )n′=n+1
n∶=n′

open(f, , n′, )n=nid′

Figure A.40: A QEA describing the property that a files version number should increase by one
very time it is saved after a write.

the existence of a counterexample to the universal quantification. The third (right) uses next

states to enumerate all possible acceptable behaviours. Note that in this case the QEA is more

complicated when using next states rather than skip states. This is because our property is

best (i.e. most concisely) described by the undesired, rather than desired, behaviour.

Version numbers.

A files version number should increase by one every time it is saved after being written to.

If a file is closed then the next time it is opened it should have the same version number. A

QEA for this property is given in Fig. A.40. Here we see a typical safety property - universal

quantification, next states all accepting - describing the exact desired behaviour. Note the way

that we save the previous version number so that we can refer to it at a later stage.
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Proofs

This appendix contains proofs omitted in Chapter 5.

B.1 Computing the same bindings

We begin with proofs related to showing that the big and small step semantics compute the

same bindings. The first lemma was first given on page 106.

Lemma 9. Given QEA Q = ⟨Λ,E ,D⟩ and trace τ let adjusted(Q) = ⟨Λ,E ′,D⟩ then

∀x ∈ vars(Λ) ∶ x ∉ dom(D)⇒ DomE(τ)(typeOf(x)) =DLτ (x)

where Lτ is based on adjusted(Q).

Proof. Recall that given the alphabet of E as A and Λ = Q1x1 ∶ X1.g1, . . . ,Qnxn ∶ Xn.gn for

Q ∈ {∀,∃} the alphabet A′ of E ′ is

A′ = A ∪ {e(y1, . . . , yn) ∣ ∃e(x1, . . . , xn) ∈ A,∀i ∈ [1, n] ∶ yi ∈ varsOf(typeOf(xi))}

Also recall the definition of Dom given in Def. 26

DomE(τ)(X) = {match(a,b)(x) ∣ x ∈ varsOf(X) ∧ b = e(..., x, ...) ∈ A ∧
a ∈ τ ∧ matches(a,b)}.

and the definition of DL given in Def. 43

DL(x) =
D(typeOf(x)) if typeOf(x) ∈ dom(D)
{θ(x) ∣ θ ∈ dom(L) ∧ x ∈ dom(θ)} otherwise

We are aiming to show that

∀x ∈ vars(Λ) ∶ DomE(τ)(typeOf(x)) = {θ(x) ∣ θ ∈ dom(Lτ) ∧ x ∈ dom(θ)} (B.1)
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as we can remove the ∉ D condition by applying it to both sides of the equivalence. By definition

(of extensions) the domain of Lτ includes, for any a ∈ A and any b ∈ τ the binding match(a,b).
Therefore we can write (B.1) as

∀x ∈ vars(Λ) ∶ DomE(τ)(typeOf(x)) = {match(a,b)(x) ∣ ∧a ∈ A ∧ b ∈ τ∧
x ∈ dom(θ) ∧ matches(a,b)}

The only syntactic difference between the definitions of each side is the use of x ∈ varsOf(X) on

the left. Therefore, we are just required to show that every y ∈ varsOf(typeOf(x)) is treated in

the same way as x for E ′. By the definition of A′ the variables y and x have appear equivalently

in the alphabet, and therefore must be treated in the same way.

This next lemma was first given on page 106.

Lemma 10. For all traces τ and all QEA ⟨Λ,E ,D⟩

build(τ) = construct(τ)

Proof. By structural induction on τ . For the base case, τ = ε, build(ε) = { [ ]} and Dom(ε) = [ ]
therefore construct(ε) = {[ ]}. For the inductive step, τ = σ.a, we show that

build(σ.a) = construct(σ.a) (B.2)

by assuming build(σ) = construct(σ) and showing the additions are equivalent. Let the bindings

derivable from the new event a be given as

direct(a,A) = {θ ∣ ∃b ∈ A ∶ matches(a,b) ∧ θ ⊑ quantified(match(a,b))}
derived(a) = close⊔ direct(a)

Rewrite construct(σ.a) as follows:

construct(σ.a) = {θ ∈ Bind ∣ ∀(x↦ v) ∈ θ ∶ v ∈ Dom(σ.a)(typeOf(x))}
= construct(σ) ∪⋃θ∈construct(σ){θ ⊔ θ′ ∣ θ′ ∈ derived(a)}
= build(σ) ∪⋃θ∈build(σ){θ ⊔ θ′ ∣ θ′ ∈ derived(a)}

The last step uses our induction hypothesis construct(σ) = build(σ). By expanding build(σ.a)(Def

46), equation (B.2) becomes

build(σ) ∪ ⋃
θ∈build(σ)

extensions(θ,a) = build(σ) ∪ ⋃
θ∈build(σ)

{θ ⊔ θ′ ∣ θ′ ∈ derived(a)} (B.3)

It is sufficient to show that the following holds for a given θ in build(σ)

extensions(θ,a) = {θ ⊔ θ′ ∣ θ′ ∈ derived(a)}. (B.4)
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By expanding extensions(a, θ) and derived(a) equation (B.4) becomes

{θ†θ′ ∣ θ′ ∈ all from(θ,a,A) ∧ θ′ ≠ [ ]} = {θ ⊔ θ′ ∣ θ′ ∈ close⊔ direct(a)} (B.5)

We can drop the θ′ = [ ] condition as we have that θ = θ†[ ], which is already contained in

build(σ) by our inductive hypothesis. We can also replace the † with ⊔ on the left hand side as

it is guaranteed that θ and θ′ are consistent and in this case † and ⊔ are equivalent.

{θ ⊔ θ′ ∣ θ′ ∈ all from(θ,a,A)} = {θ ⊔ θ′ ∣ θ′ ∈ close⊔ direct(a)} (B.6)

Let us write this as

A = B

and expand the formulas A and B to show that they are equivalent. Firstly, in A expand

all from(θ,a,A), then push the lub operator through the lub-closure, expand from(θ,a) and

finally remove the redundant substitution A(θ). Not that A(θ) is redundant as we take the lub

with θ.

A = {θ ⊔ θ′ ∣ θ′ ∈ close⊔ {θ′′ ∣ ∃θ′′′ ∈ from(θ,a).θ′′ ⊑ θ′′′}}
= close⊔ {θ ⊔ θ′ ∣ ∃θ′′ ∈ from(θ,a).θ′ ⊑ θ′′}
= close⊔ {θ ⊔ θ′ ∣ ∃b ∈ A(θ) ∶ matches(a,b) ∧ θ′ ⊑ quantified(match(a,b))}
= close⊔ {θ ⊔ θ′ ∣ ∃b ∈ A ∶ matches(a,b) ∧ θ′ ⊑ quantified(match(a,b))}

Next, in B expand direct(a) and then push the lub operator through the lub-closure.

B = {θ ⊔ θ′ ∣ θ′ ∈ close⊔ {θ′′ ∣ ∃b ∈ A ∶ matches(a,b) ∧ θ′′ ⊑ quantified(match(a,b))}}
= close⊔ {θ ⊔ θ′ ∣ ∃b ∈ A ∶ matches(a,b) ∧ θ′ ⊑ quantified(match(a,b))}

Therefore, we have shown that A = B and have completed our proof.

B.2 Computed configurations match computed projections

We now consider the parts of the proof related to showing that the small step semantics for com-

puting configurations is equivalent to that for computing projections. The lemma we consider

was first given on page 110.

Lemma 18. For binding θ, event a relevant to θ, and set of configurations C

next(a, θ,C) = {c′ ∣ ∃c ∈ C ∶ c a↝θ,E(θ) c′}

Proof. We will derive the left-hand side of this equation from the right-hand side. We do this

by rewriting the set

{c′ ∣ ∃c ∈ C ∶ c a↝θ,E(θ) c′}
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as two separate sets by considering the relation ↝θ,E(θ), which describes two sets of next con-

figurations - those that are the result of moving, captured by ↝θ, and those that are the result

of staying, captured by the closure to ↝θ,E(θ). Therefore

{c′ ∣ ∃c ∈ C ∶ c a↝θ,E(θ) c′} = {c′ ∣ ∃c ∈ C ∶ c a↝θ c′} ∪ {c ∈ C ∣/∃ c′ ∈ Config ∶ c a↝θ c′}.

Let us consider the configurations which are the result of moving, that is the configurations

move(a, θ,C) = {c′ ∣ ∃c ∈ C ∶ c a↝θ c′}.

The relation ↝θ is given by

⟨q,ϕ⟩↝θ ⟨q′, ϕ′⟩ iff

∃b ∈ A(θ),∃g ∈ Guard,∃γ ∈ Assign ∶ (q,b, g, γ, q′) ∈ δ(θ) ∧
matches(a,b) ∧ g(ϕ†match(a,b)) ∧ ϕ′ = γ(ϕ†match(a,b))∧
quantified(match(a,b)) = [ ]

and therefore, we can rewrite the set move(a, θ,C) as follows

move(a, θ,C) = {⟨q′, γ(ϕ†match(a,b))⟩ ∣ ∃⟨q,ϕ⟩ ∈ C,∃g ∈ Guard ∶
(q,b, g, γ, q′) ∈ δ(θ) ∧matches(a,b)∧
g(ϕ†match(a,b)) ∧ quantified(match(a,b)) = [ ]

Now let us consider the configurations which are the result of staying, that is the configu-

rations

stay(a, θ,C) = {c ∈ C ∶/∃ c′ ∈ Config ∣ c a↝θ c′}.

Again, we can use the definition of ↝θ to rewrite the set stay(a, θ,C) :

stay(a, θ,C) = {⟨q,ϕ⟩ ∈ C ∣/∃ a ∈ A(θ) ∶ ∃q′ ∈ Q,∃g ∈ Guard∃γ ∈ Assign ∶
(q,b, g, γ, q′) ∈ δ(θ) ∧matches(a,b)∧
g(ϕ†match(a,b)) ∧ quantified(match(a,b)) = [ ]

We have now used the definition of the partial transition relation to derive

move(a, θ,C) ∪ stay(a, θ,C) = next(a, θ,C)

B.3 Basic algorithm

Finally we give the proofs for the propositions of correctness for the basic monitoring algorithm

given on page 116.

Proposition 2. When processing event a for each binding θ ∈ dom(M) the computed set B′ is

equivalent to the set extensions(θ,a) ∪ {θ ∣ relevant(θ,a)} i.e. it adds θ to the set of extensions
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Algorithm 19 A refactored matching function.

function matching R(a : GEvent) : Set[Binding]
B : Set[Binding] ← [ ]
for b ∈ Q.E .A do

if matches(a,b) then
θ ← quantified(match(a,b))
B += θ

for θ ∈B do
for θ1 ⊑ θ do

B += θ1

max ← ∥B∥
for 1 to max do

for θ1, θ2 ∈ B do
if θ1 compatible with θ2 then B += θ1†θ2

return B

if and only if θ is relevant to a.

Proof. Firstly we note that

B′ = {θ†θ′ ∣ θ′ ∈Matching(a) ∧ compatible(θ, θ′)} (B.7)

as B′ is constructed by iterating over the bindings in B. Recall that

extensions(θ,a) = {θ†θ′ ∣ θ′ ∈ all from(θ,a,A) ∧ θ′ ≠ [ ]}

and that, due to the definition of all from we have

[ ] ∈ extensions(θ,a)⇔ relevant(θ,a)

therefore, we are trying to show that

B′ = {θ†θ′ ∣ θ′ ∈ all from(θ,a,A)}

Let us note that we can refactor the Matching function so that it operates in two steps,

as shown in Algorithm 19. The first loop is equivalent to the computation of

from([ ],a,A) = {quantified(match(a,b)) ∣ b ∈ A(θ) ∧matches(a,b)}

this is easy to verify by noting that we consider all events in A. The second two loops computes

all from([ ],a,A) = close⊔ {θ′ ∣ ∃θ′′ ∈ from([ ],a).θ′ ⊑ θ′′}

this is slightly less straightforward to verify. Note that the first of these loops constructs the

set

{θ′ ∣ ∃θ′′ ∈ from(θ,a).θ′ ⊑ θ′′}
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by adding to B every submap of any binding already in B, and the second of these loops closes

this set under the ⊔ operator. Therefore we can rewrite equation (B.7) as

B′ = {θ†θ′ ∣ θ′ ∈ all from([ ],a,A) ∧ compatible(θ, θ′)} (B.8)

Note that if θ1 ⊑ θ2 then all from(θ2,a,A) ⊆ all from(θ1,a,A) as the additional information in

θ2 will lead to events in A being partially instantiated. Therefore, we have all from(θ,a,A) ⊆
all from([ ],a,A) and furthermore all from(θ,a,A) = {θ′ ∈ all from([ ],a,A) ∣ compatible(θ, θ′)}.

Therefore we have

B′ = {θ†θ′ ∣ θ′ ∈ all from(θ,a,A)}

Proposition 4. The Check function produces the same output as the judgement given in

Def. 43.

Proof. We argue that the Check function sets upDL appropriately and that Checking mirrors

the structure of ⊧.

Recall that DL is defined as follows.

DL(x) =
D(typeOf(x)) if typeOf(x) ∈ dom(D)
{θ(x) ∣ θ ∈ dom(L) ∧ x ∈ dom(θ)} otherwise

It is easy to see that the nested for-loop in Check computes {θ(x) ∣ θ ∈ dom(L) ∧ x ∈ dom(θ)}
for each x and we also override this with D.

The function Checking follows the same recursive structure as ⊧. Firstly, we have the base

case of Λ = ε where we take the two cases of θ ∈ dom(L) and θ ∉ dom(L) as we did in Def. 43.

Secondly, we explore the case where Λ is non-empty and iterate over the values in the domain

of the quantified variables, carrying out the appropriate universal or existential search.



Appendix C

Further details from monitoring

evaluation

This appendix gives supplementary information for the evaluation of our monitoring techniques

given in Chapter 7. We begin by giving the RuleR and JavaMOP specifications for the

properties monitored in C.1. We then give additional results for the planetary rover case study

in C.2 and the DaCapo benchmark suite in C.3.

C.1 Specifications

Here we give the specifications for the other tools.

C.1.1 RuleR

We give the specifications for RuleR. All monitors are defined using

monitor{

uses M : <property-name>;

run M .

}

The following table gives the specifications divided into those for the rover case study and the

Java API.
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Rover case study

ruler GrantCancel{

observes

grant(obj,obj),cancel(obj,obj);

always Start(){

grant(t:obj,r:obj) -> G(t,r);

}

state G(t:obj,r:obj){

cancel(t,r) -> Ok;

grant(s:obj,r) -> Fail;

}

initials Start;

}

ruler HashCorrect{

observes send(x:obj,y:obj,m:int),

ack(x:obj,y:obj,h:int);

always Start(){

send(x:obj,y:obj,m:int) -> A(x,y,m);

}

state A(x:obj,y:obj,m:int){

ack(y,x,h:int), h = -m -> Ok;

}

initials Start;

forbidden A;

}

ruler ReleaseResource{

observes

schedule(obj,obj), grant(obj,obj),

cancel(obj,obj), finish(obj);

always Start(){

schedule(t:obj,c:obj) -> S(t,c);

}

state S(t:obj,c:obj){

grant(t,r:obj) -> G(t,c,r), S(t,c);

finish(c) -> Ok;

}

state G(t:obj,c:obj,r:obj){

cancel(t,r) -> Ok;

}

assert Start, S, G;

initials Start;

}

ruler RespectConflicts{

observes

conflict(obj,obj),

grant(obj), cancel(obj);

always Start(){

conflict(x:obj,y:obj) -> C(x,y);

}

always C(x:obj,y:obj){

grant(x) -> N(x,y);

grant(y) -> N(y,x);

}

state N(x:obj,y:obj){

cancel(x) -> Ok;

grant(y) -> Fail;

}

initials Start;

}
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ruler RespectPriorities{

observes

priority(obj,obj),

request(obj), grant(obj),

cancel(obj), rescind(obj), blank;

always Start(){

priority(x:obj,y:obj) -> P(x,y);

grant(x:obj) -> G(x);

}

state P(x:obj,y:obj){ blank -> Ok;}

always G(x:obj){

cancel(x) -> !G(x);

request(y:obj), P(y,x)

{:

P(z:obj,y),G(z) -> Ok;

default -> Res(x,y);

:}

}

state Res(x:obj,y:obj){

rescind(x) -> Ok;

grant(y) -> Fail;

}

initials Start;

}

ruler CommandAcks{

observes

set_ack_timeout(int), ack(obj,int),

com(obj,obj,obj,int);

step Start(){

set_ack_timeout(t:int) -> T(t);

}

always T(t:int){

com(c:obj,n:obj,p:obj,st:int)

-> A(c,n,p,st+t);

}

state A(c:obj,n:obj,p:obj,t:int){

ack(c,rt:int), rt < t -> Ok;

com(c2:obj,n,p,st:int), st > t -> Ok;

}

initials Start;

forbidden A;

}
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ruler IncreasingIdentifiers{

observes command(int);

state C(x:int){

command(y:int), y>x -> C(y);

}

assert C;

initials C(0);

}

ruler ExactlyOneSuccess{

observes

com(obj), suc(obj), fail(obj);

always Start(){

com(x:obj) -> A(x);

}

state A(x:obj){

suc(x) -> D(x);

fail(x) -> Fail;

}

state D(x:obj){

suc(x) -> Fail;

}

initials Start;

forbidden A;

}

ruler NestedCommand{

observes

com(obj),suc(obj);

always Start(){

com(x:obj), !C(x) -> C(x);

}

state C(x:obj){

com(y:obj), !D(x,y) -> D(x,y), C(x);

suc(x), !D(x,y:obj) -> Ok;

}

state D(x:obj,y:obj){

suc(y) -> Ok;

}

assert Start, C, D;

initials Start;

forbidden C;

}

ruler ExistsSatellite{

observes

ping(obj,obj), ack(obj,obj);

always Start(){

ping(r:obj,s:obj) -> P(r,s);

}

state P(r:obj,s:obj){

ack(s,r) -> Ok;

ack(t:obj,r)-> Ok;

}

initials Start;

forbidden P;

}
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ruler ExistsLeader{

observes ping(obj,obj), ack(obj,obj), d;

always Start(){

ping(r:obj,s:obj), !A(r,s) -> P(r,s);

ping(r:obj,s:obj), !R(r) -> R(r), NL;

ping(r:obj,s:obj), !R(s) -> R(s), NL;

}

state NL(){

ack(s:obj,r:obj), R(t:obj), t!=s,

!A(r,t) -> NL;

ack(s:obj,r:obj) -> Ok;

}

always R(r:obj){

d -> Ok;

}

state P(r:obj,s:obj){

ack(s,r) -> A(r,s);

}

always A(r:obj,s:obj){

d -> Ok;

}

initials Start, NL;

forbidden NL;

}

ruler ResourceLifecycle{

observes

request(obj), deny(obj),

grant(obj), cancel(obj),

rescind(obj);

always Start(){

request(r:obj) -> R(r);

}

state R(r:obj){

deny(r) -> Ok;

grant(r) -> G(r);

}

state G(r:obj){

rescind(r) -> G(r);

cancel(r) -> Ok;

}

assert Start, R, G;

initials Start;

forbidden G;

}

Java API
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ruler HasNext{

observes hasNext(obj), next(obj),

end(obj);

always Start {

hasNext(i:obj) -> Next(i);

end(i:obj) -> !Next(i);

}

state Next(i:obj) {

next(i) -> Ok;

}

assert Start, Next;

initials Start;

}

ruler UnsafeIter{

observes iterator(obj,obj),

update(obj), use(obj);

always Start {

iterator(c:obj,i:obj) -> I(c,i);

}

state I(c:obj,i:obj){

update(c) -> U(i);

}

state U(i:obj) {

use(i) -> Fail;

}

initials Start;

}

ruler UnsafeMapIter{

observes connect(obj,obj), update(obj),

iterator(obj,obj), next(obj);

always Start {

connect(c1:obj,c2:obj) -> C(c1,c2);

}

always C(c1:obj,c2:obj){

iterator(c2,i:obj) -> I(c1,c2,i);

}

state I(c1:obj,c2:obj,i:obj){

update(c1) -> U(i);

}

state U(i:obj) {

next(i) -> Fail;

}

initials Start;

}

ruler UnsafeSyncCollection{

observes async_iterator(obj,obj),

sync_iterator(obj,obj), create(obj),

async_use(obj,obj);

always Start {

create(c:obj) -> C(c);

}

always C(c:obj) {

async_iterator(c,i:obj) -> Fail;

sync_iterator(c,i:obj) -> S(c,i);

}

state S(c:obj,i:obj){

async_use(c,i) -> Fail;

}

initials Start;

}
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ruler UnsafeSyncMap{

observes create(obj), create_set(obj,obj),

async_iterator(obj,obj),

sync_iterator(obj,obj),

async_use(obj,obj,obj);

always Start {

create(m:obj) -> M(m);

}

always M(m:obj){

create_set(m,c:obj) -> C(m,c);

}

always C(m:obj,c:obj) {

async_iterator(m,c,i:obj) -> Fail;

sync_iterator(m,c,i:obj) -> S(m,c,i);

}

state S(m:obj,c:obj,i:obj){

async_use(m,c,i) -> Fail;

}

initials Start;

}

ruler ConsistentHashes{

observes add(obj,obj,long),

observe(obj,obj,long), remove(obj,obj);

always Start(){

add(c:obj,o:obj,h:long) -> C(c,o,h);

}

state C(c:obj,o:obj,h:long){

remove(c,o) -> Ok;

observe(c,o,t:long), h!=t -> Fail;

}

assert State, C;

initials Start;

}
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ruler LockOrdering{

observes lock(obj), unlock(obj), dum;

always Start(){

lock(l:obj) -> L(l);

}

state L(l1:obj){

unlock(l1) -> Ok;

lock(l2:obj) -> Order(l1,l2);

lock(l2:obj), Order(l2,l1) -> Fail;

}

always Order(l1:obj,l2:obj){

dum -> Ok;

}

initials Start;

}

ruler CloseFiles{

observes enter(obj),exit(obj),

open(obj),close(obj) ;

always Start(){

enter(t:obj), !In(t,d:int) ->

In(t,1);

}

state In(t:obj,d:int){

enter(t) -> In(t,d+1);

exit(t) -> In(t,d-1);

open(t,f:obj) -> Open(t,f,d);

}

state Open(t:obj,f:obj,d:int){

close(t,f), In(t,d) -> Ok;

close(t,f), !In(t,d) -> Fail;

}

assert Start, In, Open;

initials Start;

}

ruler UnsafeFileWriter{

observes open(obj), write(obj),

close(obj);

always Start {

open(f:obj), !Open(f) -> Open(f);

}

state Open(f:obj) {

close(f) -> Ok;

write(f) -> Open(f);

}

assert Start, Open;

initials Start;

}
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C.1.2 JavaMOP

We now consider the same specifications for JavaMOP. Note that not all specifications from the rover

case study can be captured with JavaMOP.

Rover case study

GrantReleaseMOP(Object t1, Object t2,

Object r) {

// event specification

fsm:

start [

grant_t1 -> granted_t1

grant_t2 -> granted_t2

cancel_t1 -> error

cancel_t2 -> error

]

granted_t1 [

cancel_t1 -> start

grant_t2 -> error

]

granted_t2 [

cancel_t2 -> start

grant_t1 -> error

]

error [ ]

@error{ logError(); }

}

ExactlyOneSuccessMOP(Object c) {

// event specification

fsm:

start [

command -> sent

]

sent [

succeed -> succeeded

failure -> error

]

succeeded [

succeed -> error

]

error [

]

@fail{ logError(); }

@error{ logError("A command

failed or succeeded twice"); }

}
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NestedCommandMOP(Object x, Object y) {

// event specification

fsm:

start [

com_x -> xcom

com_y -> ycom

]

xcom [

com_y -> xycom

suc_x -> start

]

ycom [

com_x -> yxcom

suc_y -> start

]

xycom [

suc_y -> xcom

]

yxcom [

suc_x -> ycom

]

@fail{

if(saved_x!=saved_y) logError();

}

}

ReleaseResourceMOP(Object t, Object c,

Object r) {

\\ event specification

fsm:

start [

schedule -> scheduled

]

scheduled [

grant -> granted

finish -> end

]

granted [

cancel -> scheduled

finish -> error

]

error [

]

end [

]

@fail{ logError(); }

@error{ logError("finished with

resource granted"); }

}
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ResourceLifecycleMOP(Object r) {

\\ event specification

fsm:

start [

request -> requested

]

requested [

deny -> start

grant -> granted

]

granted [

rescind -> granted

cancel -> start

]

@fail{ logError(); }

}

RespectConflictsMOP(Object r1, Object r2) {

\\ event specification

fsm:

start [

conflict -> conflicted

]

conflicted [

conflict -> conflicted

grant_r1 -> r1_granted

grant_r2 -> r2_granted

]

r1_granted [

release_r1 -> conflicted

grant_r2 -> error

]

r2_granted [

release_r2 -> conflicted

grant_r1 -> error

]

error [ ]

@error{ logError(); }

}

Java API

HasNext(Iterator i) {

event hasnext after(Iterator i) : call(* Iterator.hasNext()) && target(i) {}

event next before(Iterator i) : call(* Iterator.next()) && target(i) {}

ere : (hasnext+ next)* next

@match { logError(); }

}
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UnsafeIter(Collection c, Iterator i) {

event create after(Collection c) returning(Iterator i) :

call(Iterator Collection+.iterator()) && target(c) {}

event updatesource after(Collection c) : (call(* Collection+.remove*(..))

|| call(* Collection+.add*(..)) ) && target(c) {}

event next before(Iterator i) : call(* Iterator+.next()) && target(i) {}

ere : create next* updatesource updatesource* next

@match { logError(); }

}

full-binding UnsafeMapIter(Map map, Collection c, Iterator i){

event createColl after(Map map) returning(Collection c) :

(call(* Map+.values()) || call(* Map+.keySet())) && target(map) {}

event createIter after(Collection c) returning(Iterator i) :

call(* Collection+.iterator()) && target(c) {}

event useIter before(Iterator i) : call(* Iterator+.next()) && target(i) {}

event updateMap after(Map map) :

(call(* Map+.put*(..)) || call(* Map+.putAll*(..))

|| call(* Map+.clear()) || call(* Map+.remove*(..)))

&& target(map) {}

ere : createColl updateMap* createIter useIter* updateMap updateMap* useIter

@match{ logError(); }

}
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UnsafeSyncCollection(Object c, Iterator iter) {

Object c;

creation event sync after() returning(Object c) :

call(* Collections.synchr*(..)) {this.c = c;}

event syncCreateIter after(Object c) returning(Iterator iter) :

call(* Collection+.iterator()) && target(c) && if(Thread.holdsLock(c)){}

event asyncCreateIter after(Object c) returning(Iterator iter) :

call(* Collection+.iterator()) && target(c) && if(!Thread.holdsLock(c)){}

event accessIter before(Iterator iter) :

(call(* Iterator+.*(..)) || call(* Iterator+.*())) && target(iter)

&& condition(!Thread.holdsLock(this.c)) {}

ere : (sync asyncCreateIter) | (sync syncCreateIter accessIter)

@match{ logError(); }

}

UnsafeSyncMap(Map syncMap, Set+ mapSet, Iterator iter) {

Map c;

creation event sync after() returning(Map syncMap) :

call(* Collections.synchr*(..)) {

this.c = syncMap;

}

event createSet after(Map syncMap) returning(Set+ mapSet) :

call(* Map+.keySet()) && target(syncMap) {}

event syncCreateIter after(Set+ mapSet) returning(Iterator iter) : target(mapSet) &&

call(* Collection+.iterator()) && condition(Thread.holdsLock(c)){}

event asyncCreateIter after(Set mapSet) returning(Iterator iter) : target(mapSet) &&

call(* Collection+.iterator()) && condition(!Thread.holdsLock(c)) { }

event accessIter before(Iterator iter) : target(iter) &&

(call(* Iterator+.*(..)) || call(* Iterator+.*()))

&& condition(!Thread.holdsLock(c)) {}

ere : sync createSet (asyncCreateIter | (syncCreateIter accessIter))

@match{ logError(); }

}
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UnsafeHashSet(HashSet t, Object o) {

int hashcode;

event add after(HashSet t, Object o) : call(* Collection+.add(Object)) &&

target(t) && args(o) {

hashcode = o.hashCode();

}

event unsafe_contains before(HashSet t, Object o) : target(t) && args(o) &&

call(* Collection+.contains(Object)) && condition(hashcode != o.hashCode()) {}

event remove after(HashSet t, Object o) : target(t) && args(o) &&

call(* Collection+.remove(Object)) {}

ere: add unsafe_contains unsafe_contains*

@match{ logError(); }

}

UnSafeHashMap(HashMap m, Object o) {

int hashcode;

event add after(HashMap m, Object o) :

call(* Map+.put(Object,Object)) && target(m) && args(o,*) {

hashcode = o.hashCode();

}

event unsafe_contains_key before(HashMap m, Object o) :

call(* Map+.containsKey(Object)) && target(m) && args(o)

&& condition(hashcode != o.hashCode()) {}

event unsafe_get_key before(HashMap m, Object o) :

call(* Map+.get(Object)) && target(m) && args(o)

&& condition(hashcode != o.hashCode()) {}

event remove after(HashMap m, Object o) :

call(* Map+.remove(Object))

&& target(m) && args(o){}

ere: add (unsafe_contains | unsafe_get_key) (unsafe_contains | unsafe_get_key)*

@match{ logError(); }

}
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CloseFiles(FileReader f, Thread t) {

event open after(Thread t) returning(FileReader f) :

call(FileReader.new(..)) && thread(t){}

event close after(FileReader f, Thread t) :

call(* FileReader.close(..)) && target(f) && thread(t){}

event begin before(Thread t) : execution(* *.*(..)) && thread(t) {}

event end after(Thread t) : execution(* *.*(..)) && thread(t) {}

cfg :

S -> A S | epsilon,

A -> A begin A end | A open A close | epsilon

@fail { logError();}

}

UnsafeFileWriter(FileWriter f) {

event open after() returning(FileWriter f) : call(FileWriter+.new(..)) {}

event write before(FileWriter f) : call(* FileWriter+.write(..)) && target(f) {}

event close after(FileWriter f) : call(* FileWriter+.close()) && target(f) {}

ere : (open write write* close)*

@fail { logError(); }

}
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Table C.4: A summary of the workloads used for each property.

Name Parameters ∣τ ∣ bindings
GrantCancelS t tasks, r resources and e events e r
GrantCancelD t tasks, r resources and e events e tr
ResourceLifecycle r resources and e events e r
ReleaseResource t tasks, r resources and e events e rte

4
RespectConflictsS g resource groups, r reps of e events re g2

RespectConflictsD g resource groups, r reps of e events re g4

RespectPriorities r resources and e events e r2

ExactlyOneSuccess c commands 2c c
IncreasingIdentifiers e events e 1
CommandAcks c commands 2c 3c

2

NestedCommands r reps nested d deep and b wide 2rb(1−dd)
1−d

∣τ ∣
2 (1−(

∣τ ∣
2 )

d
)

1−
∣τ ∣
2

NestedCommandsG r reps nested d deep and b wide 2rb(1−dd)
1−d

∣τ ∣
2 (1−(

∣τ ∣
2 )

d
)

2−∣τ ∣

ExistsSatellite s satellites and r rovers sr sr
2

ExistsSatelliteS s satellites and r rovers sr r
ExistsLeader r rovers r + r2 r + r2

HashCorrect x entities and m messages m m
2

C.2 Additional rover case study monitoring results

This section gives additional details and results supporting the evaluation in Section 7.1. We begin by

giving extra details about the workloads and properties used before giving additional results for each

research question.

C.2.1 Workload and property details

Table C.4 gives an overview of the workload used for each property, along with the parameters for that

workload and the average trace length and number of bindings in terms of those parameters. The trace

lengths and number of bindings are average due to random choices made in the workloads. The table

accounts for the binding redundancy elimination methods of Section 6.4. The trace length and number

of bindings is particularly complicated for the NestedCommands workloads due the nested structure.

Table. C.5 gives the trivial events (and reminds us of the total number of events) for each prop-

erty. In many cases these trivial events match with nontrivial events, i.e. cancel(t2, r) matches with

cancel(t1, r). This means that, even though these events are trivial, they can never be used in redun-

dancy elimination.

C.2.2 RQ1

For the single indexing technique evaluated in Section 7.1.3 we left out results for some properties for

space reasons. We give these here. The properties we consider are ExactlyOneSuccess, ExistsSatelliteS,

GrantCancelS and RespectConflictS.

Let us consider the ExactlyOneSuccess property. The workload for this property consists of ran-

domly creating commands, up to some limit c, and randomly recording them successful. The graphs in

Fig. C.1 give the results for different values of c, i.e. the number of commands, note the log scale. The

single quantifier and symbol-based indexing strategies perform similarly, with the value-based approach

performing significantly worse with many commands. Again, this is due to the large number of bindings
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Table C.5: Trivial events per property

Property Trivial events ∣A∣
GrantCancelS {cancel(t2, r)} 3
GrantCancelD {grant(t2, r)} 2
ResourceLifecycle {} 5
ReleaseResource {finish(c)} 4
RespectConflictsS {cancel(r1),grant(r2)} 5
RespectConflictsD {grant(r1),cancel(r1),grant(r2)} 5
RespectPriorities {request(r2),deny(r2),grant(r2),cancel(r2),

cancel( ),request( ),grant( )} 10
ExactlyOneSuccess {succeed(c),fail(c)} 3
IncreasingIdentifiers {command(c2)} 2
CommandAcks {command(c2, n2, p2, t2)} 4
NestedCommands {} 4
ExistsSatellite {ack(s, r)} 3
ExistsSatelliteS {ack(s, r)} 3
ExistsLeader {} 2
HashCorrect {ack(x2, x1, h)} 2

Figure C.1: The results of RQ1 with single quantifiers for ExactlyOneSuccess.

raising the cost of adding a new binding. Not shown here, the basic monitoring approach takes about

6.6 seconds to evaluate a trace with 1k commands, 95 times slower than the single-quantifier approach.

On average compared to the basic monitoring strategy, the single quantifier strategy performed 37

times faster, the value-based approach ran 15 times faster and the symbol-based approach ran 22 times

faster.

Let us now consider the ExistsSatelliteS property. The workload for this property consists of ran-

domly selecting a non-empty set of satellites to acknowledge each rover and producing the appropriate

ping and ack events. The graphs in Fig. C.2 give the results for different values of r and s. Again, the

basic monitoring approach performs very badly with respect to the single quantifier indexing approach

- although with only 10 rovers and satellites we see comparable performance. In this case the value-

based indexing strategy outperforms the symbol-based one, this is due to the relatively small number

of bindings combined and high reuse rate. On average compared to the basic monitoring strategy, the

single quantifier strategy performed 42 times faster, the value-based approach ran 30 times faster and

the symbol-based approach ran 24 times faster.

Next we consider the GrantCancelS property. The workload for this property consists of t tasks

granting and canceling r resources over e events. The results for different values of t/r/e are given
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Figure C.2: The results of RQ1 with single quantifiers for ExistsSatelliteS.

in Fig. C.4. Here we have another case of the value-based approach outperforming the symbol-based

one, however the single quantifier algorithm still performs 2-3 times faster than either approach. On

average compared to the basic monitoring strategy, the single quantifier strategy performed 46 times

faster and both the value-based and symbol-based approaches ran 15 times faster.

The last single-quantifier property is RespectConflictsS. The workload for this property consists of

r conflict groups containing r resources (giving r2 resources in total) exercised for e events. The results

for different values of r2/e and both single and double versions of the property are given in Fig. C.4.

The single quantifier strategy is the most efficient with the symbol-based approach being consistently

less than twice as slow. The value-based approach does not do very well at all. This is because the

value-based approach is more effected by the use of free-variables as it will need to iterate through

the set of all entries, making it dependent on the number of bindings. As we can see, running time

increases uniformly with the number of bindings with both the value-based and basic approaches. On

average compared to the basic monitoring strategy, the single quantifier strategy performed 15 times

faster, the value-based approach ran 1.5 times faster and the symbol-based approach ran 9 times faster.

We also omitted the HashCorrect property for Disjoint alphabet indexing. Let us consider this

property now. The workload for this property produces x entities and m messages (and the appropriate

acknowledgments) between random entities. The results for different values of x/m are given in Fig. C.5.

Again, the disjoint alphabet approach outperforms all others considerably. For small numbers of entities

and messages the value-based and symbol-based approaches perform similarly, with the symbol-based

approach slightly outperforming the value-based one. But, when we increase the number of messages we

see the performance of the value-based approach degrade heavily. Again, we see the disjoint alphabet

approach achieving hundreds of times speedup on the basic monitoring approach. On average compared

to the basic monitoring strategy, the single quantifier strategy performed 247 times faster, the value-

based approach ran 30 times faster and the symbol-based approach ran 71 times faster.
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Figure C.3: The results of RQ1 with single quantifiers for GrantCancelS.

C.2.3 RQ2

Table C.6 gives the average milliseconds per event and events processed per second for each property

using the Value and Symbol strategies. This table agrees with the previous table over which strategy

performed the best, with the exception of GrantCancelS - here we see the Value strategy achieving

higher average throughput. Looking at the results we see that in general the Value strategy gave the

best speedup, but in one experiment the reuse rate is very low and the Symbol strategy ran twice as

fast, brining its average speedup above that of Value.

The rest of the properties

We give detailed evaluation results for the rest of the properties. These are the GrantCancelD, Re-

leaseResource, RespectConflictsD, RespectPriorities, NestedCommands, CommandAcks, and Exist-

sLeader.

First, let us consider the GrantCancelD property. We use the same workload as with GrantCancelS

and the results for different values of t/r/e are given in Fig. C.6. The symbol-based indexing strategy

far outperforms the value-based approach due to the significant number of bindings being produced.

The speedup increases with the number of bindings. As we can see from the 10/10/1k and 10/10/10k

cases the basic and value-based approaches take more time to process each event when there are more

bindings.

Next we consider the ReleaseResource property. The workload for this property consists of t tasks

dealing with r resources over e events. The results for different values o t/r/e are given in Fig. C.7. Note

that we have a logarithmic y-axis for time. Again, we see the symbol-based approach performing best,

due to the large number of bindings being produced and manipulated for the basic and value-based

approaches.
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Figure C.4: The results of RQ1 with single quantifiers for RespectConflictS.

Figure C.5: The results of RQ1 for HashCorrect.

Now let us consider the RespectConflictsD property. We use the same workload as with Respect-

ConflictS and the results for different values of r2/e and both single and double versions of the property

are given in Fig. C.8. We see the symbol-based approach outperforming the value-based approach. The

speedup achieved with 1M events is relatively small compared with 10k events, this is because the base
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Table C.6: Average throughput for Value and Symbol.

Property Value Symbol
ms per event events per sec ms per event events per sec

IncreasingIdentifiers 0.03 31.5k 0.04 26k
ResourceLifeCycle 0.047 32k 0.03 37k
ExactlyOneSuccess 0.13 13k 0.05 20k
ExistsSatelliteS 0.05 19k 0.07 14.5k
GrantCancelS 0.033 44.8k 0.034 34k
RespectConflictS 0.08 17k 0.01 91k
ExistsSatellite 101 487 3.99 787
HashCorrect 0.87 6k 0.2 9.2k
GrantCancelD 0.17 10k 0.07 22k
ReleaseResource 8.7 1.1k 0.77 2.4k
RespectConflictsD 0.16 8.6k 0.14 10k
RespectPriorities 1.45 2.2k 1.31 5.2k
NestedCommands 6.1 380 4.7 490
CommandsAcks 3.9 1.5k 13 1.1k
ExistsLeader 0.1 9.4k 0.11 8.7k

Figure C.6: The results of RQ1 for GrantCancelD.

monitoring approach scales badly with the number of bindings, which is small here.
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Graph here

Figure C.7: The results of RQ1 for ReleaseResource.

Figure C.8: The results of RQ1 for RespectConflictsD.

We now consider the RespectPriorities property - the most complex property in our set. The

workload for this property considers r resources organised in a binary tree of proprieties, randomly

exercised over e events. The results for different values of r/e are given in Fig. C.10. Note the

logarithmic scale for times. We see little speedup with the value-based, with the symbol-based approach

performing best in all but one case. In the case of 10 resources and 100k events we see that the value-

based approach performs 15 times better than the symbol-based approach, yet with 20 resources and

100k events the symbol-based approach performs 1.6 times better. The number of bindings is quadratic
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Figure C.9: The results of RQ1 for RespectPriorities.

Figure C.10: The results of RQ1 for NestedCommands.

in r so there are 4 times as many bindings in the second case, which appears to make the difference.

We also see that speedup decreases significantly as the length of the trace increases for the symbol-

based approach, but remains reasonably constant for the value-based approach. This is because the

basic and value-based are effected by the increase in trace length in the same way, and that the trace

length is more important than the number of bindings for the symbol-based approach.

Next we consider the NestedCommands property. The workload for this property consists of a

command structure nested d deep and b wide, repeated r times. The results for different values of

d/b/r are given in Fig. C.10. Note the logarithmic scale for times, and recall that garbage collection is

relevant for this example (this is discussed further in Sec. 7.1.5). The symbol-based approach performs

the best, with speedup increasing with additional bindings and events.

Next we consider the ExistsLeader property. The workload for this property consists of r rovers

communicating with (on average) half of the other rovers, with one selected as leader - this gives roughly

X events. The results for different values of r are given in Fig. C.11. The value-based approach performs

best here and both indexing strategies achieve good speedup. The value-based approach works well as

there are relevantly few bindings.

C.2.4 RQ3

We give the omitted analysis of the ResourceLifecycle garbage frequency experiment.

Figure C.12 present the results of for ResourceLifecycle - we plot against running time because

running without garbage collection led to timeouts. We test garbage frequency of every 1, 10, 100 and

1000 events.
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Figure C.11: The results of RQ1 for ExistsLeader.

The ResourceLifecyle workload produces a less garbage than NestedCommands as it uses one re-

source object at a time and then lets it go out of scope. In Figure C.12 we see a frequency of 100

performing well across both strategies for the less complex workloads. However, with the more com-

plex workloads we see a frequency of 1 working best for Value again and a frequency of 10 performing

well for Symbol. The most likely explanation here is that with longer running experiments the number

of resources that become garbage over the lifetime of the experiment increases, therefore the likelihood

that there will be garbage to remove increases.

C.3 Additional DaCapo monitoring results

We now give additional information about the evaluation carried out in Section 7.2. We first give

additional information about the traces observed, and then report monitoring times.

C.3.1 Trace statistics

We report on the number of events present in a single run of each benchmark for each property. If a

benchmark has no events for a property it is not included in tables. Note that we monitor multiple

runs as we wait for convergence of running time.

UnsafeIter and UnsafeMapIter

Tables C.8 and C.8 gives statistics for the UnsafeIter and UnsafeMapIter properties. For UnsafeIter

we also consider the number of collections that have more than one iterator created from them.

The first thing an observant reader will note is the discrepancy between the number of iterator

creation events and the number of iterators reported for the HasNext property for some benchmarks.

This is most notable in fop where we have over 70k iterators for HasNext and only 7k for UnsafeIter.

This is because of custom iterator objects that are created using methods other than the standard

iterator method. To catch these we should target constructors of objects inheriting Iterator -

however, it may not, in general, be possible to identify the underlying collection. Note however, that

the number of use events is the same - therefore we have many use events without an associated

iterator creation event.

Note that the collections being updated are not necessarily those being iterated over - these are

just method calls that update a collection. Also note that the update event for UnsafeMapIter is for

maps, not collections as it is for UnsafeIter, hence the discrepancy. It is necessary to capture all update

events as we cannot tell whether they are related to an iterator from the method call.
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Figure C.12: Garbage frequency test with ResourceLifecycle - lower is better.

For both properties we have three benchmarks without any relevant events - tomcat, tradebeans

and tradesoap - and one benchmark with only update events so no bindings will be created (due to the

optimisation described in Sec. 6.4.5).

The UnsafeSyncCollection and UnsafeSyncMap properties

Table. C.9 gives the trace statistics for these two properties. We see many use events and relatively

few sync and create events. This means that there is not much relevant behaviour associated with

either property.

The ConsistentHash property

Table C.10 gives the number of events relevant to the ConsistentHash property, this combines infor-

mation about HashSet and HashMap. In general, objects added to these structures are observed and

removed frequently i.e. the ratio of add events to other events is low.

The LockOrdering property

Table. C.11 gives the number of each events, the minimum, maximum and mean number of nested

locks (i.e. how many are held at once) and the minimum, maximum and mean lock lifetime. These are

all due to synchronized keyword, thus mutual exclusion is guaranteed by the language. None of the

benchmarks use explicit Lock objects.
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Table C.7: The trace statistics for the UnsafeIterator property.

Events Collections with
iterator update use total > 1 Iterator

avrora 908,977 1,015,243 1,507,546 3,431,766 531
batik 24,354 112,864 48,755 185,973 46
eclipse 3,894 24,659 146,138 174691 246
fop 7,744 252,108 1,800,197 2,060,049 308
h2 2,872 2,377,203 26,546,017 28,926,092 5
jython
luindex 64 4,293 365 4,722 9
lusearch 128 373,540 640 374,308 16
pmd 589,753 3,258,673 8,612,254 12,460,680 10554
sunflow 0 134 2,655,751 2,655,885 0
xalan 0 1,309,143 0 1,309,143 0

Table C.8: The trace statistics for the UnsafeMapIter property.

Events
connect iterator update next total

avrora 22 908,976 1,794 350,595 1,261,387
batik 42 24,354 17,560 12,559 54,515
eclipse 1,051 3,891 11,689 60,472 77,103
fop 60 7,744 29,788 461,585 499,177
h2 34 2,811 1,634,141 10,004,450 11,641,436
jython 29 63,174 18,516 256,439 338,158
luindex 2 64 136 151 353
lusearch 64 128 9,177 256 9,625
pmd 110,113 593,863 43,707 3,640,109 4,387,792
sunflow 0 0 0 1,276,938 1,276,938
xalan 0 0 130,142 0 130,142
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Table C.9: The trace statistics for the UnsafeSyncCollection and UnsafeSyncMap properties.

Events
create async use sync total

avrora 0 5,453,810 9,040,956 0 14,494,766
batik 27 218,975 434,348 27 653,377
eclipse 23 15,107 277,392 1 292,523
fop 30 54,172 13,773,965 0 13,828,167
h2 1 15,243 40,141,937 0 40,157,181
jython 104 81,531 4,343,841 0 4,425,476
luindex 0 896 5,110 0 6,006
lusearch 0 1,280 6,400 0 7,860
pmd ≥
sunflow 15,934,506 15,934,506

Events
create create set async use sync total

avrora 0 72 62 9,041,190 62 9,041,386
batik 0 336 3,704 386,150 3704 393,894
eclipse 1 336 8,833 222,726 8,833 240,729
fop 26 480 986 15,741,666 968 15,744,126
h2 ≥
jython 0 41 4,618 4,343,841 4,618 4,353,118
luindex 0 28 574 5,110 574 6,286
lusearch 0 448 448 4480 448 5,824
pmd ≥
sunflow 0 0 0 15,934,506 0 15,934,506

Table C.10: The trace statistics for the ConsistentHash property.

Events
add observe remove total

avrora 1,984 713,709 0 715,693
batik 10,872 23,130 459 34,461
eclipse 7,865 25,367 308 33,540
fop 29,735 359,969 0 389,704
h2
jython 10,626 3,146,865 4 3,157,495
luindex 218 124,565 30 124,813
lusearch 9,202 1,049,474 1 1,058,677
pmd 149,039 764,939 0 913,978
xalan 29,534 462,500 0 492,034
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Table C.11: The trace statistics for the LockOrdering property.

Events Potential Nestings Lock Lifetimes
lock unlock min mean max min mean max

avrora 1677965 1677965 0 6.19 12 - - -
batik 52441 52441 0 0.52 4 - - -
eclipse 118866 118864 2 4.25 10 345 5174 15672
fop 3553 3553 0 0.5 2 - - -
h2 ≥21746120 ≥21746088 1 32.45 35 - - -
jython 16550615 16550615 - - - - - -
luindex 214304 214304 0 2.85 6 2514 4287 9332
lusearch 1644850 1644850 0 8.42 61 1245 1880 2803
pmd 8857 8857 0 8.76 17 567 1366 2476
sunflow 824 824 0 8.63 17 - - -
xalan 4467560 4467560 0 37.84 65 4788 287106 500409

C.3.2 Results

We now report the monitoring times for each tool for each property.

HasNext times

Table C.12 gives the average times reported for each tool.

The UnsafeIter and UnsafeMapIter properties

Table. C.13 gives the slowdown introduced by each monitoring approach. The first thing we note is

that QEA did not perform very well at all. JavaMOP performed the best in all non-trivial cases and

RuleR performed relatively well. The reason that QEA performed badly is related to the garbage

collection process, as discussed previously.

The UnsafeSyncCollection and UnsafeSyncMap properties

Table C.14 gives the slowdown results for these two properties. QEA performed very badly as it was

not able to remove redundant bindings properly, as we saw previously.

The ConsistentHash property

Table C.15 gives the timing for the ConsistentHash property. Note that for JavaMOP this involves

monitoring two separate properties - one for HashSet and one for HashMap.

CloseFiles

Table C.16 gives the timing for the CloseFiles property. Many experiments failed to complete as we

are tracking every method call.

The LockOrdering property

Table C.17 gives the timing for the LockOrdering property. This cannot be captured using JavaMOP.

Many experiments fail to complete as (in many cases) we are comparing every object that is locked to

every other object that is locked - as seen above, there can be many locks.
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Table C.12: Timing results for HasNext

Times (milliseconds)
QEA-Single QEA-Symbol QEA-Value JavaMOP RuleR

avrora 11,583 1,183,528 - 36,657 23,936
batik 1,711 3,912 4,841 2,126 3,460
eclipse 27,225 28,240 27,678 27,137 27,686
fop 1,832 617,536 - 75,747 507,564
h2 10,917 - - 7,653 -
jython 3,203 9,201 8,918 2,958 4,492
luindex 948 1,018 1,035 925 958
lusearch 1,409 1,508 1,481 1,366 1,481
pmd 14,066 280,450 847,471 6,182 -
sunflow 5,230 45,310 43,759 2,215 22,925
tomcat 1,941 1,950 1,909 1,930 1,971
tradebeans 10,472 9,803 9,826 10,518 9,838
tradesoap 14,398 14,685 14,732 14,305 14,852
xalan 929 954 1,274 916 977
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Table C.13: Slowdown results for UnsafeIter and UnsafeMapIter

Slowdown for UnsafeIter
JavaMOP QEA-Symbol QEA-Value RuleR

avrora 1.79 575.01 - 2.14
batik 1.06 82.87 426.76 1.18
eclipse 0.99 1.00 0.99 1.01
fop 2.08 567.16 772.39 6.79
h2 1.11 11.51 33.39 1.79
jython 0.59 - - 0.81
luindex 1.01 1.23 1.19 1.05
lusearch 1.97 34.21 31.98 2.87
pmd 3.37 - - 11.40
sunflow 1.05 1.30 1.30 3.98
tomcat 1.12 1.02 1.03 1.03
tradebeans 1.02 1.02 1.02 1.02
tradesoap 1.05 0.86 0.86 0.84
xalan 3.00 2.69 2.36 11.20

Slowdown for UnsafeMapIter
JavaMOP QEA-Symbol QEA-Value RuleR

avrora 1.64 - - 1.59
batik 1.06 - - 1.07
eclipse 0.98 - - 1.01
fop 1.74 - - 2.56
h2 1.18 - - 1.56
jython 0.52 - - 0.56
luindex 1.12 34.08 655.19 1.09
lusearch 0.97 325.28 539.64 1.02
pmd 2.99 - - 4.76
sunflow 1.03 180.65 500.13 2.25
tomcat 1.14 1.05 1.03 1.05
tradebeans 1.03 1.03 1.01 1.00
tradesoap 0.86 0.84 0.84 0.82
xalan 1.00 1.13 1.54 1.47
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Table C.14: Slowdown results for UnsafeSyncCollection and UnsafeSyncMap

UnsafeSyncCollection
JavaMOP QEA-Symbol QEA-Value

avrora 1.01 - -
batik 1.03 324.47 -
eclipse 1.01 1.37 -
fop 1.52 - -
h2 1.08 - -
jython 0.53 - -
luindex 1.14 1.11 27.78
lusearch 0.97 1.06 181.61
pmd 1.87 - -
sunflow 1.03 191.96 842.74

UnsafeSyncMap
avrora 1.02 - -
batik 0.99 429 -
eclipse 0.98 - -
fop 1.36 - -
h2 0.96 - -
jython 0.52 - -
luindex 1.09 3.28 -
lusearch 0.97 30 -
pmd 1.68 - -
sunflow 1.03 191 833

Table C.15: Timing results for ConsistentHash

JavaMOP QEA-Symbol QEA-Value RuleR
avrora 5,972 44,996 32,623 -
batik 1,614 3,542 4,938 1,396,870
eclipse 27,660 28,678 27,403 182
fop 701 21,206 255,924 1,194,726
h2 - - - -
jython 2,995 62,617 46,821 -
luindex 874 4,714 3,318 385,983
lusearch 2,852 172,787 185,196 -
pmd 1,614 - - -
sunflow 2,260 2,423 2,357 2,393
tomcat 1,951 1,982 1,946 1,947
tradebeans 10,380 10,417 10,377 10,296
tradesoap 14,510 14,872 14,594 14,307
xalan 1,241 24,027 94,564 -
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Table C.16: Timing results for CloseFiles

JavaMOP QEA-Symbol QEA-Value RuleR
avrora - - - -
batik - 174,457 149,638 299,805
eclipse - 27,842 28,312 33,527
fop 324,228 222,520 209,024 236,557
h2 394,970 - - -
jython - - - -
luindex - - - 871,331
lusearch - - - -
pmd - 1,258,037 1,209,092 -
sunflow 1,227,390 - - -
tomcat - 1,901 1,967 1,878
tradebeans - 10,455 9,985 10,405
tradesoap - 14,670 14,257 14,322
xalan - - - -

Table C.17: Timing results for LockOrdering

QEA-Symbol QEA-Value RuleR
avrora 555,147 535,619 -
batik 849,817 1,097,101 2,136
eclipse - - -
fop 4,041 3,698 500
h2 - - -
jython - - -
luindex 548,227 572,990 6,083
lusearch - - -
pmd 355,474 371,699 -
sunflow 3,261 2,830 2,468
tomcat 1,991 1,958 1,954
tradebeans 9,797 9,761 9,775
tradesoap 14,472 14,459 18,188
xalan 240 252 1,625,149



Appendix D

Further details from mining

evaluation

Here we describe the Designed pattern library, give the models used in the mining evaluation and the

detailed results split into precision-recall, efficiency and details about extracted specifications.

D.1 The Designed Library

We introduce our framework of patterns, extending and refining the Specification Pattern System (SPS)

[DAC99]. Note that our patterns are event-based and the categories have been chosen with the mining

method in mind i.e. the fact that we will use combination. We introduce the different categories

using patterns discussed previously as examples. The four categories we consider here are Occurrence,

Ordering, Scope and Compound.

D.1.1 Occurrence

Simply, one or more event occurs (or does not) in no specified order. In SPS this category contained

the absence and universal subcategories. We do not feel that these are useful categories in our setting.

With respect to absence, the single event version would not informative and absence with respect to

other events will be captured by Scope. The notion of event occurring universally is not useful to us.

Existence

Patterns in this subcategory capture events existing within the trace i.e. occurring one or more times.

We only include two patterns here, illustrated below. The first captures that event a occurs at least

once. The second captures that the events a and b either both occur or neither occur.

1 2
a

a, ●●

1 24 35
a bba

●
a,●b,● a,b,●a,b,●

395



396 APPENDIX D. FURTHER DETAILS FROM MINING EVALUATION

Bounded Existence

Patterns in this category refine the notion of existence, capturing events occurring at least, or at most,

a given number of times. These will generally be useful in restricting other patterns. For example, we

show below that the occurs at most once pattern can be used to unroll a looped pattern once.

The following patterns capture that event a can occur at most once or twice and at least twice

respectively - combinations can specify an exact number of times.

1 2

●

a

●

1 2 3

●

a

●

a

●

1 2 3

●

a

●

a

●

D.1.2 Ordering

Here we consider orderings between events. As has been noted in the SPS framework, and by previous

mining tools, these relationships often take the form of a preceding or causing b, or b being a response

to or effect of a. We split ordering into three categories - the three being these two forms of relationship

and the third being alternation, where neither cause nor effect take prominence.

Precedence or Cause

An example of this ordering relationship would be that hasNext is a precondition for next when dealing

with iterators, or that press start causes run main. The idea is that the effect cannot occur without

the cause, but the cause can occur without the effect. The general notion of precedence given by SPS

is as follows - if b occurs then a must have occurred previously.

1 2

a
a

b

We can also allow multiple effects and single causes, as used in the Perracotta [YEB+06] mining

tool.

1 2 3

a b

a
b

a

1 2 3
a

b

a

b

The above patterns are hole-free and, as well as considering opening extensions (Sec. 9.3.2), we can

consider patterns where events are caused by external events (represented by holes). For example, the

following capture that an external symbol causes possibly some as followed by b, and a causes possibly

some bs followed by an external symbol.

1 2

●

a

b

1 2

a

b

●

Response or Effect

An example of this ordering relationship would be that the event send must always be followed by the

response acknowledge. The idea is that if the cause occurs the effect must happen. The general notion
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of response given by SPS is the following pattern on the left - if a occurs then b must happen next,

another notion of response used by Perracotta is that if a occurs then b must eventually occur - given

on the right.

1 2

b
a

b

1 2

b
a

a

b

Again, the Perracotta tool introduces versions with multiple causes and single effects.

1 2 3
a

b

a

b

1 2 3

b

a
b

a

1 2 3

ab

a
b

a

As before we can open these patterns and introduce new patterns with external symbols explicitly

being cause or effect - for example the following identified in our decombination exercise.

1 2

a

b

●

1 2

a, ●

●

b

1 2

●

a, ●

b

Alternation

The most common pattern used in previous specification mining tools is that of alternation, either

strict (i.e. we must finish with the second event) or not.

1 2

a

b

● ●

1 2

a

b

● ●

We can also alternate with no sense of start event, as follows - note that we only loop with ● on

state 3 to allow for chaining of these (as seen at the end of Sec. 9.4.4).

1 2

3

a

b

b

a

●

As before, we can consider alternation with an external symbol.

1 2 3a b

●

1 2 3a b

●

Finally, when adding a third symbol the choice of alternations grows. The following pattern was

identified in the decombination exercise and captures aternation between a and b, started by a and

finished by c i.e. between a and c.
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1 2

3

b,c,●

a, ●

b, ●

a

ba

c

D.1.3 Scope

These patterns restrict the scope of events - and therefore can be combined with other events to restrict

their behaviour. We consider scope in terms of restrictions on the ends of the trace, after or before

events, and between events or not.

Ends of trace

We first consider capturing the fact that an event must occur at the beginning or end of a trace -

captured by the following two patterns respectively.

1 2

●,a

a
1 2

●
a

●

a

We also extend these patterns to allow the choice of two events to occur at either the beginning or end

of the trace:

1 2

●,a,b

a,b 1 2

●
a,b

●

a,b

An alternative restriction is to say if an event occurs then it must occur only at either the beginning

or end of the trace - note that in combination with above patterns we can capture the property that

an event must occur only at the beginning or end of the trace.

1 2

●

a,●
1 2

●

a

a

One last restriction is that that an event can only occur at the beginning or end of a trace, or

cannot occur at either end.

1 2 3

a

● a

● a

1 2 3
●

a

●

● a

After

This subcategory of patterns capture the notion of events appearing after other events. The most

simple form is all occurrences of b appear after all occurrences of b. Another pattern might be that all

occurrences of b occur after the first occurrence of a. These are given below.
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1 2

a,●

b

b,●

1 2

●

a

a,b,●

Before

This subcategory of patterns capture the general notion of one or more events appearing before one or

more other events. For example, a appears before any b:

1 2

●,a,b

a

●

Note that if we want to say that no a’s appear after any b’s we can say that all a’s appear before any

b’s.

Between

Here we restrict certain events to occur only between other events. The most general form of this

pattern is that event b can only occur between events a and c, as follows:

1 2

●
a

b,●

c

The SPS framework had a notion of between scope where the event occurring between two other

events can only occur if the second event is present. This can be captured by the following pattern:

1 2 3

●

a

●

b

b,●

c

Another notion of between is to use the external hole symbol as one side of the guarding events -

as in the following.

1 2

●
a

●

b

1 2

●

a

b

Exclusion or Not Between

We can also exclude events from appearing between other events. This is most notable in the pattern

identified for the mutual exclusion specification in the decombinatino exercise - capturing that no other

symbol can occur between a and b.

1 2●

a

b
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The following pattern captures the more general notion of exclusion i.e. that an event c cannot

occur between events a and b.

1 2b,c,●

a
a,●

b

An example

Let us demonstrate how the scope patterns will work. If we want to capture the property that between

a and b we can see d only if we first see c then we would use the following two patterns:

1 2

Between
●

a
b,●

c

1 2

Precedence
●

a
a,●

b

If we take the combination of the Between pattern with bindings [a ↦ a, b ↦ c, c ↦ b] and [a ↦ a, b ↦

d, c↦ b] and the Precedence pattern with binding [a↦ c, b↦ d] then we would get the following (after

removing holes):

1 2 3

a

b

c

d

c

Which captures the intended behaviour.

D.1.4 Compound

Our final category is concerned solely with combining patterns. This was a consideration when selecting

previous patterns, so there is limited work to do there.

Chain

The SPS framework consider chaining precedence and response orderings separately, but these are

already captured by those patterns, given above. Here we consider the general chaining or arbitrary

patterns.

For example, if patterns have disjoint symbols and allow chaining (for example, they loop and

contain hole symbols) then we can introduce patterns that take the sequence of a pattern involving

a (at least once) followed by a pattern involving b (at least once). If we do not wish to specify an

ordering between the patterns, just that one happens then the other, we can also capture this choice,

as well as the possibility of this looping.
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1 2 4
a b

a,● b,●

1

2

3

4

5

a

b

b
a

a,●

b,●

b,●

a,●

a

b

Disjunction

Disjunction of patterns with disjoint symbols is straightforward as long as the original patterns allow

disjunction i.e. they have a hole looping an accepting initial state. This disjunction would be captured

using the following pattern.

12 3

●

a
b

a,● b,●

It is more complicated where patterns share symbols. If the alternative behaviour is chosen by

the first symbol then we can extend a pattern to allow for this by adding additional states - to create

an equivalent condition to the self-looping hole transitions on the initial state described above. For

example, if we had the following pattern on the left we would add an additional state as given on the

right.

1 2 3

●

a ●

b ●

1 2 3

4

●

a ●

b ●

b

b,●
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D.2 Models

The following table is a companion to the table found on page 243 in Sec. 10.1.2 detailing the models

used in the specification mining evaluation. Some of these models are also reported elsewhere, but we

reproduce all models here for completeness. We also report the source of each model

Name Source Model

Java API

HasNext [LCR11]
1 2

3

∀i

hasNext(i, false)

hasNext(i, false)

hasNext(i, true)

next(i)

hasNext(i, true)

SocketOutput [LJMR12]

1 2 3

4

∀o
init(o)

close(o)

write(o)

flush(o)

write(o)

ColIter [LCR11] 1 2 3

4 5

∀c∀i

iterator(c, i)
hasNext(i, false)

hasNext(i, false)

hasNext(i, true)

next(i)
hasNext(i, true)

update(c)

update(c)

Socket [PBG10] See Fig. D.1 below - too large for the table.

URL [PBG10]
1 2

3

4

5

∀u

init(u)

openStream(u)

openStream(u)getContent(u)

getContent(u)

Σ′

Σ′

Σ′

Σ′

Where Σ′
= { getUserInfo(u), toURI(u), getProtocol(u),

toExternalForm(u), getRef(u), getPort(u), getFile(u), getPath(u),

getQuery(u), getDefaultPort(u), getHost(u), getAuthority(u),

sameFile(u) }.
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Formatter [PBG10] 1 2 3

4

∀f

init(f)

out(f)

local(f)

out(f)

local(f)

format(f)

flush(f)

close(f)

close(f)

JFreeChart [CR08]

1

2

3

45

6

789

∀c∀p

createChartWithPlot(c, p)

chartChanged(c)

chartNotify(c)

plotChanged(p)

plotNotify(p)

plotChanged(p)

plotNotify(p)

chartChanged(c)

chartNotify(c)

plotChanged(p)

chartChanged(c)

chartNotify(c)

chartChanged(c)

chartNotify(c)

InputStream [LCR11]

1 2 3

∀i

init(i) close(i)

read(i)

OutputStream [LCR11] 1 2 3

4
∀o

init(i)
close(i)

write(i)

flush(o)

write(o)

flush(o)

Communication

James [CR08]

1 2 3 4 5

6

∀c

hello(c) mail(c) recipient(c)

hello(c) recipient(c)
data(c)

mail(c)

quit(c)

quit(c)
quit(c)

quit(c)

quit(c)

Satellites- All [FHR13, BH11b]

1 2 3

∀s∃r

ping(r, s) ping(s, r)
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Satellites-

Leader

[FHR13, BH11b]

1 2 3

∃s∀r

ping(r, s) ping(s, r)

Commands [FHR13, BH11b] 1 2 3∀c

issue(c)

success(c)

fail(c)

resend(c)

NestedCommand [FHR13, BH11b] 1

2 3

2 3

∀c1∀c2

send(c1)

ack(c1)

send(c2)

ack(c2)

send(c2)

ack(c2)
send(c1)

ack(c1)

Rovers - see Appendix A.4

ResLifecycle [FHR13, BH11b] 1 2 3

∀r
request(r)

deny(r)

grant(r)

rescind(r)

cancel(r)

ReleaseRes [FHR13, BH11b] 1 2 3 4

∀c∀t∀r

schedule(t, c)
grant(t, r)

cancel(t, r)

finish(c)

finish(c)

RespectConf [FHR13, BH11b] 1 2 3

∀r1∀r2 conflict(r1, r2)

conflict(r2, r1)
grant(r1)

cancel(r1)

grant(r2)

Concurrency

MutualExcl [CHP71] 1

2

3

∀t1∀t2∀l

lock(t1, l)

lock(t2, l)
unlock(t1, l)

unlock(t1, l)
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LockOrder [Sto10] 1

2 3 4 5 6

7 8 9 10 11

∀l1∀l2

lock(l1)

unlock(l1)

lock(l2)
lock(l2)

unlock(l2)

unlock(l1)

lock(l1) unlock(l2)

lock(l2)

unlock(l1)

lock(l2)

unlock(l2)
lock(l1)

lock(l1)

unlock(l1)

unlock(l2)

lock(l2) unlock(l1)

lock(l1)

unlock(l2)

ReadWriter [CHP71]

1

2

3

4

5

6

∀w1∀w2∀r1∀r2∀f

enterW(w1, f)

enterW(w2, f)

exitW(w1, f)

exitW(w2, f)

enterR(r1, f)

enterR(r2, f)

exitR(r1, f)

exitR(r2, f)

enterR(r1, f)

enterR(r2, f)

exitR(r1, f)

exitR(r2, f)

Security

PTrace [GLO08]

1

2 3

45

6

∀pid∀tgt

ptrace Attach(pid, tgt)

exec(tgt)

ptrace Syscall(pid, tgt)

ptrace Poketext(pid, tgt)

ptrace Detach(pid, tgt)

Drivers

IOCallDriver [LRRV12]

1 2 3

∀x

setup(x) call(x,0)

setup(x)
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KeAcquire-

SpinLock

[LRRV12]
1 2∀x

KeAcquireSpinLock(x)

KeAcquireSpinLockRaiseToDpc(x)

KeReleaseSpinLock(x)

ZwRegistry-

Create

[LRRV12]
1 2 3

4

∀h

ZwRegistryCreate(h)

useKey(h)

ZwClose(h)

ZwOpen(h)

ZwDelete(h)

ZwDelete(h)
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1 2

4 5

7 6

8 39

10

11

12

13

Also states 2 − 13
close(s)ÐÐÐÐ→ 14 with 14 ∈ F

∀s

init(s)

Σ10Σ9

bind(s)

gI

gO

bind(s)
connect(s)

gO

gI

gO

sI

gI

sO

gO

gI

sO

sI

sO

sI

Σ5 ∪Σ2Σ6

Σ2 ∪Σ3 ∪Σ4

Σ1 ∪Σ3

Σ8

Σ3 ∪Σ2

Σ8

Σ7

Σ0 ∪Σ4

Σ7 ∪Σ8Σ7

Σ2 ∪Σ3

gI getInputStream(s)
gO getOutputStream(s)
sI shutdownInput(s)
sO shutdownOutput(s)
Σ0 { isConnected(s), isBound(s) }
Σ1 Σ0 ∪ { getLocalPort, getLocalAddress(s) }
Σ2 Σ1 ∪ { getLocalSocketAddress(s) }
Σ3 { getPort(s), getInetAddress(s), sendUrgentData(s),

getRemoteSocketAddress(s)}
Σ4 { getSendBufferSize(s), setSoLinger(s), getTcpNoDelay(s),

getSoTimeout(s), setKeepAlive(s), setOOBInline(s), getOOBInline(s),
getSoLinger(s), setSoTimeout(s), setSendBufferSize(s),
getKeepAlive(s), setTcpNoDelay(s)}

Σ5 Σ4 ∪ { getReceiveBufferSize(s), setPerformancePreferences(s),
setTrafficClass(s), setReceiveBufferSize(s), getTrafficClass(s)}

Σ6 Σ0 ∪Σ5 ∪ { setReuseAddress(s), getReuseAddress(s) }
Σ7 Σ2 ∪Σ3 ∪ { isInputShutdown(s) }
Σ8 Σ2 ∪Σ3 ∪ { isOutputShutdown(s) }
Σ9 { setTrafficClass(s), getReuseAddress(s), setReuseAddress(s),

getReceiveBufferSize(s), setReceiveBufferSize(s),
getTrafficClass(s), setPerformancePreferences(s) }

Σ10 { sendUrgentData(s), getLocalSocketAddress(s),
getRemoteSocketAddress(s), getInetAddress(s), getLocalAddress(s),
getPort(s), getLocalPort(s)}

Figure D.1: The QEA model for Socket where the table summarises events and sets of events
used.
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Table D.2: Statistics about the generated traces. N=None, S=State, P=Path. Model names
have been shortened - they are in the same order as presented previously.

Training
Test

Shortest Short Medium Long
N S P N S P N S P N S P + -

HN - 5 11 - - 43 - - 1757 - - 23519 2774 93
SO 4 5 7 - 12 15 28 27 27 - 9 60 52 6
CI 8 10 - 67 68 43 616 709 94 62 91 - 45 8
So 10 - - 49 - - 1282 1583 - - 29995 - 2596 60
UR 9 13 - 36 44 - - 749 1462 - - 28457 2855 48
Fo 4 8 16 - 19 33 - - 273 - - 461 511 35
JF 5 - - - - - 106 113 - 144 163 227 152 11
IS - 3 6 - - 15 - - 108 - - 218 241 52
OS 3 5 11 4 6 29 - - 344 - - 665 565 60
Ja 6 12 22 14 31 23 - 410 140 - 107 322 238 31
SA - - 3 - - 16 - - 79 - - 177 136 135
SL - - 3 - - 15 - - 98 - - 189 135 116
Co 3 - 12 - - 44 - - 1620 - - 43914 5501 11
NC 6 - 4 4 - 9 10 - 6 8 - 10 9 4
RL 4 7 13 - - 26 - - 1404 - - 19884 2557 51
RR 7 7 - 9 10 15 15 16 24 14 17 20 15 9
RC 6 5 6 5 9 14 - 20 14 - 14 16 19 6
ME 3 1 4 18 - 23 87 - 105 - - - 10 4
LO 7 9 16 14 15 25 - - 72 - - 28 7 6
RW - - - - 8 14 - 17 20 - - 29 31 7
PT - 11 - - - - - - 1435 - 591 2097 2764 12
IO 1 2 8 - - 42 - - 2036 - - - 2455 48
KA - 5 12 - - 56 - - 1518 - - 21971 1247 52
ZR 6 15 16 10 21 26 - - 120 - - 276 220 29

D.3 Traces

Table. D.2 reports on the generated traces - dashes indicate unused categories as discussed in Sec. 10.2.3.

D.4 Precision and Recall

Here we report the full precision and recall results. The tables in this section are as follows:

• Tables D.3 and D.4 give precision and recall, respectively, for the AdHoc pattern library

• Tables D.5 and D.6 give precision and recall, respectively, for the Designed pattern library

• Tables D.7 and D.8 give precision and recall, respectively, for the DesignedAug pattern library

• Table D.9 gives the precision and recall for the AdHoc pattern library in connected mode

• Table D.10 gives the precision and recall for the Designed pattern library in connected mode

• Table D.11 gives the precision and recall for the DesignedAug pattern library in connected mode
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D.5 Efficiency

Here we report the full efficiency results. The tables in this section are as follows:

• Tables D.12 to D.14 give the checking and combining times and patterns passed, respectively,

for the AdHoc pattern library

• Tables D.15 to D.17 give the checking and combining times and patterns passed, respectively,

for the Designed pattern library

• Tables D.18 to D.20 give the checking and combining times and patterns passed, respectively,

for the DesignedAug pattern library

Table D.12: Checking times for the AdHoc pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 2.223 1.556 0.743 3.35 23.09
SO 1.72 2.17 1.546 1.567 0.626 0.873 0.981 0.502 1.493 1.075
CI 1.399 2.584 2.397 2.867 to 7.125 11.50 to 3.162 2.061
So to to to to to
UR to to to to to 525.7 to
Fo 1.762 1.887 1.717 2.073 1.369 5.781 7.977
JF 0.735 3.263 2.949 3.096 3.187 0.891
IS 0.68 1.863 0.873 1.033 1.461
OS 0.855 0.766 1.933 0.674 0.71 1.052 2.012 3.039
Ja 0.976 1.179 2.354 to 1.301 1.334 3.891 2.673 0.823 4.807
SA 2.087 1.084 1.085 1.395
SL 2.106 1.085 1.07 1.326
Co 1.068 2.209 1.293 5.406 86.85
NC 1.611 2.316 0.778 2.092 0.869 1.23 1.404 1.679
RL 1.494 to to to to to
RR 1.629 0.656 1.007 1.167 0.739 1.185 1.02 0.871 1.693 0.893 1.05
RC 2.378 1.679 1.453 1.088 2.501 2.091 2.766 2.457 to 2.664
ME - - 1.49 - 4.516 - -
LO 2.578 1.523 2.469 2.286 2.856 2.147 1.338 1.454
RW - to to 30.43 17.66
PT - - - -
IO 1.896 0.907 0.989 0.679 1.147
KA 1.296 0.96 0.693 1.995 18.79
ZR 2.071 1.634 1.327 1.402 1.288 1.061 2.148 4.136
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Table D.13: Combining times for the AdHoc pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 0.231 0.232 0.24 0.562 0.323
SO 1.176 0.468 0.242 0.233 0.244 0.47 0.258 0.308 0.508 0.289
CI 163.2 8.778 0.972 7.476 to 1.668 1.647 to 12.8 18.65
So to to to to to
UR to to to to to 17.93 to
Fo 13.69 6.347 16.03 1.41 1.49 1.088 1.11
JF 4.465 0.421 0.44 0.147 0.441 0.149
IS 0.647 0.331 0.333 0.34 0.362
OS 2.076 0.851 0.66 2.949 1.117 0.697 0.657 0.712
Ja 6.346 14.22 31.68 to 12.69 18.12 4.165 8.179 8.515 9.74
SA 0.219 0.229 0.232 0.239
SL 0.219 0.242 0.239 0.254
Co 1.2 16.16 24.04 23.19 30.44
NC 0.998 1.778 1.336 7.178 1.041 1.934 19.34 8.965
RL 3.621 to to to to to
RR 0.103 8.601 2.311 5.811 6.68 6.056 8.389 37.30 4.791 0.563 4.723
RC 0.417 9.702 122.8 9.905 3.236 452.3 5.765 27.39 to 11.11
ME - - 1.32 - 1.363 - -
LO 5.891 1.112 0.035 0.037 0.045 0.054 0.048 6.07
RW - to to 49.81 108.2
PT - - - -
IO 0.157 0.204 0.155 0.443 0.352
KA 0.134 0.024 0.039 0.041 0.136
ZR 5.543 1.39 1.49 2.126 1.86 1.509 1.614 1.739

Table D.14: Passed patterns for the AdHoc pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 176 90 90 90 91
SO 30 27 24 24 24 26 24 24 30 24
CI 80 103 39 37 to 38 35 to 75 38
So to to to to to
UR to to to to to 464 to
Fo 969 210 221 168 168 164 164
JF 728 26 26 27 24 28
IS 395 95 95 95 95
OS 861 152 127 861 226 127 127 127
Ja 322 75 77 to 97 73 108 71 71 71
SA 177 177 177 177
SL 177 177 177 177
Co 485 26 27 27 27
NC 92 142 180 18 64 60 32 18
RL 960 to to to to to
RR 35 29 38 31 18 34 29 18 34 38 17
RC 69 68 53 161 40 37 35 37 to 34
ME - - 76 - 94 - -
LO 24 12 8 8 8 8 8 16
RW - to to 324 188
PT - - - -
IO 187 177 60 76 76
KA 20 14 14 14 14
ZR 146 122 122 350 170 122 122 122
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Table D.15: Checking times for the Designed pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 2.041 1.544 0.681 2.187 22.97
SO - - - - - - - - - -
CI - 2.571 - - - - - - - -
So 125.1 480.7 to to to
UR 7.677 5.243 16.32 18.96 24.73 492.8 to
Fo 0.825 0.796 1.699 0.925 1.089 4.466 6.223
JF 0.731 - - - - -
IS 0.645 1.845 0.772 0.87 1.168
OS 0.915 0.74 1.926 0.392 0.68 0.923 1.835 2.773
Ja 1.076 0.986 2.239 0.759 1.046 1.158 3.638 2.046 0.753 3.274
SA 2.135 1.047 0.989 1.208
SL 2.089 1.056 1.026 1.219
Co 1.139 2.238 1.282 5.376 89.05
NC 1.415 2.244 0.707 - - - - -
RL 1.38 1.388 1.647 1.703 8.994 91.96
RR 1.556 0.445 - - - - - - - - -
RC - - - 0.994 - - - - - -
ME - - 1.151 - 3.01 - -
LO 2.563 1.449 1.799 - - - - -
RW - - - - -
PT - - - -
IO 1.729 1.232 0.91 0.432 1.188
KA 1.302 0.934 0.545 1.906 20.15
ZR 2.09 1.545 1.225 1.292 0.635 0.818 1.701 2.993

Table D.16: Combining times for the Designed pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 0.055 0.047 0.05 0.082 0.065
SO - - - - - - - - - -
CI - 0.003 - - - - - - - -
So 2.054 1.334 to to to
UR 0.414 0.595 0.374 0.442 0.525 0.123 to
Fo 0.219 0.14 0.151 0.146 0.131 0.154 0.158
JF 0.561 - - - - -
IS 0.09 0.051 0.063 0.064 0.068
OS 0.126 0.064 0.064 0.157 0.076 0.083 0.073 0.081
Ja 0.043 0.038 0.027 0.114 0.081 0.026 0.179 0.027 0.037 0.031
SA 0.03 0.034 0.037 0.038
SL 0.031 0.036 0.035 0.039
Co 0.125 0.038 0.062 0.063 0.078
NC 0.02 0.117 0.131 - - - - -
RL 0.04 0.069 0.12 0.071 0.143 0.094
RR 0.019 0.053 - - - - - - - - -
RC - - - 0.003 - - - - - -
ME - - 0.007 - 0.013 - -
LO 0.01 0.01 0.011 - - - - -
RW - - - - -
PT - - - -
IO 0.023 0.031 0.003 0.009 0.013
KA 0.01 0.007 0.014 0.02 0.032
ZR 0.019 0.023 0.026 0.024 0.035 0.032 0.032 0.037
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Table D.17: Passed patterns for the Designed pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 43 31 31 31 31
SO - - - - - - - - - -
CI - 1 - - - - - - - -
So 293 200 to to to
UR 66 76 64 64 71 64 to
Fo 88 58 66 58 58 58 58
JF 122 - - - - -
IS 58 37 37 37 37
OS 86 40 40 86 42 40 40 40
Ja 24 18 18 51 39 18 53 18 18 18
SA 30 30 30 30
SL 30 30 30 30
Co 67 26 29 29 29
NC 10 28 24 - - - - -
RL 34 14 14 14 14 14
RR 11 7 - - - - - - - - -
RC - - - 4 - - - - - -
ME - - 6 - 8 - -
LO 8 8 8 - - - - -
RW - - - - -
PT - - - -
IO 26 30 7 12 12
KA 12 10 11 12 10
ZR 20 20 20 25 20 20 20 20

Table D.18: Checking times for the DesignedAug pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 2.149 1.522 0.84 2.462 23.51
SO 0.758 1.838 1.408 1.303 0.77 0.894 1.168 0.741 1.106 1.532
CI 1.446 3.215 2.667 3.227 3.245 8.018 12.50 6.905 4.957 2.099
So to to to to to
UR to to to to to to to
Fo 1.488 1.472 2.082 1.682 1.83 6.164 8.702
JF 0.948 3.115 2.699 3.696 2.899 1.049
IS 0.751 1.896 0.966 1.217 1.74
OS 0.991 0.929 2.108 0.607 0.792 1.223 2.355 3.576
Ja 1.618 1.523 2.794 1.299 1.509 1.853 4.558 3.88 1.021 6.89
SA 2.139 1.142 1.167 1.529
SL 2.156 1.165 1.202 1.513
Co 0.993 2.488 1.506 5.692 88.25
NC 2.24 2.504 0.917 2.436 0.82 1.039 1.189 1.638
RL 1.851 1.288 1.229 1.288 8.987 98.11
RR 1.91 1.132 1.087 1.2 1.075 1.471 1.082 1.344 1.763 0.865 1.626
RC 2.741 2.089 2.189 1.448 3.189 2.899 3.849 to 1.513 3.927
ME - - 2.382 - 11.60 - -
LO 5.065 3.341 5.311 4.875 5.425 3.589 3.353 1.775
RW to to to to to
PT - - - -
IO 1.882 1.176 0.957 0.548 1.272
KA 1.395 1.113 0.709 2.101 20.41
ZR 2.446 2.042 1.731 1.572 0.996 1.462 3.231 6.166
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Table D.19: Combining times for the DesignedAug pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 0.728 0.515 0.539 0.681 0.638
SO 0.423 0.302 0.258 0.288 0.355 0.385 0.331 0.423 0.473 0.448
CI 8.654 4.6 2.717 1.848 3.477 2.914 2.634 2.74 2.664 5.659
So to to to to to
UR to to to to to to to
Fo 19.98 4.639 6.943 2.607 2.397 2.024 2.116
JF 9.776 0.788 0.397 0.535 0.462 0.412
IS 1.637 0.537 0.585 0.606 0.66
OS 4.153 1.754 0.936 4.334 2.862 0.942 0.957 1.012
Ja 6.818 2.189 1.819 4.325 1.801 1.786 3.605 1.38 1.564 1.478
SA 0.504 0.554 0.535 0.576
SL 0.518 0.562 0.545 0.577
Co 2.856 0.66 0.785 0.778 0.826
NC 1.098 2.445 2.434 2.534 1.74 2.186 2.626 2.836
RL 6.149 6.754 7.299 1.183 1.189 1.212
RR 0.497 1.411 1.943 1.67 11.37 1.102 3.318 6.832 2.081 0.756 5.918
RC 1.078 3.771 22.38 15.46 1.184 2.85 3.126 to 7.329 2.972
ME - - 1.915 - 1.321 - -
LO 0.819 0.399 0.449 0.27 0.271 0.303 0.287 0.787
RW to to to to to
PT - - - -
IO 0.443 0.519 0.24 0.294 0.28
KA 0.257 0.14 0.134 0.137 0.179
ZR 2.717 1.675 1.441 4.002 2.446 2.024 1.455 1.586

Table D.20: Passed patterns for the DesignedAug pattern library

Shortest Short Medium Long
N S P N S P N S P N S P

HN 538 309 309 309 309
SO 88 77 79 74 74 83 74 74 90 74
CI 161 210 167 141 107 166 141 118 265 154
So to to to to to
UR to to to to to to to
Fo 2066 566 678 523 521 520 520
JF 1378 104 86 106 86 97
IS 1066 290 290 290 290
OS 2097 445 343 2097 653 342 342 342
Ja 627 293 287 856 354 285 400 284 287 284
SA 437 437 437 437
SL 437 437 437 437
Co 1159 211 220 220 220
NC 172 346 278 88 146 162 208 88
RL 1993 237 206 195 195 195
RR 121 59 145 110 63 109 96 53 100 99 56
RC 301 273 127 469 153 130 154 to 173 124
ME - - 146 - 162 - -
LO 88 82 82 74 74 74 74 82
RW to to to to to
PT - - - -
IO 515 437 141 146 146
KA 93 53 53 54 52
ZR 453 364 342 806 427 340 339 339
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D.6 Conciseness

Here we report the full conciseness results. The tables in this section are as follows:

• Table D.21 gives the size and complexity of extracted models for the AdHoc pattern library

• Table D.22 gives the size and complexity of extracted models for the Designed pattern library

• Table D.23 gives give the size and complexity of extracted models for the DesignedAug pattern

library

• Table D.24 gives give the size and complexity of extracted models for all pattern libraries in

connectedness mode
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