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Abstract
This paper presents new features recently implemented in
the theorem prover Vampire, namely support for first-order
logic with a first class boolean sort (FOOL) and polymorphic
arrays. In addition to having a first class boolean sort, FOOL
also contains if-then-else and let-in expressions. We
argue that presented extensions facilitate reasoning-based
program analysis, both by increasing the expressivity of
first-order reasoners and by gains in efficiency.
Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs; F.4.1 [Mathematical Logic and
Formal Languages]: Specifying and Verifying and Reasoning
about Programs; F.4.1 [Artificial Intelligence]: Deduction
and Theorem Proving; F.4.1 [Artificial Intelligence]: Pro-
gramming Languages and Software
Keywords automated theorem proving, first-order logic,
program analysis, program verification, Vampire, TPTP

1. Introduction
Automated program analysis and verification requires dis-
covering and proving program properties. These program
properties are checked using various tools, including the-
orem provers. The translation of program properties into
formulas accepted by a theorem prover is not straightfor-
ward because of a mismatch between the semantics of the
programming language constructs and that of the input lan-
guage of the theorem prover. If program properties are not
directly expressible in the input language, one should im-
plement a translation of such program properties to the lan-
guage. Such translations can be very complex and thus error
prone.

The performance of a theorem prover on the result of a
translation crucially depends on whether the translation in-
troduces formulas potentially making the prover inefficient.
Theorem provers, especially first-order ones, are known to
be very fragile with respect to the input. Expressing pro-
gram properties in the “right” format therefore requires solid
knowledge about how theorem provers work and are imple-
mented — something that a user of a verification tool might
not have. Moreover, it can be hard to efficiently reason about
certain classes of program properties, unless special infer-
ence rules and heuristics are added to the theorem prover.

For example, [8] shows a considerable gain in performance
on proving properties of data collections by using a specially
designed extensionality resolution rule.

If a theorem prover natively supports expressions that
mirror the semantics of programming language constructs,
we solve both above mentioned problems. First, the users do
not have to design translations of such constructs. Second,
the users do not have to possess a deep knowledge of how
the theorem prover works — the efficiency becomes the
responsibility of the prover itself.

In this work we present new features recently developed
and implemented in the theorem prover Vampire [13] to na-
tively support mirroring programming language constructs
in its input language. They include (i) FOOL [10], that is
the extension of first-order logic by a first-class boolean sort,
if-then-else and let-in expressions, and (ii) polymorphic
arrays.

This paper is structured as follows. Section 2 presents
how FOOL is implemented in Vampire and focuses on new
extensions to the TPTP input language [17] of first-order
provers. Section 2 extends the TPTP language of monomor-
phic many-sorted first-order formulas, called TFF0 [20], and
allows users to treat the built-in boolean sort $o as a first
class sort. Moreover, it introduces expressions $ite and $let
, which unify various TPTP if-then-else and let-in ex-
pressions.

Section 3 presents a formalisation of a polymorphic the-
ory of arrays in TPTP and its implementation in Vampire.
It extends TPTP with features of the TFF1 language [5]
of rank-1 polymorphic many-sorted first-order formulas,
namely, sort arguments for the built-in array sort construc-
tor $array. Sort variables however are not supported.

We argue that these extensions make the translation of
properties of some programs to TPTP easier. To support
this claim, in Section 4 we discuss representation of various
programming and other constructs in the extended TPTP
language. We also give a linear translation of the next state
relation for any program with assignments, if-then-else,
and sequential composition.

Experiments with theorem proving with FOOL formulas
are described in Section 5. In particular, we show that
the implementation of a new inference rule, called FOOL
paramodulation, improves performance of theorem provers
using superposition calculus.



Finally, Section 6 discusses related work and Section 7
outlines future work.
Summary of the main results.
• We describe an implementation of first-order logic with

a first-class boolean sort. This bridges the gap between
input languages for theorem provers and logics and tools
used in program analysis. We believe it is a first ever im-
plementation of first-class boolean sorts in superposition
theorem provers.

• We extend and simplify the TPTP language [17], by pro-
viding more powerful and more uniform representations
of if-then-else and let-in expressions. To the best of
our knowledge, Vampire is the only superposition theo-
rem prover implementing these constructs.

• We formalise and describe an implementation in Vampire
of a polymorphic theory of arrays. Again, we believe
that Vampire is the only superposition theorem prover
implementing this theory.

• We give a simple extension of FOOL, allowing to express
the next state relation of a program as a boolean formula
which is linear in the size of the program. This boolean
formula captures the exact semantics of the program and
can be used by a first-order theorem prover. We are not
aware of any other work on extending theorem provers
with support for representing fragments of imperative
programs.

• We demonstrate usability and high performance of our
implementation on two collections of examples, coming
from the higher-order part of the TPTP library and from
the Isabelle interactive theorem prover [14]. Our exper-
imental results show that Vampire outperforms systems
which could previously be used to solve such problems:
higher-order theorem provers and satisfiability modulo
theory (SMT) solvers.
The paper focuses on new, practical features extending

first-order theorem provers for making them better suited
for applications of reasoning in various theories, program
analysis and verification. While the paper describes imple-
mentation details and challenges in the Vampire theorem
prover, the described features and their implementation can
be carried out in any other first-order prover.

Summarising, we believe that our paper advances the
state-of-the-art in formal certification of programs and
proofs. With the use of FOOL and polymorphic arrays, we
bring first-order theorem proving closer to program logics
and make first-order theorem proving better suited for pro-
gram analysis and verification. We also believe that an im-
plementation of FOOL advances automation of mathemat-
ics, making many problems using the boolean type directly
understood by a first-order theorem prover, while they pre-
viously were treated as higher-order problems.

2. First Class Boolean Sort
Our recent work [10] presented a modification of many-
sorted first-order logic that contains a boolean sort with
a fixed interpretation and treats terms of the boolean sort
as formulas. We called this logic FOOL, standing for first-
order logic (FOL) + boolean sort. FOOL extends FOL by
(1) treating boolean terms as formulas; (2) if-then-else
expressions; and (3) let-in expressions. There is a model-
preserving transformation of FOOL formulas to FOL formu-
las, hence an implementation of this transformation makes it

possible to prove FOOL formulas using a first-order theorem
prover.

The language of FOOL is, essentially, a superset of the
core language of SMT-LIB 2 [1], the library of problems for
SMT solvers. The difference between FOOL and the core
language is that the former has richer let-in expressions,
which support local definitions of functions symbols of ar-
bitrary arity, while the latter only supports local binding of
variables.

FOOL can be regarded as the smallest superset of the
SMT-LIB 2 Core language and TFF0. An implementation
of a translation of FOOL to FOL thus also makes it possible
to translate SMT-LIB problems to TPTP. Consider, for
example, the following tautology, written in the SMT-LIB
syntax: (exists ((x Bool)) x). It quantifies over boolean
variables and uses a boolean variable as a formula. Neither is
allowed in the standard TPTP language, but can be directly
expressed in an extended TPTP that represents FOOL.

The rest of this section presents features of FOOL not
included in FOL, explains how they are implemented in
Vampire and how they can be represented in an extended
TPTP syntax understood by Vampire.

2.1 Proving with the Boolean Sort
Vampire supports many-sorted predicate logic and the TFF0
syntax for this logic. In many-sorted predicate logic all
sorts are uninterpreted, while the boolean sort should be
interpreted as a two-element set. There are several ways to
support the boolean sort in a first-order theorem prover,
for example, one can axiomatise it by adding two constants
true and false of this sort and two axioms: (∀x : bool)(x .=
true ∨ x .= false) and true 6 .= false. However, as we discuss
in [10], using this axiomatisation in a superposition theorem
prover may result in performance problems caused by self-
paramodulation of x .= true ∨ x .= false.

To overcome this problem, in [10] we proposed the fol-
lowing modification of the superposition calculus.

1. Use a special simplification ordering that makes the
constants true and false smallest terms of the sort bool
and also makes true greater than false.

2. Add the axiom true 6 .= false.
3. Add a special inference rule, called FOOL paramodula-

tion, of the form
C[s]

C[true] ∨ s .= false
,

where
(a) s is a term of the sort bool other than true and false;
(b) s is not a variable;

Both ways of dealing with the boolean sort are sup-
ported in Vampire. They are controlled by the option
--fool_paramodulation, which can be set to on or off. The
default value is on, which enables the modification.

Vampire uses the TFF0 subset of the TPTP syntax,
which does not fully support FOOL. To write FOOL for-
mulas in the input, one uses the standard TPTP notation:
$o for the boolean sort, $true for true and $false for false.
There are, however, two ways to output the boolean sort
and the constants. One way will use the same notation as
in the input and is the default, which is sufficient for most
applications. The other way can be activated by the option
--show_fool on, it will
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1. denote as $bool every occurrence of bool as a sort of a
variable or an argument (to a function or a predicate
symbol);

2. denote as $$true every occurrence of true as an argu-
ment; and

3. denote as $$false every occurrence of false as an argu-
ment.

Note that an occurrence of any of the symbols $bool, $$true
or $$false anywhere in an input problem is not recognised
as syntactically correct by Vampire.

Setting --show_fool to on might be necessary if Vampire
is used as a front-end to other reasoning tools. For example,
one can use Vampire not only for proving, but also for pre-
processing the input problem or converting it to clausal nor-
mal form. To do so, one uses the options --mode preprocess
and --mode clausify, respectively. The output of Vampire
can then be passed to other theorem provers, that either
only deal with clauses or do not have sophisticated prepro-
cessing. Setting --show_fool to on appends a definition of a
sort denoted by $bool and constants denoted by $$true and
$$false of this sort to the output. That way the output will
always contain syntactically correct TFF0 formulas, which
might not be true if the option is set to off (the default
value).

Every formula of the standard FOL is syntactically a
FOOL formula and has the same models. Vampire does not
reason in FOOL natively, but rather translates the input
FOOL formulas into FOL formulas in a way that preserves
models. This is done at the first stage of preprocessing of
the input problem.

Vampire implements the translation of FOOL formulas
to FOL given in [10]. It involves replacing parts of the
problem that are not syntactically correct in the standard
FOL by applications of fresh function and predicate symbols.
The set of assumptions is then extended by formulas that
define these symbols. Individual steps of the translation are
displayed when the --show_preprocessing options is set to
on.

In the next subsections we present the features of FOOL
that are not present in FOL together with their syntax in
the extended TFF0 and their implementation in Vampire.

2.2 Quantifiers over the Boolean Sort
FOOL allows quantification over bool and usage of boolean
variables as formulas. For example, the formula (∀x :
bool)(x ∨ ¬x) is a syntactically correct tautology in FOOL.
It is not however syntactically correct in the standard FOL
where variables can only occur as arguments.

Vampire translates boolean variables to FOL in the fol-
lowing way. First, every formula of the form x⇔ y, where x
and y are boolean variables, is replaced by x .= y. Then, ev-
ery occurrence of a boolean variable x anywhere other than
in an argument is replaced by x

.= true. For example, the
tautology (∀x : bool)(x ∨ ¬x) will be converted to the FOL
formula (∀x : bool)(x .= true ∨ x 6 .= true) during preprocess-
ing.

Note that it is possible to directly express quantified
boolean formulas (QBF) in FOOL, and use Vampire to
reason about them.

TFF0 does not support quantification over booleans.
Vampire supports an extended version of TFF0 where the
sort symbol $o is allowed to occur as the sort of a quantifier
and boolean variables are allowed to occur as formulas. The

formula (∀x : bool)(x ∨ ¬x) can be expressed in this syntax
as ![X:$o]: (X | ∼X).

2.3 Functions and Predicates with Boolean
Arguments

Functions and predicates in FOOL are allowed to take
booleans as arguments. For example, one can define the
logical implication as a binary function impl of the type
bool × bool → bool using the following axiom:

(∀x : bool)(∀y : bool)(impl(x, y)⇔ ¬x ∨ y).
Since Vampire supports many-sorted logic, this feature

requires no additional implementation, apart from changes
in the parser.

In TFF0, functions and predicates cannot have argu-
ments of the sort $o. In the version of TFF0, supported
by Vampire, this restriction is removed. Thus, the definition
of impl can be expressed in the following way.

tff(impl, type, ($o * $o) > $o).
tff(impl_definition, axiom,

![X:$o, Y:$o]: (impl(X,Y) <=> (∼X | Y))).

2.4 Formulas as Arguments
Unlike the standard FOL, FOOL does not make a distinc-
tion between formulas and boolean terms. It means that a
function or a predicate can take a formula as a boolean ar-
gument, and formulas can be used as arguments to equality
between booleans. For example, with the definition of impl,
given earlier, we can express in FOOL that P is a graph of
a (partial) function of the type σ → τ as follows:

(∀x : σ)(∀y : τ)(∀z : τ)impl(P (x, y) ∧ P (x, z), y .= z). (1)
Note that the definition of impl could as well use equality

instead of equivalence.
In order to support formulas occurring as arguments,

Vampire does the following. First, every expression of the
form ϕ

.= ψ is replaced by ϕ ⇔ ψ. Then, for each formula
ψ occurring as an argument the following translation is
applied. If ψ is a nullary predicate > or ⊥, it is replaced
by true or false, respectively. If ψ is a boolean variable, it is
left as is. Otherwise, the translation is done in several steps.
Let x1, . . . , xn be all free variables of ψ and σ1, . . . , σn be
their sorts. Then Vampire
1. introduces a fresh function symbol g of the type

σ1 × . . .× σn → bool;

2. adds the definition
(∀x1 : σ1) . . . (∀xn : σn)(ψ ⇔ g(x1, . . . , xn) .= true)

to its set of assumptions;
3. replaces ψ by g(x1, . . . , xn).

For example, after this translation has been applied for
both arguments of impl, (1) becomes

(∀x : σ)(∀y : σ)(∀z : σ)impl(g1(x, y, z), g2(y, z)),
where g1 and g2 are fresh function symbol of the types
σ × τ × τ → bool and τ × τ → bool, respectively, defined
by the following formulas:
1. (∀x : σ)(∀y : τ)(∀z : τ)(P (x, y) ∧ P (x, z) ⇔ g1(x, y, z) .=

true);
2. (∀y : τ)(∀z : τ)(y .= z ⇔ g2(y, z) .= true).
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TFF0 does not allow formulas to occur as arguments.
The extended version of TFF0, supported by Vampire, re-
moves this restriction for arguments of the boolean sort.
Formula (1) can be expressed in this syntax as follows:

![X:s, Y:t, Z:t]: impl(p(X,Y) & p(X,Z), Y = Z)

For a more interesting example, consider the following
logical puzzle taken from the TPTP problem PUZ081:

A very special island is inhabited only by knights
and knaves. Knights always tell the truth, and knaves
always lie. You meet two inhabitants: Zoey and Mel.
Zoey tells you that Mel is a knave. Mel says, ‘Neither
Zoey nor I are knaves’. Who is a knight and who is a
knave?
To solve the puzzle, one can formalise it as a problem

in FOOL and give a corresponding extended TFF0 repre-
sentation to Vampire. Let zoye and mel be terms of a fixed
sort person that represent Zoye and Mel, respectively. Let
Says be a predicate that takes a term of the sort person and
a boolean term. We will write Says(p, s) to denote that a
person p made a logical statement s. Let Knight and Knave
be predicates that take a term of the sort person. We will
write Knight(p) or Knave(p) to denote that a person p is
a knight or a knave, respectively. We will express the fact
that knights only tell the truth and knaves only lie by ax-
ioms (∀p : person)(∀s : bool)(Knight(p)∧Says(p, s)⇒ s) and
(∀p : person)(∀s : bool)(Knave(p)∧Says(p, s)⇒ ¬s), respec-
tively. We will express the fact that every person is either a
knight or a knave by the axiom (∀p : person)(Knight(p) ⊕
Knave(p)), where ⊕ is the “exclusive or” connective. Fi-
nally, we will express the statements that Zoye and Mel
make in the puzzle by axioms Says(zoye,Knave(mel)) and
Says(mel,¬Knave(zoye) ∧ ¬Knave(mel)), respectively.

The axioms and definitions, given above, can be written
in the extended TFF0 syntax in the following way.

tff(person, type, person: $tType).
tff(says, type, says: (person * $o) > $o).

tff(knight, type, knight: person > $o).
tff(knights_always_tell_truth, axiom,

![P:person, S:$o]:
(knight(P) & says(P, S) => S)).

tff(knave, type, knave: person > $o).
tff(knaves_always_lie, axiom,

![P:person, S:$o]:
(knave(P) & says(P, S) => ∼S)).

tff(very_special_island, axiom,
![P:person]: (knight(P) <∼> knave(P))).

tff(zoey, type, zoey: person).
tff(mel, type, mel: person).

tff(zoye_says, hypothesis,
says(zoey, knave(mel))).

tff(mel_says, hypothesis,
says(mel, ∼knave(zoey) & ∼knave(mel))).

Vampire accepts this code, finds that the problem is
satisfiable and outputs the saturated set of clauses. There
one can see that Zoey is a knight and Mel is a knave.
Note that the existing formalisations of this puzzle in TPTP

(files PUZ081ˆ1.p, PUZ081ˆ2.p and PUZ081ˆ3.p) employ the
language of higher-order logic (THF) [19]. However, as we
have just shown, one does not need to resort to reasoning
in higher-order logic for this problem, and can enjoy the
efficiency of reasoning in first-order logic.

This example makes one think about representing sen-
tences in various epistemic or first-order modal logics in
FOOL.

2.5 if-then-else

FOOL contains expressions of the form if ψ then s else t,
where ψ is a boolean term, and s and t are terms of
the same sort. The semantics of such expressions mirrors
the semantics of conditional expressions in programming
languages.

if-then-else expressions are convenient for expressing
formulas coming from program analysis and interactive the-
orem provers. For example, consider the max function of the
type Z×Z→ Z that returns the maximum of its arguments.
Its definition can be expressed in FOOL as

(∀x : Z)(∀y : Z)(max(x, y) .= if x ≥ y then x else y). (2)
To handle such expressions, Vampire translates them to

FOL. This translation is done in several steps. Let x1, . . . , xn

be all free variables of ψ, s and t, and σ1, . . . , σn be their
sorts. Let τ be the sort of both s and t. The steps of
translation depend on whether τ is bool or a different sort.
If τ is not bool, Vampire
1. introduces a fresh function symbol g of the type

σ1 × . . .× σn → τ ;

2. adds the definitions
(∀x1 : σ1) . . . (∀xn : σn)(ψ ⇒ g(x1, . . . , xn) .= s)

and
(∀x1 : σ1) . . . (∀xn : σn)(¬ψ ⇒ g(x1, . . . , xn) .= t)

to its set of assumptions;
3. replaces if ψ then s else t by g(x1, . . . , xn).

If τ is bool, the following is different in the steps of
translation:
1. a fresh predicate symbol g of the type σ1 × . . . × σn is

introduced instead; and
2. the added definitions use equivalence instead of equality.
For example, after this translation (2) becomes

(∀x : Z)(∀y : Z)(max(x, y) .= g(x, y)),
where g is a fresh function symbol of the type Z × Z → Z
defined by the following formulas:
1. (∀x : Z)(∀y : Z)(x ≥ y ⇒ g(x, y) .= x);
2. (∀x : Z)(∀y : Z)(x 6≥ y ⇒ g(x, y) .= y).

TPTP has two different expressions for if-then-else:
$ite_t for constructing terms and $ite_f for constructing
formulas. $ite_t takes a formula and two terms of the
same sort as arguments. $ite_f takes three formulas as
arguments.

Since FOOL does not distinguish formulas and boolean
terms, it does not require separate expressions for the
formula-level and term-level if-then-else. The extended
version of TFF0, supported by Vampire, uses a new expres-
sion $ite, that unifies $ite_t and $ite_f. $ite takes a
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formula and two terms of the same sort as arguments. If
the second and the third arguments are boolean, such $ite
expression is equivalent to $ite_f, otherwise it is equivalent
to $ite_t.

Consider, for example, the above definition of max. It can
be encoded in the extended TFF0 as follows.

tff(max, type, max: ($int * $int) > $int).
tff(max_definition, axiom,

![X:$int, Y:$int]:
(max(X,Y) = $ite($greatereq(X,Y),X,Y))).

It uses the TPTP notation $int for the sort of integers and
$greatereq for the greater-than-or-equal-to comparison of
two numbers.

Consider now the following valid property of max:
(∀x : Z)(∀y : Z)(if max(x, y) .= x then x ≥ y else y ≥ x).

(3)
Its encoding in the extended TFF0 can use the same $ite

expression:

![X:$int, Y:$int]: $ite(max(X,Y) = X,
$greatereq(X,Y),
$greatereq(Y,X)).

Note that TFF0 without $ite has to differentiate be-
tween terms and formulas, and so requires to use $ite_t
in (2) and $ite_f in (3).

2.6 let-in

FOOL contains let-in expressions that can be used to
introduce local function definitions. They have the form

let f1(x1
1 : σ1

1 , . . . , x
1
n1 : σ1

n1 ) = s1;
. . .

fm(xm
1 : σm

1 , . . . , x
m
nm

: σm
nm

) = sm

in t,

(4)

where
1. m ≥ 1;
2. f1, . . . , fm are pairwise distinct function symbols;
3. ni ≥ 0 for each 1 ≤ i ≤ m;
4. xi

1 . . . , x
i
ni

are pairwise distinct variables for each 1 ≤ i ≤
m; and

5. s1, . . . , sm and t are terms.
The semantics of let-in expressions in FOOL mirrors

the semantics of simultaneous non-recursive local definitions
in programming languages. That is, s1, . . . , sm do not use
the bindings of f1, . . . , fm created by this definition.

Note that an expression of the form (4) is not in general
equivalent to m nested let-ins

let f1(x1
1 : σ1

1 , . . . , x
1
n1 : σ1

n1 ) = s1 in
. . .

let fm(xm
1 : σm

1 , . . . , x
m
nm

: σm
nm

) = sm in
t.

(5)

The main application of let-in expressions is in problems
coming from program analysis, namely modelling of assign-
ments. Consider for example the following code snippet fea-
turing operations over an integer array.
array[3] := 5;
array[2] + array[3];

It can be translated to FOOL in the following way. We rep-
resent the integer array as an uninterpreted function array
of the type Z→ Z that maps an index to the array element
at that index. The assignment of an array element can be
translated to a combination of let-in and if-then-else.

let array(i : Z) = if i .= 3 then 5 else array(i) in
array(2) + array(3)

(6)

Multiple bindings in a let-in expression can be used to
concisely express simultaneous assignments that otherwise
would require renaming. In the following example, constants
a and b are swapped by a let-in expression. The resulting
formula is equivalent to f(b, a).

let a = b; b = a in f(a, b) (7)
In order to handle let-in expressions Vampire translates

them to FOL. This is done in three stages for each expression
in (4).
1. For each function symbol fi where 0 ≤ i < m that occurs

freely in any of si+1, . . . , sm, introduce a fresh function
symbol gi. Replace all free occurrences of fi in t by gi.

2. Replace the let-in expression by an equivalent one of
the form (5). This is possible because the necessary
condition was satisfied by the previous step.

3. Apply a translation to each of the let-in expression with
a single binding, starting with the innermost one.
The translation of an expression of the form

let f(x1 : σ1, . . . , xn : σn) = s in t

is done by the following sequence of steps. Let y1, . . . , ym be
all free variables of s and t, and τ1, . . . , τm be their sorts.
Note that the variables in x1, . . . , xn are not necessarily
disjoint from the variables in y1, . . . , ym. Let σ0 be the sort
of s. The steps of translation depend on whether σ0 is bool
and not. If σ0 is not bool, Vampire
1. introduces a fresh function symbol g of the type

σ1 × . . .× σn × τ1 × . . .× τm → σ0;

2. adds to the set of assumptions the definition
(∀z1 : σ1) . . . (∀zn : σn)(∀y1 : τ1) . . . (∀ym : τm)

(g(z1, . . . , zn, y1, . . . , ym) .= s′),
where z1, . . . , zn is a fresh sequence of variables and s′

is obtained from s by replacing all free occurrences of
x1, . . . , xn by z1, . . . , zn, respectively; and

3. replaces let f(x1 : σ1, . . . , xn : σn) = s in t by t′, where
t′ is obtained from t by replacing all bound occurrences
of y1, . . . , ym by fresh variables and each application
f(t1, . . . , tn) of a free occurrence of f by g(t1, . . . , tn,
y1, . . . , ym).
If σ0 is bool, the steps of translation are different:

1. a fresh predicate symbol of the type
σ1 × . . .× σn × τ1 × . . .× τm

is introduced instead;
2. the added definition uses equivalence instead of equality.

For example, after this translation (6) becomes g(2) +
g(3), where g is a fresh function symbol of the type Z → Z
defined by the following formula:

(∀i : Z)(g(i) .= if i .= 3 then 5 else array(i)).
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The example (7) is translated in the following way. First,
the let-in expression is translated to the form (5). The
constant a has a free occurrence in the body of b, therefore
it is replaced by a fresh constant a′. The formula (7) becomes

let a′ = b in
let b = a in

f(a′, b).
Then, the translation is applied to both let-in expressions
with a single binding and the resulting formula becomes
f(a′′, b′), where a′′ and b′ are fresh constants, defined by
formulas a′′ .= b and b′

.= a.
TPTP has four different expressions for let-in: $let_tt

and $let_ft for constructing terms, and $let_tf and
$let_ff for constructing formulas. All of them denote a
single binding. $let_tt and $let_tf denote a binding of
a function symbol, whereas $let_ft and $let_ff denote a
binding of a predicate symbol. All four expressions take a
(possibly universally quantified) equation as the first argu-
ment and a term (in case of $let_tt and $let_ft) or a
formula (in case of $let_tf and $let_ff) as the second ar-
gument. TPTP does not provide any notation for let-in
expressions with multiple bindings.

Similarly to if-then-else, let-in expressions in FOOL
do not need different notation for terms and formulas.
The modification of TFF0 supported by Vampire intro-
duces a new $let expression, that unifies $let_tt, $let_ft,
$let_tf and $let_ff, and extends them to support multiple
bindings. Depending on whether the binding is of a function
or predicate symbol and whether the second argument of the
expression is term or formula, a $let expression is equivalent
to one of $let_tt, $let_ft, $let_tf and $let_ff.

The new $let expressions use different syntax for bind-
ings. Instead of a quantified equation, they use the following
syntax: a function symbol possibly followed by a list of vari-
able arguments in parenthesis, followed by the := operator
and the body of the binding. Similarly to quantified vari-
ables, variable arguments are separated with commas and
each variable might include a sort declaration. A sort decla-
ration can be omitted, in which case the variable is assumed
to the be of the sort of individuals ($i).

Formula (6) can be written in the extended TFF0 with
the TPTP interpreted function $sum, representing integer
addition, as follows:

$let(array(I:$int) := $ite(I = 3, 5, array(I)),
$sum(array(2), array(3))).

The same $let expression can be used for multiple bind-
ings. For that, the bindings should be separated by a semi-
colon and passed as the first argument. The formula (7) can
be written using $let as follows.

$let(a := b; b := a, f(a,b)))

Overall, $ite and $let expressions provide a more con-
cise syntax for TPTP formulas than the TFF0 variations
of if-then-else and let-in expressions. To illustrate this
point, consider the following snippet of TPTP code, taken
from the TPTP problem SYN000 2.

tff(let_binders, axiom, ![X:$i]:
$let_ff(![Y1:$i, Y2:$i]: (q(Y1, Y2) <=> p(Y1)),

q($let_tt(![Z1:$i]:
(f(Z1) = g(Z1,b)), f(a)), X) &

p($let_ft(![Y3:$i, Y4:$i]: (q(Y3,Y4) <=>
$ite_f(Y3 = Y4, q(a, a), q(Y3, Y4))),

$ite_t(q(b, b), f(a), f(X)))))).

It uses both of the TFF0 variations of if-then-else and
three different variations of let-in. The same snippet can
be expressed more concisely using $ite and $let expres-
sions.

tff(let_binders, axiom, ![X:$i]:
$let(q(Y1,Y2) := p(Y1),

q($let(f(Z1) := g(Z1,b), f(a)), X) &
p($let(q(Y3,Y4) :=

$ite(Y3 = Y4, q(a,a), q(Y3,Y4))),
$ite(q(b,b), f(a), f(X)))))).

3. Polymorphic Theory of Arrays
Using built-in arrays and reasoning in the first-order theory
of arrays are common in program analysis, for example
for finding loop invariants in programs using arrays [12].
Previous versions of Vampire supported theories of integer
arrays and arrays of integer arrays [13]. No other array sorts
were supported and in order to implement one it would be
necessary to hardcode a new sort and add the theory axioms
corresponding to that sort. In this section we describe a
polymorphic theory of arrays implemented in Vampire.

3.1 Definition
The polymorphic theory of arrays is the union of theories of
arrays parametrised by two sorts: sort τ of indexes and sort
σ of values. It would have been proper to call these theories
the theories of maps from τ to σ, however we decided to
call them arrays for the sake of compatibility with arrays as
defined in SMT-LIB.

A theory of arrays is a first-order theory that contains
a sort array(τ, σ), function symbols select : array(τ, σ) ×
τ → σ and store : array(τ, σ) × τ × σ → array(τ, σ),
and three axioms. The function symbol select represents a
binary operation of extracting an array element by its index.
The function symbol store represents a ternary operation of
updating an array at a given index with a given value. The
array axioms are:
1. read-over-write 1

(∀a : array(τ, σ))(∀v : σ)(∀i : τ)(∀j : τ)
(i .= j ⇒ select(store(a, i, v), j) .= v);

2. read-over-write 2
(∀a : array(τ, σ))(∀v : σ)(∀i : τ)(∀j : τ)

(i 6 .= j ⇒ select(store(a, i, v), j) .= select(a, j));

3. extensionality
(∀a : array(τ, σ))(∀b : array(τ, σ))

((∀i : τ)(select(a, i) .= select(b, i))⇒ a
.= b).

We will call every concrete instance of the theory of arrays
for concrete sorts τ and σ the (τ, σ)-instance.

One can use the polymorphic theory of arrays to express
program properties. Recall the code snippet involving arrays
mentioned in Section 2:
array[3] := 5;
array[2] + array[3];

Formula (6) used an interpreted function to represent the
array in this code. We can alternatively use arrays to repre-
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sent it as follows
let array = store(array, 3, 5) in

select(array, 2) + select(array, 3)
(8)

3.2 Implementation in Vampire
Vampire implements reasoning in the polymorphic theory of
arrays by adding corresponding sorts axioms when the input
uses array sorts and/or functions.

Whenever the input problem uses a sort array(τ, σ),
Vampire adds this sort and function symbols select and store
of the types array(τ, σ)× τ → σ and array(τ, σ)× τ × σ →
array(τ, σ), respectively.

If the input problem contains store, Vampire adds the
following axioms for the sorts τ and σ used in the corre-
sponding array theory instance:

(∀a : array(τ, σ))(∀i : τ)(∀v : σ)
(select(store(a, i, v), i) .= v)

(9)

(∀a : array(τ, σ))(∀i : τ)(∀j : τ)(∀v : σ)
(i 6 .= j ⇒ select(store(a, i, v), j) .= select(a, j))

(10)

(∀a : array(τ, σ))(∀b : array(τ, σ))
(a 6 .= b⇒ (∃i : τ)(select(a, i) 6 .= select(b, i)))

(11)

These axioms are equivalent to the axioms read-over-write 1,
read-over-write 2 and extensionality.

If the input contains only select but not store for this
instance, then only extensionality (11) is added.

Theory axioms are not added when the --theory_axioms
option is set to off (the default value is on), which leaves
an option for the user to try her or his own axiomatisation
of arrays.

Vampire uses the extensionality resolution rule [8] to
efficiently reason with the extensionality axiom.

To express arrays, the TPTP syntax extension supported
by Vampire allows, for every pair of sorts τ and σ, denoted
by t and s in the TFF0 syntax, to denote the sort array(τ, σ)
by $array(s,t). Function symbols select and store can
be expressed as ad-hoc polymorphic $select and $store,
respectively for every pairs of sorts τ, σ. Previously, the
theories of integer arrays and arrays of integer arrays were
represented as sorts $array1 and $array2 in Vampire, with
the corresponding sort-specific function symbols $select1,
$select2, $store1 and $store2. Our new implementation
in Vampire, with support for the polymorphic theory of
arrays, deprecates these two concrete array theories. Instead,
one can now use the sorts $array($int,$int) and $array
($int,$array($int,$int)). For example, formula (8) can
be written in the extended TFF0 syntax as follows:

$let(array := $store(array,3,5),
$sum($select(array,2), $select(array,3))).

3.3 Theory of Boolean Arrays
An interesting special case of the polymorphic theory of
arrays is the theory of boolean arrays. In that theory the
select function has the type array(τ, bool) × τ → bool and
the store function has the type array(τ, bool) × τ × bool →
array(τ, bool). This means that applications of select can be
used as formulas and store can have a formula as the third
argument.

Vampire implements the theory of booleans arrays sim-
ilarly to other sorts, by adding theory axioms when the
option --theory_axioms is enabled. However, the theory

axioms are different for the following reason. The axioms
of the theory of boolean arrays are syntactically correct in
FOOL but not in FOL, because they use quantification over
booleans. However, Vampire adds theory axioms only after
a translation of FOOL to FOL. For this reason, Vampire
uses the following set of axioms for boolean arrays:

(∀a : array(τ, bool))(∀i : τ)(∀v : bool)
(select(store(a, i, v), i)⇔ (v .= true))

(∀a : array(τ, bool))(∀i : τ)(∀j : τ)(∀v : bool)
(i 6 .= j ⇒ select(store(a, i, v), j)⇔ select(a, j))

(∀a : array(τ, bool))(∀b : array(τ, bool))
(a 6 .= b⇒ (∃i : τ)(select(a, i)⊕ select(b, i)))

where ⊕ is the “exclusive or” connective.
One can use the theory of boolean arrays, for exam-

ple, to express properties of bit vectors. In the following
example we give a formalisation of a basic property of
XOR encryption, where the key, the message and the ci-
pher are bit vectors. Let encrypt be a function of the type
array(Z, bool) × array(Z, bool) → array(Z, bool). We will
write encrypt(message, key) to denote the result of bit-wise
application of the XOR operation to message and key. For
simplicity we will assume that the message and the key are
of equal length. The definition of encrypt can be expressed
with the following axiom:

(∀message : array(Z, bool))(∀key : array(Z, bool))(∀i : Z)
(select(encrypt(message, key), i) .=

select(message, i)⊕ select(key, i)).

An important property of XOR encryption is its vulnera-
bility to the known plaintext attack. It means that knowing
a message and its cipher, one can obtain the key that was
used to encrypt the message by encrypting the message with
the cipher. This property can be expressed by the following
formula.

(∀plaintext : array(Z, bool))(∀cipher : array(Z, bool))
(∀key : array(Z, bool))(cipher .= encrypt(plaintext, key)⇒

key .= encrypt(plaintext, cipher))

The sort array(Z, bool) is represented in the extended
TFF0 syntax as $array($int,$bool). The presented prop-
erty of XOR encryption can be expressed in the extended
TFF0 in the following way.

tff(encrypt, type, encrypt: ($array($int,$o) *
$array($int,$o)) > $array($int,$o)).

tff(xor_encryption, axiom,
![Message:$array($int,$o),

Key:$array($int,$o), I:$int]:
($select(encrypt(Message, Key), I) =

($select(Message, I) <∼> $select(Key,I)))).

tff(known_plaintext_attack, conjecture,
![Plaintext:$array($int,$o),

Cipher:$array($int,$o), Key:$array($int,$o)]:
((Cipher = encrypt(Plaintext, Key)) =>

(Key = encrypt(Plaintext, Cipher)))).
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res:=x;
if (x>y)

then max:=x;
else max:=y;

if (max> 0)
then res:=res+max;
else res:=res-max;

assert res≥ x

Figure 1. Sequence of conditionals.

if (x>y)
then t:=x; x:=y; y:=t

assert y ≥ x

Figure 2. Updating multiple variables.

a := 0; b := 0; c := 0;
invariant a=b+c ∧
invariant a≥ 0∧ b≥ 0 ∧ c≥ 0 ∧ a≤ k ∧
invariant (∀p)(0 ≤ p < b⇒ (∃i)(0 ≤ i < a ∧A[i] > 0 ∧B[p] = A[i]))

while (a ≤ k) do
if (A[a] > 0)

then B[b] := A[a];b := b + 1;
else C[c] := A[a];c := c + 1;

a := a + 1;
end do
assert (∀p)0 ≤ p < b⇒ B[p] > 0

Figure 3. Array partition.

tff(x, type, x: $int).
tff(y, type, y: $int).
tff(max, type, max: $int).
tff(res, type, res: $int).
tff(res1, type, res1: $int).

tff(transition_relation, hypothesis,
res1 = $let(res := x,

$let(max := $ite($greater(x,y), $let(max := x, max), $let(max := y, max)),
$let(res := $ite($greater(max,0), $let(res := $sum(res,max), res), $let(res := $difference(res,max),res)),

res)))).

tff(safety_property, conjecture, $greatereq(res1,x)).

Figure 4. Representation of the partial correctness statement of Figure 1.

4. Program Analysis with the New
Extensions

In this section we illustrate how FOOL makes first-order
theorem provers better suited to applications in program
analysis and verification. Firstly, we give concrete examples
exemplifying the use of FOOL for expressing program prop-
erties. We avoid various program analysis steps, such as SSA
form computations and renaming program variables; instead
we show how program properties can directly be expressed
in FOOL. We also present a technique for automatically gen-
erating the next state relation of any program with assign-
ments, if-then-else, and sequential composition. For doing
so, we introduce a simple extension of FOOL, allowing for a
general translation that is linear in the size of the program.
This is a new result intended to understand which extensions
of first-order logic are adequate for naturally representing
fragments of imperative programs.

4.1 Encoding the next state relation
Consider the program given in Figure 1, written in a C-
like syntax, using a sequence of two conditional statements.
The program first computes the maximal value max of two
integers x and y and then adds the absolute value of max
to x. A safety assertion, in FOL, is specified at the end of
the loop, using the assert construct. This program is clearly
safe, the assertion is satisfied. To prove program safety, one
needs to reason about the program’s transition relation, in
particular reason about conditional statements, and express
the final value of the program variable res. The partial
correctness of the program of Figure 1 can be automatically
expressed in FOOL, and then Vampire can be used to prove
program safety. This requires us to encode (i) the next state

value of res (and max) as a hypothesis in the extended
TFF0 syntax of FOOL, by using the if-then-else ($ite) and
let-in ($let) constructs, and (ii) the safety property as the
conjecture to be proven by Vampire.

Figure 4 shows this extended TFF0 encoding. The use of
if-then-else and let-in constructs allows us to have a direct
encoding of the transition relation of Figure 1 in FOOL.
Note that each expression from the program appears only
once in the encoding.

We now explain how the encoding of the next state values
of program variables can be generated automatically. We
consider programs using assignments :=, if-then-else and
sequential composition ;. We begin by making an assumption
about the structure of programs (which we relax later). A
program P is in restricted form if for any subprogram of
the form if e then P1 else P2 the subprograms P1 and P2
only make assignments to the same single variable. Given a
program P in restricted form let us define its translation [P ]
inductively as follows:
• [x := e] is let x = e in x;
• [if e then P1 else P2], where P1 and P2 update x, is

let x = if e then [P1] else [P2] in x;
• [P1;P2] is let D in [P2] where [P1] is let D in x.

Given a program P , the next state value for variable x
can be given by [P ; x := x], i.e. by ensuring the final
statement of the program updates the variable of interest.
The restricted form is required as conditionals must be
viewed as assignments in the translation and assignments
can only be made to single variables.

To demonstrate the limitations of this restriction let us
consider the simple program in Figure 2 that ensures that
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tff(a, type, a: $int).
tff(b, type, b: $int).
tff(c, type, c: $int).
tff(k, type, k: $int).
tff(arrayA, type, arrayA: $array($int,$int)).
tff(arrayB, type, arrayB: $array($int,$int)).
tff(arrayC, type, arrayC: $array($int,$int)).

tff(invariant_property, hypothesis,
inv <=> ((a = $sum(b, c)) & $greatereq(a,0) & $greatereq(b,0) & $greatereq(c,0) & $lesseq(a,k) &

![P:$int]: ($lesseq(0,P) & $less(P,b) =>
(?[I:$int]: ($lesseq(0,I) & $less(I,a) &

$greater($select(arrayA,I),0) & $select(arrayB,P) = $select(arrayA,I)))))).

tff(safety_property, conjecture,
(inv & ∼$lesseq(a,k)) => (![P:$int]: ($lesseq(0,P) & $less(P,b) => $greater($select(arrayB,P),0)))).

Figure 5. Representation of the partial correctness statement of Figure 3 in Vampire.

x is not larger than y. We cannot apply the translation as
the conditional updates three variables. To generalise the
approach we can extend FOOL with tuple expressions, let
us call this extension FOOL+. In this extended logic the
next state values for Figure 2 can be encoded as follows:

let (x, y, t) = if x > y then
let (x, y, t) = (x, y, x) in

let (x, y, t) = (y, y, t) in
let (x, y, t) = (x, t, t) in (x, y, t)

else (x, y, t)
in (x, y, t)

We now give a brief sketch of the extended logic FOOL+
and the associated translation. We omit details since its full
definition and semantics would require essentially repeating
definitions from [10]. FOOL+ extends FOOL by tuples; for
all expressions ti of type σi we can use a tuple expression
(t1, . . . , tn) of type (σ1, . . . , σn). The logic should also in-
clude a suitable tuple projection function, which we do not
discuss here.

This extension allows for a more general translation in
two senses: first, the previous restricted form is lifted; and
second, it now gives the next state values of all variables
updated by the program. Given a program P its translation
[P ] will have the form let (x1, . . . , xn) = E in (x1, . . . , xn),
where x1, . . . , xn are all variables updated by P , that is, all
variables used in the left-hand-side of an assignment. We
inductively define [P ] as follows:

• [xi := e] is let (. . . , xi, . . .) = (. . . , e, . . .) in (x1, . . . , xn),
• [if e then P1 else P2] is let (x1, . . . , xn) = if e then

[P1] else [P2] in (x1, . . . , xn),
• [P1;P2] is letD in [P2] where [P1] is letD in (x1, . . . , xn).

This translation is bounded by O(v · n), where v is the
number of variables in the program and n is the program size
(number of statements) as each program statement is used
once with one or two instances of (x1, . . . , xn). This becomes
O(n) if we assume that the number of variables is fixed. The
translation could be refined so that some introduced let-in
expressions only use a subset of program variables. Finally,
this translation preserves the semantics of the program.

Theorem 1. Let P be a program with variables (x1, . . . , xn)
and let u1, . . . , un, v1, . . . , vn be values (where ui and vi are
of the same type as xi). If P changes the state {x1 →

u1, . . . , xn → un} to {x1 → v1, . . . , xn → vn} then the value
of [P ] in {x1 → u1, . . . , xn → un} is (v1, . . . , vn).

This translation encodes the next state values of program
variables by directly following the structure of the program.
This leads to a succinct representation that, importantly,
does not lose any information or attempt to translate the
program too early. This allows the theorem prover to apply
its own translation to FOL that it can handle efficiently.
While FOOL+ is not yet fully supported in Vampire, we
believe experimenting with FOOL+ on examples coming
from program analysis and verification is an interesting task
for future work.

4.2 A program with a loop and arrays
Let us now show the use of FOOL in Vampire for reasoning
about programs with loops. Consider the program given in
Figure 3, written in a C-like syntax. The program fills an
integer-valued array B by the strictly positive values of a
source array A, and an integer-valued array C with the non-
positive values of A. A safety assertion, in FOL, is specified
at the end of the loop, using the assert construct. The pro-
gram of Figure 3 is clearly safe as the assertion is satisfied
when the loop is exited. However, to prove program safety
we need additional loop properties, that is loop invariants,
that hold at any loop iteration. These can be automatically
generated using existing approaches, for example the symbol
elimination method for invariant generation in Vampire [12].
In this case we use the FOL property specified in the invari-
ant construct of Figure 3. This invariant property states
that at any loop iteration, (i) the sum of visited array ele-
ments in A is the sum of visited elements in B and C (that
is, a = b + c), (ii) the number of visited array elements in
A, B, C is positive (that is, a ≥ 0, b ≥ 0, and c ≥ 0),
with a ≤ k, and (iii) each array element B[0], . . . , B[b − 1]
is a strictly positive element in A. Formulating the latter
property requires quantifier alternation in FOL, resulting
in the quantified property with ∀∃ listed in the invariant
of Figure 3. We can verify the safety of the program using
Hoare-style reasoning in Vampire. The partial correctness
property is that the invariant and the negation of the loop
condition implies the safety assertion. This is the conjecture
to be proven by Vampire. Figure 5 shows the encoding in the
extended TFF0 syntax of this partial correctness statement;
note that this uses the built-in theory of polymorphic arrays
in Vampire, where arrayA, arrayB and arrayC correspond
respectively to the arrays A, B and C.
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So far, we assumed that the given invariant in Figure 3 is
indeed an invariant. Using FOOL+ described in Section 4.1,
we can verify the inductiveness property of the invariant, as
follows: (i) express the the transition relation of the loop
in FOOL+, and (ii) prove that, if the invariant holds at an
arbitrary loop iteration i, then it also holds at loop iteration
i+1. For proving this, we can again use FOOL+ to formulate
the next state values of loop variables in the invariant at loop
iteration i+1. Moreover, FOOL+ can also be used to express
formulas as inputs to the symbol elimination method for
invariant generation in Vampire. We leave the task of using
FOOL+ for invariant generation as further work.

5. Experimental Results
The extension of Vampire to support FOOL and the poly-
morphic theory of arrays comprises about 3,100 lines of
C++ code, of which the translation of FOOL to FOL and
FOOL paramodulation takes about 2,000 lines, changes in
the parser about 500 lines and the implementation of the
polymorphic theory of arrays about 600 lines. Our imple-
mentation is available at www.cse.chalmers.se/˜evgenyk/
fool-experiments/ and will be included in the forthcoming
official release of Vampire.

In the sequel, by Vampire we mean its version including
support for FOOL and the polymorphic theory of arrays. We
write Vampire ? for its version with FOOL paramodulation
turned off.

In this section we present experimental results obtained
by running Vampire on FOOL problems. Unfortunately, no
large collections of such problems are available, because
FOOL was not so far supported by any first-order theorem
prover. What we did was to extract such benchmarks from
other collections.

1. We noted that many problems in the higher-order part of
the TPTP library [17] are FOOL problems, containing no
real higher-order features. We converted them to FOOL
problems.

2. We used a collection of first-order problems about (co)al-
gebraic datatypes, generated by the Isabelle theorem
prover [14], see Subsection 5.2 for more details.

Our results are summarised in Tables 1–3 and discussed be-
low. These results were obtained on a MacBook Pro with
a 2,9 GHz Intel Core i5 and 8 Gb RAM, and using the
time limit of 60 seconds per problem. Both the bench-
marks and the results are available at www.cse.chalmers.
se/˜evgenyk/fool-experiments/.

5.1 Experiments with TPTP Problems
The higher-order part of the TPTP library contains
3036 problems. Among these problems, 134 contain either
boolean arguments in function applications or quantifica-
tion over booleans, but contain no lambda abstraction,
higher-order sorts or higher-order equality. We used these
134 problems, since they belong to FOOL but not to FOL.
We translated these problems from THF0 to the modifica-
tion of TFF0, supported by Vampire using the following
syntactic transformation: (a) every occurrence of the key-
word thf was replaced by tff; (b) every occurrence of a sort
definition of the form s_1 > ... > s_n > s was replaced
by s_1 * ... * s_n > s; (c) every occurrence of a function
application of the form f @ t_1 @ ... @ t_n was replaced
by f(t_1, ..., t_n).

Prover Solved Total time on solved problems
Vampire 134 3.59
Vampire ? 134 7.28
Satallax 134 23.93
Leo-II 127 27.42
Isabelle 128 893.80

Table 1. Runtimes in seconds of provers on the set of 134
higher-order TPTP problems.

Out of 134 problems, 123 were marked as Theorem and
5 as Unsatisfiable, 5 as CounterSatisfiable, and 1 as Satisfi-
able, using the SZS status of TPTP. Essentially, this means
that among their satisfiability-checking analogues, 128 are
unsatisfiable and 6 are satisfiable. Vampire was run with the
--mode casc option for unsatisfiable (Theorem and Unsat-
isfiable) problems and with --mode casc_sat for satisfiable
(CounterSatisfiable and Satisfiable) problems. These options
correspond to the CASC competition modes of Vampire for
respectively proving validity (i.e. unsatisfiability) and satis-
fiability of an input problem.

For this experiment, we compared the performance of
Vampire with those of the higher-order theorem provers used
in the the latest edition of CASC [18]: Satallax [6], Leo-
II [4], and Isabelle [14]. We note that all of them used the
first-order theorem prover E [16] for first-order reasoning
(Isabelle also used several other provers).

Table 1 summarises our results on these problems. Only
Vampire, Vampire ? and Satallax were able to solve all of
them, while Vampire was the fastest among all provers. We
believe these results are significant for two reasons. First,
these problems previously required higher-order logic, but
now can be proven using first-order reasoning. Moreover,
even on such simple problems there is a clear gain from
using FOOL paramodulation.

5.2 Experiments with Algebraic Datatypes
Problems

For this experiment, we used 152 problems generated by
the Isabelle theorem prover. These problems express var-
ious properties of (co)algebraic datatypes and are written
in the SMT-LIB 2 syntax [1]. All 152 problems contain
quantification over booleans, boolean arguments in func-
tion/predicate applications and if-then-else expressions.
These examples were generated and given to us by Jas-
mine Blanchette, following the recent work on reasoning
about (co)datatypes [15]. To run the benchmark we first
translated the SMT-LIB files to the TPTP syntax using
the SMTtoTPTP translator [3] version 0.9.2. Let us note
that this version of SMTtoTPTP does not fully support the
boolean type in SMT-LIB. However, by setting the option
--keepBool in SMTtoTPTP, we managed to translate these
152 problems into an extension of TFF0, which Vampire can
read. We also modified the source code of SMTtoTPTP so
that if-then-else expressions in the SMT-LIB files are not
expanded but translated to $ite in FOOL. A similar modi-
fication would have been needed for translating let-in ex-
pressions; however, none of our 152 examples used let-in.

After translating these 152 problems into an extended
TFF0 syntax supporting FOOL, we ran Vampire twice on
each benchmark: once using the option --mode casc, and
once using --mode casc_sat. For each problem, we recorded
the fastest successful run of Vampire. We used a similar
setting for evaluating Vampire ?. In this experiment, we then

10



Prover Solved Total time on solved problems
Vampire 59 26.580
Z3 57 4.291
Vampire ? 56 26.095
CVC4 53 25.480

Table 2. Runtimes in seconds of provers on the set of 152
algebraic datatypes problems.

51

1
2

3

4

0

1

Vampire

Z3 CVC4

Figure 6. Venn diagram of the subsets of the algebraic
datatypes problems, solved by Vampire, CVC4 and Z3.

compared Vampire with the best available SMT solvers,
namely with CVC4 [2] and Z3 [7].

Table 2 summarises the results of our experiments on
these 152 problems. Vampire solved the largest number of
problems, and all problems solved by Vampire ? were also
solved by Vampire. Figure 6 shows the Venn diagram of the
sets of problems solved by Vampire, CVC4 and Z3, where
the numbers denote the numbers of solved problems. All
problems apart from 11 were either solved by all systems
or not solved by all systems. Table 3 details performance
results on these 11 problems.

Based on our experimental results shown in Tables 2 and
3, we make the following observations. On the given set of
problems the implementation of FOOL reasoning in Vam-
pire was efficient enough to compete with state-of-the-art
SMT solvers. This is significant because the problems were
tailored for SMT reasoning. Vampire not only solved the
largest number of problems, but also yielded runtime re-
sults that are comparable with those of CVC4. Whenever
successful, Z3 turned out to be faster than Vampire; we be-
lieve this is because of the sophisticated preprocessing steps
in Z3. Improving FOOL preprocessing in Vampire, for ex-
ample for more efficient CNF translation of FOOL formulas,
is an interesting task for further research. We note that the
usage of FOOL paramodulation showed improvement on the
number of solved problems.

6. Related Work
FOOL was introduced in our previous work [10]. This also
presented a translation from FOOL to the ordinary first-
order logic, and FOOL paramodulation. In this paper we
describe the first practical implementation of FOOL and
FOOL paramodulation.

Superposition theorem proving in finite domains, such as
the boolean domain, is also discussed in [9]. The approach
of [9] sometimes falls back to enumerating instances of a
clause by instantiating finite domain variables with all ele-
ments of the corresponding domains. Nevertheless, it allows

one to also handle finite domains with more than two el-
ements. One can also generalise our approach to arbitrary
finite domains by using binary encodings of finite domains.
However, this will necessarily result in loss of efficiency, since
a single variable over a domain with 2k elements will become
k variables in our approach, and similarly for function ar-
guments. Although [9] reports preliminary results with the
theorem prover SPASS, we could not make an experimen-
tal comparison since the SPASS implementation has not yet
been made public.

Handling boolean terms as formulas is common in the
SMT community. The SMT-LIB project [1] defines its core
logic as first-order logic extended with the distinguished
first-class boolean sort and the let-in expression used for
local bindings of variables. The language of FOOL extends
the SMT-LIB core language with local function definitions,
using let-in expressions defining functions of arbitrary, and
not just zero, arity.

A recent work [3] presents SMTtoTPTP, a translator
from SMT-LIB to TPTP. SMTtoTPTP does not fully sup-
port boolean sort, however one can use SMTtoTPTP with
the --keepBool option to translate SMT-LIB problems to
the extended TFF0 syntax, supported by Vampire.

Our implementation of the polymorphic theory of arrays
uses a syntax that coincides with the TPTP’s own syntax
for polymorphically typed first-order logic TFF1 [5].

7. Conclusion and Future Work
We presented new features recently implemented in Vam-
pire. They include FOOL: the extension of first-order logic
by a first-class boolean sort, if-then-else and let-in
expressions, and polymorphic arrays. Vampire implements
FOOL by translating FOOL formulas into FOL formulas.
We described how this translation is done for each of the
new features. Furthermore, we described a modification of
the superposition calculus by FOOL paramodulation that
makes Vampire reasoning in FOOL more efficient. We also
give a simple extension to FOOL, allowing to express the
next state relation of a program as a boolean formula which
is linear in the size of the program.

Neither FOOL nor polymorphic arrays can be expressed
in TFF0. In order to support them Vampire uses a modifi-
cation of the TFF0 syntax with the following features:

1. the boolean sort $o can be used as the sort of arguments
and quantifiers;

2. boolean variables can be used as formulas, and formulas
can be used as boolean arguments;

3. if-then-else expressions are represented using a single
keyword $ite rather than two different keywords $ite_t
and $ite_f;

4. let-in expressions are represented using a single key-
word $let rather than four different keywords $let_tt,
$let_tf, $let_ft and $let_ff;

5. $array, $select and $store are used to represent arrays
of arbitrary types.

Our experimental results have shown that our implementa-
tion, and especially FOOL paramodulation, are efficient and
can be used to solve hard problems.

Many program analysis problems, problems used in the
SMT community, and problems generated by interactive
provers, which previously required (sometimes complex) ad
hoc translations to first-order logic, can now be understood
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Problem Vampire CVC4 Z3
afp/abstract_completeness/1830522 — — 0.172
afp/bindag/2193162 — — 0.388
afp/coinductive_stream/2123602 — 0.373 0.101
afp/coinductive_stream/2418361 3.392 — —
afp/huffman/1811490 0.023 — —
afp/huffman/1894268 0.025 — 0.052
distro/gram_lang/3158791 0.047 0.179 —
distro/koenig/1759255 0.070 — —
distro/rbt_impl/1721121 4.523 — —
distro/rbt_impl/2522528 0.853 — 0.064
gandl/bird_bnf/1920088 0.037 — 0.077

Table 3. Runtimes in seconds of provers on selected algebraic datatypes problems. Dashes mean the solver failed to find a
solution.

by Vampire without any translation. Furthermore, Vampire
can be used to translate them to the standard TPTP with-
out if-then-else and let-in expressions, that is, the for-
mat understood by essentially all modern first-order theo-
rem provers and used at recent CASC competitions. One
should simply use --mode preprocess and Vampire will
output the translated problem to stdout in the TPTP syn-
tax.

The translation to FOL described here is only the first
step to the efficient handling of FOOL. It can be consider-
ably improved. For example, the translation of let-in ex-
pressions always introduces a fresh function symbol together
with a definition for it, whereas in some cases inlining the
function would produce smaller clauses. Development of a
better translation of FOOL is an important future work.

FOOL can be regarded as the smallest superset of the
SMT-LIB 2 Core language and TFF0. A native implemen-
tation of an SMT-LIB parser in Vampire is an interesting
future work. Note that such an implementation can also be
used to translate SMT-LIB to FOOL or to FOL.

Another interesting future work is extending FOOL to
handle polymorphism and implementing it in Vampire. This
would allow us to parse and prove problems expressed in
the TFF1 [5] syntax. Note that the current usage of $array
conforms with the TFF1 syntax for type constructors.
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