
Finding Finite Models in Multi-Sorted
First-Order Logic?

Giles Reger1, Martin Suda1, and Andrei Voronkov1,2,3

1 University of Manchester, Manchester, UK
2 Chalmers University of Technology, Gothenburg, Sweden

3 EasyChair

Abstract. This work extends the existing MACE-style finite model finding ap-
proach to multi-sorted first-order logic. This existing approach iteratively as-
sumes increasing domain sizes and encodes the related ground problem as a SAT
problem. When moving to the multi-sorted setting each sort may have a different
domain size, leading to an explosion in the search space. This paper focusses on
methods to tame that search space. The key approach adds additional information
to the SAT encoding to suggest which domains should be grown. Evaluation of
an implementation of techniques in the Vampire theorem prover shows that they
dramatically reduce the search space and that this is an effective approach to find
finite models in multi-sorted first-order logic.

1 Introduction

There have been a number of approaches looking at finding finite models for First-
Order Logic (FOL), however there has not been much work on finding such models for
Multi-Sorted FOL where symbols are given sorts. We consider a model finding method,
pioneered by MACE [12], that encodes the search as a SAT problem. We show how this
method can be modified to deal directly with multi-sorted input, rather than translating
the problem to the unsorted setting, which is the most common current method.

There are two main motivations for this work. Firstly, many problems are more nat-
urally expressed in multi-sorted FOL than in unsorted FOL (although their theoretical
expressive power is equivalent). Therefore, it is useful to be able to reason in this set-
ting and translations from multi-sorted FOL to unsorted FOL often make this reasoning
harder. Secondly, MACE-style model finders can use sort information to make the SAT
encoding smaller. However, as we discuss below, finding finite models of multi-sorted
formulas also presents significant challenges.

The MACE-style approach, later extended in the Paradox [5] work, involves se-
lecting a domain size for the finite model, grounding the first-order problem with this
domain and translating the resulting formulas into a SAT problem, which, if satisfied,
gives a finite model of the selected size. Search for a finite model then involves con-
sidering iteratively larger domain sizes. In the multi-sorted setting it is necessary to

? This work was supported by EPSRC grant EP/K032674/1. Martin Suda and Andrei Voroknov
were partially supported by ERC Starting Grant 2014 SYMCAR 639270. Andrei Voronkov
was also partially supported by the Wallenberg Academy Fellowship 2014 - TheProSE.

consider the size of each sort separately. This can be demonstrated by the following
example, which is an extension of the much used Monkey Village example [2, 4].

Example 1 (Organised Monkey Village). Imagine a village of monkeys where each
monkey owns at least two bananas. As the monkeys are well-organised, each tree con-
tains exactly three monkeys. Monkeys are also very friendly, so they pair up to make
sure they will always have a partner. We can represent this problem as follows:

(∀M : monkey)(owns(M,b1(M))∧owns(M,b2(M))∧b1(M) 6= b2(M))
(∀M1,M2 : monkey)(∀B : banana)(owns(M1,B)∧owns(M2,B)→M1 = M2)

(∀T : tree)(∃M1,M2,M3 : monkey)((
∧3

i=1 sits(Mi) = T)∧distinct(M1,M2,M3))

(∀M1,M2,M3,M4 : monkey)(∀T : tree)((
∧4

i=1 sits(Mi) = T)⇒¬distinct(M1,M2,M3,M4))
(∀M : monkey)(partner(M) 6= M∧partner(partner(M)) = M)

where the predicates owns associates monkeys with bananas, the functions b1 and b2
witness the existence of each monkey’s minimum two bananas, the function sits maps
monkeys to the tree that they sit in, the function partner associates a monkey with its
partner, and the (meta-)predicate distinct is true if all of its arguments are distinct.

This problem requires the domain of monkey to be exactly three times larger than
the domain of tree, the domain of banana to be at least twice as large as the domain
of monkey, and the domain of monkey to be even. The main model finding effort then
becomes searching for an assignment of domain sizes that satisfies this problem. Here,
the smallest such assignment is |tree| = 2, |monkey| = 6, and |banana| = 12. In the
general case it is necessary to try all combinations of domain sizes. In the worst case
this will mean trying a number of assignments exponential in the number of sorts.

The techniques introduced in this paper tackle this issue by introducing a number
of ways to constrain this search space. The main contributions can be summarised as:

1. We show how the MACE-style approach (described in Sect. 3) can be extended to
the multi-sorted setting via a novel extension of the SAT encoding (Sect. 5). This
encoding uses information from the SAT solver to guide the search through the
space of domain size assignments.

2. We use monotonic sorts introduced in [4] in a new way for the multi-sorted case to
reduce the search space further (Sect. 5.5).

3. We utilise the saturation-based approach for first-order logic to detect further con-
straints on the search space introduced by injective and surjective functions (Sect. 6).

4. We present an alternative to (1), a complementary search strategy, utilising a dif-
ferent SAT encoding, that only needs to expand (and never shrink) the sizes of sort
domains (Sect. 8).

These ideas have been realised within the VAMPIRE theorem prover [11] and evaluated
on problems taken from the TPTP and SMT-LIB benchmark suites. Our experimental
evaluation (Sect. 9) shows that these techniques can be used to (i) improve finite model
finding in the unsorted setting, (ii) effectively and efficiently find finite models in the
multi-sorted setting, and (iii) detect cases where no models exist.

2

2 Preliminaries

Multi-Sorted First-Order Logic. We consider a multi-sorted first-order logic with
equality. A term is either a variable, a constant, or a function symbol applied to terms.
A literal is either a propositional symbol, a predicate applied to terms, an equality of
two terms, or a negation of either. Function and predicate symbols are sorted i.e. their
arguments (and the return value in the case of functions) have a unique sort drawn from
a finite set of sorts S. We only consider well-sorted literals. There is an equality symbol
per sort and equalities can only be between terms of the same sort. Formulas may use the
standard notions of quantification and boolean connectives, but in this work we assume
all formulas are clausified using standard techniques. A clause is a disjunction of literals
where all variables are universally quantified (existentially quantified variables can be
replaced by skolem functions during clausification).
SAT Solvers. The technique we present later will make use of a black-box SAT solver
and we assume the reader is familiar with their general properties. We assume that a
SAT solver supports solving under assumptions [7, 8]. This means the SAT solver can
be asked to search for a model of a set of clauses N additionally satisfying a conjunction
of assumption literals A and is able, in case the answer is UNSAT, to provide a subset
A0 ⊆ A of those assumptions which were sufficient for the unsatisfiability proof.

3 MACE-Style Finite Model Finding in an Unsorted Setting

We describe the finite model finding procedure in a single sorted setting. This is a
variation of the approach taken by Paradox [5]. The general idea is to create, for each
integer n≥ 1, a SAT problem that is satisfiable if the problem has a finite model of size n.
To find a finite model we therefore iterate the approach for domain sizes n = 1,2,3,

3.1 DC-Models
Let S be a set of clauses. Let us fix an integer n ≥ 1. Let DC = {c1, . . . ,cn} be a set of
distinct constants not occurring in S, we will call the elements of DC domain constants.
We extend the language by adding the domain constants and say that an interpretation is
a DC-interpretation, if (i) the domain of this interpretation is DC and (ii) every domain
constant ci is interpreted in it by itself. Every model of S that is also a DC-interpretation
will be called a DC-model of S. It is not hard to argue that, if S has a model of size n,
then it also has a DC-model. We say that S is n-satisfiable if it has a model of size n.

Let C be a clause. A DC-instance of C is a ground clause obtained by replacing
every variable in C by a constant in DC. For example, if p(x)∨ x = y is a clause and
n≥ 2, then p(c1)∨c1 = c2 and p(c1)∨c1 = c1 are DC-instances, while p(c1)∨c2 = c3
is not a DC-instance. A clause with k different variables has exactly nk DC-instances.

Theorem 1. Let I be a DC-interpretation and C a clause. Then C is true in I if and only
if all DC-instances of C are true in I.

Let us denote by S∗ the set of all DC-instances of the clauses in S. Consider an example.
Let S consist of three clauses

p(b), f (a) 6= b, f (f (x)) = x.

3

The smallest model of S has a domain of size two. Take n = 2, then DC = {c1,c2}. By
the above theorem, S has a model of size two if an only if S∗ has a DC-model. The set
S∗ consists of four ground clauses:

p(b), f (a) 6= b, f (f (c1)) = c1, f (f (c2)) = c2.

Note that DC-models are somehow similar to Herbrand models used in logic program-
ming and resolution theorem proving, except that they are built using (domain) con-
stants instead of all ground terms and DC-instances instead of ground instances.

Theorem 1 is not directly applicable to encode the existence of models of size n as a
SAT problem, because DC-instances can contain complex terms. We will now introduce
a special kind of ground atom which contains no complex subexpressions. We call a
principal term any term of the form f (d1, . . . ,dm), where m≥ 0, f is a function symbol,
which is not a domain constant, and d1, . . . ,dm are domain constants. In our example
there are four principal terms: a,b, f (c1), f (c2). A ground atom is called principal if
it either has the form p(d1, . . . ,dm) where m ≥ 0, p is a predicate symbol different
from equality and d1, . . . ,dm are domain constants or has the form t = d, where t is a
principal term and d a domain constant. We call a principal literal a principal atom or
its negation.

Theorem 2. Let I1, I2 be DC-interpretations. If they satisfy the same principal atoms,
then I1 coincides with I2.

Theorem 1 reduces n-satisfiability of S to the existence of a DC-interpretation of the set
S∗ of ground clauses. Theorem 2 shows that DC-interpretations can be identified by the
set of principal atoms true in them. What we will do next is to introduce a propositional
variable for every principal atom and reduce the existence of a DC-model of S∗ to
satisfiability of a set of clauses using only principal literals.

3.2 The SAT Encoding
The main step in the reduction is to transform every non-ground clause C into an equiv-
alent clause C′ such that DC-instances of C′ consist (almost) only of principal literals.
We will explain what “almost” means below. This transformation is known as flattening.
Flattening. A literal is called flat if it has one of the following forms:

1. p(x1, . . . ,xm) or ¬p(x1, . . . ,xm), where m≥ 0 and p is a predicate symbol;
2. f (x1, . . . ,xm) = y or f (x1, . . . ,xm) 6= y, where m ≥ 0 and f is a function symbol,

which is not a domain constant.
3. an equality between variables x = y.

Every DC-instance of a flat literal is either a principal literal (for the first two cases), or
an equality ci = c j between domain constants.

To flatten clauses in S, we first get rid of all inequalities between variables, replacing
every clause of the form x 6= y∨C[x] by the equivalent clause C[y]. Then we repeatedly
replace every clause C[t], where t is not a variable and t occurs as an argument to a
predicate or a function symbol, by the equivalent clause t 6= x∨C[x], where x is a fresh
variable.

Our example clauses can be flattened as follows:

p(y)∨b 6= y, f (y1) = y2∨a 6= y1∨b 6= y2, f (y) = x∨ f (x) 6= y

4

DC-Instances. We can now produce the DC-instances of each flattened clause C[x1, . . . ,xk].
For our running example (with n = 2) this produces the following ten DC-instances:

p(c1)∨b 6= c1 f (c1) = c1∨a 6= c1∨b 6= c1 f (c1) = c1∨ f (c1) 6= c1
p(c2)∨b 6= c2 f (c1) = c2∨a 6= c1∨b 6= c2 f (c1) = c2∨ f (c2) 6= c1

f (c2) = c2∨a 6= c2∨b 6= c2 f (c2) = c2∨ f (c2) 6= c2
f (c2) = c1∨a 6= c2∨b 6= c1 f (c2) = c1∨ f (c1) 6= c2

Note that all literals are principal. If we treat principal atoms as propositional variables,
the two leftmost clauses can be satisfied by making b 6= c1 and b 6= c2 both true, but this
violates the assumption that b should equal one of the domain constants. Additionally,
the two rightmost topmost clauses can be satisfied by making f (c1) = c1 and f (c1) = c2
true but this violates the assumption that f is a function. We would like to prevent both
situations. To do this we introduce additional definitions.
Functionality Definitions. For each principal term p and distinct domain constants
d1,d2 we produce the following clause

p 6= d1∨ p 6= d2,

These clauses are satisfied by every DC-interpretation and guarantee that all function
symbols are interpreted as (partial) functions.

For our running example we introduce four new definitions:

a 6= c1∨a 6= c2, b 6= c1∨b 6= c2, f (c1) 6= c1∨ f (c1) 6= c2, f (c2) 6= c1∨ f (c2) 6= c2

Totality Definitions. For each principal term p we produce the following clause

p = c1∨ . . .∨ p = cn

These clauses are satisfied by every DC-interpretation of size n and guarantee, together
with functionality axioms, that all function symbols are interpreted as total functions.

For our running example we introduce four new definitions:

a = c1∨a = c2, b = c1∨b = c2, f (c1) = c1∨ f (c1) = c2, f (c2) = c1∨ f (c2) = c2

The resulting SAT clauses have a model, meaning that the original clauses have a finite
model with a domain of size 2, which can be extracted from the SAT encoding.
Equalities Between Variables. Flattening can result in equalities between variables,
that is, clauses of the form C∨x = y. DC-instances of such clauses can have, in addition
to principal literals, equalities between domain constants d1 = d2, which are not prin-
cipal literals. Since we only want to deal with principal literals, we will get rid of such
equalities in an obvious way: delete clauses containing tautologies d = d and delete
from clauses literals d1 = d2, where d1 are distinct d2 domain constants.

The following theorem underpins the SAT-based finite model building method:

Theorem 3. Let S be a set of flat clauses and S′ be the set of clauses obtained from S∗

by removing equalities between domain constants as described above and adding all
functionality and totality definitions. Then (i) all literals in S′ are principal and (ii) S is
n-satisfiable if and only if S′ is propositionally satisfiable.

5

Incrementality. In [5] the authors describe a method for incremental finite model find-
ing which advocates keeping (parts of) the contents of the SAT solver when increasing
n. However, in previous experiments we discovered that the technique of variable and
clause elimination [6] is useful at reducing the size of the SAT problem. As this is not
compatible with incremental solving, our general approach is non-incremental.

3.3 Reducing the Number of Variables
The number of instances produced is exponential in the number of variables in a flat-
tened clause. We describe two approaches that aim to reduce this number.
Definition Introduction. This reduces the size of clauses produced by flattening. Com-
plex ground subterms are removed from clauses by introducing definitions. For exam-
ple, a clause p(f (a,b),g(f (a,b))) becomes p(e1,e2) and we introduce the definition
clauses e1 = f (a,b) and e2 = g(e1), where e1,e2 are new constants. One can also intro-
duce definitions for non-ground subterms.
Clause Splitting. Clauses with k variables are split into subclauses having less than k
variables each. New predicate symbols applied to the shared variables are then added
to join the subclauses. For example, the clause p(x,y)∨ q(y,z) with three variables is
replaced by the two clauses p(x,y)∨ s(y) and ¬s(y)∨q(y,z) where s is a new predicate
symbol. These new clauses have two variables each. For large domain sizes splitting can
drastically reduce the size of the resulting propositional problem. This was first used for
finite model finding by Gandalf [17] and later in Eground [14] for EPR problems.

3.4 Symmetry Breaking
The SAT problem produced above can contain many symmetries. For example, every
permutation of DC applied to a DC-model will give a DC-model, and there are n! such
permutations. We can (partially) break these symmetries as follows. Firstly, if the input
contains constants a1, . . . ,al we can add the clauses

ai 6= cm∨a1 = cm−1∨ . . .∨ai−1 = cm−1

for 1 < i ≤ l and 1 < m ≤ n, where we have arbitrarily ordered the constants and cap-
tured the constraint that if the i-th constant is equal to a domain element then some
earlier constant must be equal to the next smallest domain element. Secondly, we can
tell the SAT solver about this order on constants by adding the clauses

ai = c1∨ . . .∨ai = ci

for i ≤min(m,n), which captures the constraint that the i-th constant must be equal to
one of the first i-th domain elements. If 1 < m < n then we can also use principal terms
other than constants in the second case, but not in the first.

3.5 Determining Unsatisfiability
If it is possible to detect the maximum domain size then it is possible to show there is no
model for a formula if all domain sizes up to, and including, this maximum size have
been explored. There are two straightforward ways to detect maximum domain sizes.
Firstly, we can look for axioms such as (∀x)(x= a∨x= b) and (∀x)(∀y)(∀z)(x= y∨x=
z∨ z = y). Both indicate that the problem has a maximum domain size of 2. Secondly,
we can look for so-called EPR problems that only use constant function symbols, in
this case, the domain size is bounded by the number of constants.

6

4 Previous Work in the Multi-Sorted Setting

We review previous work related to finite model finding for multi-sorted FOL.
Translating Sorts Away. One approach to dealing with multi-sorted FOL is to translate
the sorts away. We discuss two well-known translations, see [2] for further discussions
of such translations.

Sort Predicates. One can guard the use of sorted variables by a sort predicate that
indicates whether a variable is of that sort. This predicate can be set to false in a model
for all constants not of the appropriate sort. For example, the last formula in the Organ-
ised Monkey Village problem can be rewritten using the sort predicate isMonkey.

(∀M)(isMonkey(M)→ partner(M) 6= M∧partner(partner(M)) = M)

One also needs to add additional axioms that say that sorts are non-empty and that
functions return the expected sort. For the monkey sort we need to add

(∃M)(isMonkey(M)) (∀M)(isMonkey(partner(M))).

Sort Functions or Tags. One can tag all values of a sort using a sort function for
that sort. The idea is that in a model the function can map all constants (of any sort) to
a constant of the given sort. For example, the last formula from the Organised Monkey
Village problem can be rewritten using fm as a sort function for monkey:

(∀M)(fm(partner(fm(M))) 6= fm(M)∧ fm(partner(fm(partner(fm(M))))) = fm(M))

The authors of [2] suggest conditions that allow certain sort predicates and functions to
be omitted. However, their arguments relate to resolution proofs and do not apply here.
Sorting it Out with Monotonicity. In [4] Claessen et al. introduce a monotonicity
analysis and show how it can help translate multi-sorted formulas to unsorted ones by
only applying the above translations to non-monotonic sorts. A sort τ is monotonic for
a multi-sorted FOL formula φ if for any model of φ one can add an element to the
domain of τ to produce another model of φ . For example, in the Organised Monkey
Village example the banana sort is monotonic as we can add more bananas once we
have enough. However, monkey and tree are not monotonic as increasing either requires
more trees, monkeys and bananas.

In [4] they observe that if there is no positive equality between elements of a sort
then a new domain constant can be added and made to behave like an existing domain
constant and there is no way to detect this i.e. positive equalities are required to bound
a sort. They refine this notion further by noting that a positive equality can be guarded
by a predicate, if that predicate can be forced to be true for all new domain elements.
They introduce a calculus and associated SAT encoding capturing these ideas that can
be used to detect monotonic sorts, which we use in our work.
Using a Theory of Sort Cardinalities. In the single-sorted setting there is a family
of techniques called SEM-style after the SEM model finder [18] based on constraint
satisfaction methods. There exists a technique in this direction for the multi-sorted set-
ting implemented in the CVC4 SMT solver [13]. The idea behind this approach is to
introduce a theory of sort cardinality constraints and to incorporate this theory into the

7

standard SMT solver structure. Briefly, this approach introduces cardinality constraints
(upper bounds) for sorts and searches for a set of constraints that is consistent with the
axioms. To check a cardinality constraint k for sort s, a congruence relation is built for
s-terms and an attempt made to merge congruence classes so that there are at most k.
Cardinality constraints are then increased if found to be inconsistent. Quantified formu-
las are then instantiated with representative constants from the equivalence classes.

5 A Framework for the Multi-Sorted Setting
In this section we introduce our framework able to build models of multi-sorted formu-
las directly, in contrast to translating the sorts away. The key challenge is dealing with
a large and growing search space of domain sizes.

5.1 Using Sorts in the SAT Encoding
The SAT encoding in Sect. 3 can be updated to become sort-aware. First, instead of
the domain size n we use finite domain sizes ns for every sort s. Second, instead of
considering DC = {c1, . . . ,cn}, we consider domains for each sort DCs = {c1, . . . ,cns}.
We can now define n as a function (called domain size assignment) mapping each sort
s to ns and likewise, define DC as the function mapping each sort s to DCs. After that
we can speak about DC-models and n-satisfiability in the multi-sorted case.

All the definitions for the one-sorted case are modified to respect sorts. This means,
in particular, that in a DC-instance of a clause a variable of a sort s can only be replaced
by a domain constant in DCs. For example, for the Organised Monkey Village prob-
lem (see page 2) we could consider the domain size assignment n such that ntree = 1,
nmonkey = 2 and nbanana = 2. The first formula in this description can be split into three
clauses, the first of which would be flattened as owns(M,x)∨b1(M) 6= x, which would
have the two DC-instances owns(c1,c1)∨b1(c1) 6= c1 and owns(c1,c2)∨b1(c1) 6= c2.
We can use c1 for both monkeys and bananas here as monkeys and bananas are never
compared. For this reason we can also break symmetries on a per-sort basis.

Once we have updated the SAT encoding, finite model finding can then proceed as
before where we construct the SAT problem for the current domain size assignment,
check for satisfiability, and then either return a model or repeat the process with an
updated domain size assignment. The problem then becomes how to generate the next
domain size assignment to try.

5.2 A Search Strategy
We will view the search space of domain size assignments as an infinite directed graph
whose nodes are domain size assignments and the children of an assignment are all the
nodes that have exactly one domain size that is one larger. Thus, the number of children
of every node is the number of sorts. A child of a node n having a larger domain size
than n for a sort s is called the s-child of n. The s-descendant relation is the transitive
closure of the s-child relation.

A search strategy will explore this graph node by node in such a way that a node
is always visited before its children. For each node n that we visit, we can either check
n-satisfiability or ignore this node. To decide whether a node can be ignored, we will
maintain a set of constraints. Abstractly, a constraint is a predicate on domain size as-
signments and nodes that do not satisfy the current set of constraints will be ignored.

8

Concretely, we will use a language of (boolean combinations of) arithmetical compari-
son literals such as |s| < b, |s| ≤ b, . . . to represent the constraints. Here b stands for a
concrete integer and |s| is a symbolic placeholder variable for the “intended size” of the
domain of sort s. The semantics of the this representation is the obvious one.

We will work with a queue Q of nodes and a set C of constraints. Initially, Q
consists of a single node assigning 1 to all sorts and C is empty. We then repeat the
following steps:

1. If Q is empty, return “unsatisfiable”.
2. Remove the node q from the front of Q. Do nothing if q was visited before at this

step. Otherwise, continue with the following steps.
3. If q satisfies all constraints in C , perform finite model finding for q, terminating if

a model is found. In variations of this algorithm considered later, we can add some
constraints to C at this step: these constraints will be obtained by analyzing the
proof of q-unsatisfiability.

4. Add to Q all children of q.

We will now introduce an important notion helping us to prevent exploring large
parts of the search space. A constraint is said to have the s-beam property at a node n,
if all s-descendants of n violate this constraint. For example, the constraint |s| < 3 has
the s-beam property at any node q having qs = 2. We can generalize this notion to more
than one sort.

With this notion we can improve step 4 of the algorithm as follows:

4.′ If there is a constraint in C having an s-beam property at the s-child n of q, if n
violates this constraint, add to Q all children of q apart from n.

For example, if we have the constraint |s|< 3 and qs = 2, this constraint will prevent us
from considering the s-child n of q having ns = 3.

As a small refinement, we introduce a heuristic for deciding which node in the queue
to consider next, rather than processing them in the first-in-first-out order. The idea is to
estimate how difficult a domain size assignment is to check and to prioritise exploration
of the easier parts of the search space. Under this variation, Q is a priority queue ordered
by some size measure of the corresponding SAT encoding (in the experiment, we mea-
sured size in the number of clauses). This setup is complete, as long as this size grows
strictly from a parent to its child (which is trivially satisfied for number of clauses).

5.3 Encoding the Search Problem
We now show how an extension of the SAT encoding can be used to produce constraints
and therefore indicate areas of the search space that should be avoided. This is done
by marking certain clauses of the encoding with certain special variables and using the
mechanism for solving under assumptions to detect which of these clauses were actually
used in the unsatisfiability proof. We will design the names of these special marking
variables in such a way that the detected set of used assumptions will immediately
correspond to a (disjunctive) constraint.

Let us assume we are encoding for the domain size assignment n. For each sort
s we introduce two new propositional variables “|s| > ns” and “|s| < ns”, which can

9

tree

monkey

1 2 3

1
2
3
4
5
6
7

1

2

3

4 5-7

8

9-17

banana

monkey

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7

1

2

3
4-5

6 7

8

9 10 11 12 13 14 15 16 17 18

Fig. 1. Finding a finite model for the Organised Monkey Village problem.

be understood as stating that the intended size of the domain of s should be larger,
respectively smaller, than current ns. The marking of clauses is now done as follows.

The totality definition for each principal term p becomes

p = c1∨ . . .∨ p = cns ∨ “|s|> ns”

i.e. either the principal term equals one of the domain constants or the domain is cur-
rently too small. DC-instances can be similarly updated. Let C be a DC-instance and let
sorts(C) be the set of sorts of variables occurring in C. We replace C by

C∨
∨

s∈sorts(C) “|s|< ns”

i.e. either the DC-instance holds or the domain is too large.
We then attempt to solve the updated SAT problem under the assumptions

A =
∧

s∈S(¬“|s|> ns”)∧ (¬“|s|< ns”)

i.e. we assume that we are using the correct domain sizes. These added assumptions
ensure that the logical meaning of the updated encoding is exactly the same as be-
fore. However, in the unsatisfiable case the solver now returns a subset A0 ⊆ A of the
assumptions that were sufficient to establish unsatisfiability. Equivalently, ¬A0 is a con-
flict clause over the marking variables implied by the encoded problem. This clause
can now be understood as the newly derived constraint. We just need to interpret the
marking variables in their “unquoted” form, i.e., as arithmetic comparison literals.

The argument why this interpretation is correct is best done with the set A0, which
contains the marking variables negated. It consists of two main observations:

1. If A0 contains¬“|s|> ns”, the unsatisfiability relies on a totality clause for the sort s.
Because a totality clause gets logically stronger when the domain size is decreased,
essentially the same unsatisfiability proof could be repeated for the domain size |s|
smaller or equal to the current ns (given the other conditions from A0).

2. If A0 contains ¬“|s| < ns”, the unsatisfiability relies on a DC-instance with a vari-
able of sort s. Because we only add more instances of a clause if a domain size is
increased, the same unsatisfiability proof would also work for the domain size |s|
greater or equal to the current ns.

Thus at least one of the (atomic) constraints represented by the literals in A0 must be
violated by a domain size assignment, if we want to have a chance of finding a model.

10

5.4 An Example
Let us consider the Organised Monkey Village example (page 2). Running the initial
search strategy on this problem requires checking 2,661 different domain sort assign-
ments. Using the encoding described above means that only 18 assignments are tried.
The search carried out by our approach is illustrated in Fig. 1. We give two projec-
tions of the 3-dimensional search space and the arrows show the parts of the search
space ruled out by s-beam constraints. On each step the constraints rule out all but one
neighbour, meaning that we take a direct path to the solution through the search space.

5.5 Using Monotonicity
In our framework we can use the notion of monotonicity (see Sect. 4) in two ways.

– Collapsing Monotonic Sorts. All monotonic sorts can be collapsed into a single
sort as this sort can grow to the size of the largest monotonic sort. It is never safe
to collapse a monotonic sort into a non-monotonic one as the monotonic sort may
depend on the non-monotonic one. For example, whilst banana is a monotonic sort
it must always be twice as large as the non-monotonic sort monkey.

– Refining the Search Encoding. If a sort s is monotonic then if no model exists for
domain size ns then no model can exist where ns is smaller. We reflect this in our
encoding by not marking DC-instances with marking variables for monotonic sorts.
This leads to a derivation of potentially stronger constraints.

6 Detecting Constraints Between Sorts

In this section we discuss how properties of functions between sorts can be used to
further constrain the domain size search space. Consider the following set of formulas

distinct(a1,a2,a3,a4,a5) (∀x : s1)(f (x) 6= b)
(∀x,y : s1)(f (x) = f (y)→ x = y) (∀x,y : s2)(g(x) = g(y)→ x = y)

where ai are constants of sort s1, b is a constant of sort s2, f : s1→ s2, and g : s2→ s3.
The previous approach would try increasing the size of each sort by 1, discovering that
one sort must grow at each step. However, we can see from the bottom two formulas
that f and g are injective and therefore that |s1| ≤ |s2| ≤ |s3|, furthermore, the second
formula tells us that f is non-surjective and therefore that |s1| < |s2|. Using these con-
straints we can immediately discount 9 of the 15 domain size assignments considered
without them.

To find constraints between the sizes of sorts s1 and s2 we look for four cases:

1. If a function f : s1→ s2 is injective, then |s1| ≤ |s2|.
2. If a function f : s1→ s2 is injective and non-surjective, then |s1|< |s2|.
3. If a function f : s1→ s2 is surjective, then |s1| ≥ |s2|.
4. If a function f : s1→ s2 is surjective and non-injective, then |s1|> |s2|.

These constraints can be added to the constraints used in the search described in Sect. 5.
Our method for detecting bounds was inspired by Infinox [3], a method for showing

no finite model can exist for unsorted FOL formulas if there is a strict bound within

11

a sort. We detect bounds by attempting to prove properties of functions between sorts.
For a unary function f : s1→ s2 occurring in the problem we can simply make a claim
such as

(∀x : s1)(∀y : s2)(f (x) = f (y)→ x = y)∧ (∃y : s2)(∀x : s1)(f (x) 6= y)

for each case (this is case (2) above), and then ask whether this claim follows from the
axioms of the input problem. For non-unary functions it is necessary to existentially
quantify over one of the arguments, details of how to do this can be found in [3].

To check each claim C we could use standard techniques to check A |=C where A are
the input axioms. Any black box solver could be used for this. However, doing this on a
per-claim basis is inefficient and we implement an optimisation of Vampire’s saturation
loop to establish multiple claims in a single proof attempt. Recall that the saturation
loop will search for consequences of its input. Therefore, we saturate A∪ {Ci → li}
where li is a fresh propositional symbol labelling claim Ci. If the unit li is derived then
we can conclude that the claim Ci is a consequence of A. This approach was inspired by
the consequence elimination mode of Vampire [9] (see this work for technical details).

7 Getting More Sorts
Previously we have seen how sort information can be used to reduce the size of the
SAT encoding by only growing the domain sizes of sorts that need to be grown. In this
section we recall a technique first described in [4] for inferring new sorts and explain
how these new sorts can be useful.
Inferring Subsorts. Consider the Organised Monkey Village example. The monkey
sort can be split into three separate subsorts as there are three parts (assigning bananas
to monkeys, assigning monkeys to trees and assigning monkeys to their partners) where
the signatures do not overlap. Abstractly, we can use different monkeys in these differ-
ent places as they do not interact – later we will see why this is useful. To infer such
subsorts we can use the standard union-find method on positions in the signature.
Using Inferred Subsorts. Claessen et al. [4] describe two uses for inferred subsorts:

– Removing Instances. If a subsort τ is monotonic and all function symbols with the
return sort τ are constants, then we can bound the subsort by the number of constants. It
is easy to argue that any ground clauses (instances, totality or functionality) for a domain
constant larger than the bound of the subsort can be omitted as they will necessarily be
equivalent to an existing clause. This helps reduce the size of the SAT encoding.

– Symmetry breaking. For the same reasons that symmetry breaking can occur per
sort, symmetry breaking can now occur per inferred subsort. This is safe due to the
above observation that values for different subsorts will never be compared.
Making Subsorts Proper Sorts. Proper sorts and inferred subsorts are treated differ-
ently as we only grow the sizes of proper sorts. If an inferred subsort is not bounded as
described above then it is forced to grow to the same size as its parent sort. To under-
stand why this can be problematic consider the FOL formula

distinct(a1, . . . ,a50)∧ (∀x)(f (f (f (f (f (f (f (f (f (f (x)))))))))) 6= x)

which has an overall finite model size of 50. Establishing this finite model requires a
SAT problem consisting of 1,187,577 clauses. However, there are two subsorts: that of

12

the constants a1 to a50 and that of f . The second subsort is monotonic and does not need
to grow beyond size 3. If this had been declared as a separate sort then the required SAT
encoding would only consist of 125,236 clauses.

It is only safe to treat an inferred subsort as a proper sort if we can translate any
resulting model into one where elements of the inferred subsort belong to the original
sort. This is possible when (i) the inferred subsort is monotonic, and (ii) the size of
the inferred subsort is not larger than the size of its parent sort. To ensure (ii) we add
constraints to the search strategy in the same way as for sort bounds detected previously.

8 An Alternative Growing Search
The previous search strategy considers each domain size assignment separately (we
therefore refer to it as a pointwise encoding). However, we can modify the encoding so
that it captures the current assignment and all smaller ones at the same time. Thus we no
longer talk of a domain size but rather of a domain size upper bound, as the parameter
of the encoding. These bounds never need to shrink and thus grow monotonically for
each sort. We call this encoding a contour encoding as we can think of it drawing a
contour around the explored part and growing this outwards.

This alternative encoding works as follows. For each sort s with domain size bound
ns we introduce ns propositional variables bounds(1) to bounds(ns). Then instead of
single totality constraint for each principal term p we introduce all totality constraints
for domain sizes up to ns guarded by the appropriate bound i.e.

p = c1∨bounds(1), . . . , p = c1∨ . . .∨ p = cns ∨bounds(ns)

We guard DC-instances of clauses with negations of these guards in the following way.
For each sort s let smax be the index of the largest domain constant in this instance
used to replace a variable of sort s. Then if smax is defined, i.e. there is at least one
such variable, and smax > 1 we guard the instance with a literal ¬bounds(smax−1). For
example, given a function symbol f : s1 → s2, a constant b : s2, and a flattened clause
f (x) 6= y∨ b 6= y, its DC-instance f (c3) 6= c1 ∨ b 6= c1 would be guarded as f (c3) 6=
c1∨b 6= c1∨¬bounds1(2).

In this encoding the SAT solver can satisfy the clauses for a domain size smaller
than ns i.e. if it can satisfy a stricter totality constraint then it can effectively ignore
some of the instances. As a further variation, if a sort is monotonic then we do not need
to consider the possibility that a sort is smaller than its current bound. Therefore, we
only need the largest totality constraint and do not need constraints on instances.

In a similar way as before, we solve the problem under the assumptions that the sort
sizes are big enough i.e.

A =
∧

s∈S¬bounds(ns).

If this is shown unsatisfiable the subset of assumptions A0 will suggest the sorts that
could be grown; growing a sort not mentioned in A0 would allow the same proof of
unsatisfiability to be produced. If A0 is empty, the SAT-solver has shown that the given
first-order formula is unsatisfiable. Otherwise, we can either arbitrarily select a sort to
grow out of the ones mentioned in A0. This approach is significantly different from the
previous approach as now we only consider one next domain size assignment. How-
ever, the SAT problems may be considerably harder to solve as the SAT solver is now

13

Table 1. Experimental Results for Unsorted problems.

VAMPIRE

CVC4 Paradox iProver Ignore Use Expand
FOF+CNF: sat 1181 1444 1348 1421 1463 1503
FOF+CNF: unsat - - 1337 1400 1604 1628

considering a much larger set of models. In essence, each new SAT problem contains
all the previous ones as sub-problems.

Finally, if the SAT problem is satisfiable then the actual size of a sort s is given by
its smallest totality constraint that is “enabled”; more precisely, by the smallest i such
that bounds(i) is false in the computed model.

9 Experimental Evaluation

In this section we evaluate the different techniques for finite model finding in multi-
sorted FOL described in this paper and compare our approach to other tools.

Experimental Setup. We considered two sets of problems. From the TPTP [16] li-
brary (version 6.3.0) we took unsorted problems in the FOF or CNF format. From the
SMT-LIB library [1] we took problems from the UF (Uninterpreted Functions) logic.
Experiments were run on the StarExec cluster [15], whose nodes are equipped with
Intel Xeon 2.4GHz processors and 128 GB of memory. For each experiment we will
report the number of problems solved with the time limit of 60 seconds.

On satisfiable problems we compare our implementation with version 3.0 of Para-
dox [5] and version 1.4 of CVC4 [13]; Paradox does not establish unsatisfiability and
CVC4 runs more than a finite model finding approach, making a comparison on unsat-
isfiable problems difficult. On the TPTP problems, we also compare to version 2.0 of
iProver [10]. The techniques described in this paper were implemented in VAMPIRE.

Adding Sorts to Unsorted Problems. Our first experiment considers the effect of
sort inference on unsorted problems. We consider three settings: (i) inferred subsorts
are ignored, (ii) inferred subsorts are used to reduce the problem size and break sym-
metries only, and (iii) inferred subsorts are expanded to proper sorts where possible.
Table 1 presents the results. This shows that sort information can be used to solve more
problems. For satisfiable problems the best VAMPIRE strategy solves more problems
than CVC4, Paradox or iProver. For both satisfiable and unsatisfiable problems, ex-
panding subsorts into proper sorts and treating the problems as multi-sorted problems
helps solve the most problems. We note that 4 problems found unsatisfiable using this
approach could not be solved by any other technique in VAMPIRE, this is significant as
VAMPIRE is one of the best theorem provers available for such problems.

Removing Sorts from Sorted Problems. Next we consider the translation techniques
described in Sect. 4 applied to multi-sorted problems. Table 2 shows the results of run-
ning variations of these translations on the multi-sorted UF problems described above.
Plain applies the translation to the whole problem, ignoring subsorts in the result. With
Monotonicity only non-monotonic sorts are translated and with Subsorts the resulting
problem is solved using inferred subsorts. Both adds both variations.

14

Table 2. Experimental Results for Translations from Multi-Sorted to Unsorted.

Sort Predicates Sort Functions
Plain Monotonicity Subsorts Both Plain Monotonicity Subsorts Both

UF: sat 813 810 872 874 710 771 834 873
UF: unsat 101 112 221 232 67 67 171 171

Table 3. Experimental Results for Multi-Sorted problems.

CVC4 Pointwise Contour Without
Default Expand Collapse Bounds Default Collapse Bounds Constraints

UF: sat 764 (8) 795 789 901 (12) 810 886 (3) 899 (1) 886 (1) 154
UF: unsat - 212 215 241 218 270 261 267 66

These results show that, for these problems, sort predicates are more useful and that
the techniques of monotonicity detection and subsort inference are useful in improving
the translation and reasoning with it.

Finding Models of Multi-sorted Problems. Finally, we consider our framework for
reasoning with multi-sorted problems directly. Table 3 gives the results for CVC4 and
eight variations of the techniques presented in this paper (we use only CVC4 since
Paradox does not work on sorted problems). At the top level these are split into the
Pointwise and Contour encodings and a version where no constraints were added. Then
Expand refers to subsort expansion (Sect. 7), Collapse refers to collapsing monotonic
sorts together (Sect. 5.5), and Bounds refers to sort bound extraction (Sect. 6). These
results can also be compared to Table 2 as the problems are the same.

The three main conclusions from this information are (i) overall the approach taken
in this paper is able to solve more problems than the approach taken by CVC4, (ii)
collapsing monotonic sorts is very useful, and (iii) including the search problem as
part of the SAT encoding is vital. Bracketed numbers show unique problems solved by
an approach. This shows that although CVC4 solves fewer problems it does solve some
uniquely. The contour encoding was generally more successful, however in UF there are
15 and 19 problems that are only solvable using the pointwise and contour encodings
respectively. As a further point, we note that the heuristic introduced on page 9 is useful,
without it the default pointwise approach solved 61 fewer problems. Finally, comparing
with the results in Table 2, we see that finding models for multi-sorted problems directly
performs better than translating the problem to an unsorted one.

10 Conclusions and Further Work

We have introduced a new framework for MACE-style finite model finding for multi-
sorted first-order logic. This involved two complementary SAT encodings that capture
the search for a satisfying domain size assignment and techniques aimed at decreas-
ing the size of this search space. We have demonstrated experimentally that these tech-
niques are effective at improving finite model finding in the unsorted setting and finding
finite models for multi-sorted first-order formulas. Further work will consider possible
extensions to uninterpreted sorts and infinite, but finitely representable, models.

15

References
1. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2010.
2. J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone. Encoding monomorphic and

polymorphic types. In Proceedings of the 19th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2013), 2013.

3. K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. J. Autom.
Reasoning, 47(2):111–132, 2011.

4. K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with monotonicity - translating
between many-sorted and unsorted first-order logic. In Automated Deduction - CADE-23 -
23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August
5, 2011. Proceedings, pp. 207–221, 2011.

5. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In
CADE-19 Workshop: Model Computation - Principles, Algorithms and Applications, 2003.

6. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination.
In Theory and Applications of Satisfiability Testing, 8th International Conference, SAT 2005,
St. Andrews, UK, June 19-23, 2005, Proceedings, pp. 61–75, 2005.

7. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May
5-8, 2003 Selected Revised Papers, pp. 502–518, 2003.

8. N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Electr. Notes
Theor. Comput. Sci., 89(4):543–560, 2003.

9. K. Hoder, L. Kovács, and A. Voronkov. Case studies on invariant generation using a satura-
tion theorem prover. In MICAI 2011 (Part I), vol. 7094 of LNCS, pp. 1–15, 2011.

10. K. Korovin. iProver An Instantiation-Based Theorem Prover for First-Order Logic (System
Description). In Automated Reasoning, vol. 5195 of Lecture Notes in Computer Science, pp.
292–298. Springer Berlin Heidelberg, 2008.

11. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

12. W. Mccune. A Davis-Putnam Program and its Application to Finite First-Order Model
Search: Quasigroup Existence Problems. Technical report, Argonne National Laboratory,,
1994.

13. A. Reynolds, C. Tinelli, A. Goel, and S. Krstic. Finite model finding in SMT. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, pp. 640–655, 2013.

14. S. Schulz. A comparison of different techniques for grounding near-propositional CNF for-
mulae. In Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society Conference, May 14-16, 2002, Pensacola Beach, Florida, USA, pp. 72–76, 2002.

15. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec, a cross community logic solving service.
https://www.starexec.org, 2012.

16. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

17. T. Tammet. Gandalf. J. Autom. Reasoning, 18(2):199–204, 1997.
18. J. Zhang and H. Zhang. SEM: a system for enumerating models. In Proceedings of the Four-

teenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes, pp. 298–303, 1995.

16

