We know (nearly) nothing!

But can we learn?

Stephan Schulz
schulz@eprover.org

Driving the State of the Art

Driving the State of the Art

What inference system to use? inferences efficiently?

How to do

Where to search for proofs?

Evolution of Calculus

Evolution of Implementation

Evolution of Implementation

Evolution of Search Control/Clause Selection

Evolution of Search Control/Literal Selection

Compare and Contrast

Improving heuristics has been the main source of progress in proof search!

... and our heuristics still suck!

Humans are Inadequate!

- We are not good at keeping large amounts of data in our head
- We are not good at analysing large amounts of data without help
- We are not good visualising complex relationships

Compare "The Magical Number Seven, Plus or Minus Two"

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
- Success: Control of larger area of the board

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving

- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving

- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
$>$ Success: Control of larger area of the board
- Saturating theorem proving

- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving

- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king

- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
\Rightarrow Success: Control of larger area of the board
- Saturating theorem proving
- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Player of Games

- Chess
- State: Different pieces on an 8×8 board
- Choice point: Which piece moves where
- (Opening)
- Success: Capture of the king
- Go
- State: Configuration of stones on a 19×19 board
- Choice point: Where to place the next stone
\Rightarrow Success: Control of larger area of the board
- Saturating theorem proving
- State: Set of clauses
- Choice point: Which clause to process next?
- Pick term ordering, literal selection strategy
- Success: Derivation of the empty clause

Grand Challenge

Integrate Machine Learning and Symbolic Reasoning

Discussion

- Should we target domain-specific or more general search control knowledge?
- Deep learning or hand-selected features - which is better for learning search control knowledge?
- What is a better source for learning: Meta-information (success/failure, time to success,), full proofs, or even full search protocols?

Discussion

- Should we target domain-specific or more general search control knowledge?
- Deep learning or hand-selected features - which is better for learning search control knowledge?
- What is a better source for learning: Meta-information (success/failure, time to success, ...), full proofs, or even full search protocols?

Discuss away!

