We know (nearly) nothing!

But can we learn?

Driving the State of the Art

Driving the State of the Art

Evolution of Calculus

Evolution of Implementation

Evolution of Implementation

Evolution of Search Control/Clause Selection

Evolution of Search Control/Literal Selection

Compare and Contrast

Improving heuristics has been the main source of progress in proof search!

...and our heuristics still suck!

Humans are Inadequate!

- ► We are not good at keeping large amounts of data in our head
- ► We are not good at analysing large amounts of data without help
- ► We are not good visualising complex relationships

Compare "The Magical Number Seven, Plus or Minus Two"

► Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

▶ Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

► Go

- State: Configuration of stones on a 19x19 board
- Choice point: Where to place the next stone
- Success: Control of larger area of the board

▶ Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
 - ► Choice point: Where to place the next stone
 - ▶ Success: Control of larger area of the board
- Saturating theorem proving
 - State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

▶ Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
 - ► Choice point: Where to place the next stone
- Success: Control of larger area of the board
- ► Saturating theorem proving
 - ▶ State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

► Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
 - ► Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving
 - ▶ State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

▶ Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
 - ► Choice point: Where to place the next stone
- Success: Control of larger area of the board
- ► Saturating theorem proving
 - ▶ State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

▶ Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
- ► Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving
 - State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

► Chess

- State: Different pieces on an 8x8 board
- Choice point: Which piece moves where
 - ► (Opening)
- Success: Capture of the king

- ▶ State: Configuration of stones on a 19x19 board
- ► Choice point: Where to place the next stone
- Success: Control of larger area of the board
- Saturating theorem proving
 - ▶ State: Set of clauses
 - Choice point: Which clause to process next?
 - ► Pick term ordering, literal selection strategy
 - Success: Derivation of the empty clause

Grand Challenge

Discussion

- ► Should we target domain-specific or more general search control knowledge?
- ► Deep learning or hand-selected features which is better for learning search control knowledge?
- ► What is a better source for learning: Meta-information (success/failure, time to success, ...), full proofs, or even full search protocols?

Discussion

- ► Should we target domain-specific or more general search control knowledge?
- ► Deep learning or hand-selected features which is better for learning search control knowledge?
- ► What is a better source for learning: Meta-information (success/failure, time to success, ...), full proofs, or even full search protocols?

Discuss away!