
This space is reserved for the EPiC Series header, do not use it

Beyond DRAT: Challenges in Certifying UNSAT∗

Bertram Felgenhauer

University of Innsbruck
bertram.felgenhauer@uibk.ac.at

Abstract

Contemporary SAT solvers are complex tools and may contain bugs. In order to in-
crease the trust in the results of SAT solving, SAT solvers may produce certificates that
can be checked independently. For unsatisfiability certificates, DRAT is the de facto stan-
dard. As long as the checkers are not formalized, extending the certificate format would
decrease the trust in the checker because its code complexity increases. With the advent
of formally verified checkers for DRAT proofs, this is no longer the case. In this note I
argue that symmetry breaking is not adequately supported by DRAT proofs, and propose
to have dedicated certification for symmetry breaking instead.

1 Introduction

Modern SAT solvers are powerful tools with many applications, for example in software and
hardware verification and for combinatorial optimization and designs. Because SAT solvers have
become quite complex and applications serious, certification of their output is very important.
In fact, the SAT competitions since 2013 have required that solvers produce satisfiability and
unsatisfiability certificates in the main track. Since 2014, the DRAT format (Wetzler et al. [8])
is the de facto standard for unsatisfiability certificates.1

Before this year (2017), the unsatisfiability certificates were checked by an independent
program, DRAT-trim, which needed to be trusted. Now we have hybrid verifiers (by Cruz-
Filipe et al. [1] and Lammich [6], both to be presented at CADE-26), which are based on
an untrusted preprocessor that trims and annotates a DRAT proof, followed by a formally
verified (in ACL2 [1] respectively Isabelle [6]) checker that certifies that the preprocessed proof
establishes unsatisfiability of the input problem. Compared to DRAT-trim, which is written in
C, this increases the level of trust significantly.

One key advantage of the DRAT format is that it covers most preprocessing (and inpro-
cessing) techniques used in SAT solving [5] in a straightforward manner. I discuss a notable
exception, symmetry breaking, in Section 2. My thesis, which I elaborate in Section 3, is
that for techniques like symmetry breaking, encoding proofs into DRAT is inferior to having a
standalone certifier or an extension of the DRAT format for that purpose.

∗This work was supported by Austrian Science Fund (FWF) project P27528
1In principle, a DRAT proof is a sequence of additions and deletion of clauses, and each step can be checked

rapidly. In practice, proofs are generally checked backwards for efficiency reasons, and verifiers like DRAT-trim
are not obviously correct.



Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

2 Symmetry Breaking and DRAT

A SAT instance is a propositional formula in conjunctive normal forms; the objective is to find
an assignment of the propositional variables to true or false such that the formula becomes
true. Many SAT instances (for example those arising from graph coloring) exhibit symmetries:
permuting the variables of an assignment and possibly changing their polarity results in another
satisfying assignment. For example, if α : {x, y} → {T,F} is a satisfying assignment of the
CNF F = (x ∨ ¬y) ∧ (¬x ∨ y), then α′ = {x 7→ ¬α(y), y 7→ ¬α(x)} satisfies F as well. The
presence of symmetries may cause an exponential blowup in the size of the SAT solver’s search
tree2, and a similar blowup in the size of the resulting unsatisfiability certificates. In order to
break such symmetries, one can add so-called lex-leader constraints to the SAT instance that
assert that applying a given symmetry to the assignment represented in the CNF does not
produce a smaller assignment (see, for example, Devriendt et al. [2]). The resulting formula is
equisatisfiable to the original one, (if there is a satisfying assignment, but a lex-leader constraint
for a particular symmetry is violated, we may switch to the smaller satisfying assignment
induced by the symmetry; this process must terminate). The lex-leader constraints have the
effect of pruning the search tree, often resulting in faster solving time and smaller certificates.

The main point concerning symmetry breaking for this note is that symmetry breaking
relies on picking a lexicographically smallest assignment among a set of assignments that are
symmetric to a given one, by an iterative process that may completely change the assignment.

In contrast, each step of a DRAT proof may change at most one literal of a satisfying
assignment. Nevertheless, Heule et al. [3] showed that it is possible to encode (some) symmetry
breaking with DRAT proofs, deriving lex-leader constraints. In a nutshell, to break a single
symmetry (which is restricted to be an involution), one first defines a propositional variable z
that is true if the desired lex-leader constraint is violated, then defines copies for each variable
affected by the symmetry as either the original variable, if z is false, or the variable under the
symmetry, if z is true. One then derives, for each clause, the clause obtained by replacing each
variable by the corresponding copy, and the lex-leader constraint. Finally, one can delete the
original clauses and the clauses defining z. All these steps can be encoded without too much
difficulty in DRAT, but overall the process is anything but straightforward. Note that this is
just for breaking a single symmetry; handling multiple symmetries is even more involved.

Remark 1. The polynomial time checkable propagation redundancy (PR) property [4] (to be
presented at CADE-26) is more versatile than the RAT property, but still quite restrictive: If
a clause C is added to a CNF F by PR, and C is violated by an assignment α satisfying F ,
then α can be modified by updating a fixed set of variables to predetermined values to obtain
an assignment satisfying F ∧ C. (The updated variables and their values are given by ω in [4,
Theorem 1]). Given this restriction to predetermined values, it is likely that even when using
PR inferences, the variables and clauses have to be copied to perform a permutation of the
variables.

3 Proposal

As we have seen in Section 2, there is a mismatch between DRAT, which is good at local
modification of satisfying assignments that change one variable at a time, and global techniques

2In DPLL solvers with learning, the search tree gives rise to a resolution proof of unsatisfiability that is of
similar size as the search tree; it is known that for the pigeon hole principle (which exhibits many symmetries),
any resolution proof is of exponential size [7]. With symmetry breaking, polynomial sized proofs exist.

2



Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

like symmetry breaking that rely on changing assignments in a holistic way, for example by
focusing on the lexicographically smallest one.

One motivation of encoding symmetry breaking in DRAT is that this way, only a DRAT
verifier needs to be trusted. But for a formally verified checker, the trust is not based on the
simplicity and maturity of the code, but on having a machine checked correctness proof. There-
fore, incorporating checking and breaking of symmetries (and derivation of the corresponding
lex-leader constraints) can be accomplished without diminishing the trust.

I believe that there is value in direct certification of global techniques. This could be done
by separate certifiers, or by extending the DRAT format and the corresponding verification
toolchains. For symmetry breaking, the main benefit would be that producing certificates
becomes much easier and more compact than encoding them in DRAT format.

As a minimal proposal, consider breaking syntactical symmetries3. In that case, the cer-
tificate contains a list of permutations, and list of literals defining a lexicographic order of
assignments. The certifier would check that the permutations are indeed syntactic symmetries
of the input formula, and add lex-leader constraints corresponding to the given permutations in
a predetermined order and encoding. I expect that if a solver wants to use a different encoding,
it can produce additional DRAT steps to derive it.

Open Questions.

• Which global techniques would you like to have support for? Some candidates are sym-
metry breaking, cutting planes for pseudo-boolean constraints (with cardinality reasoning
as a special case), and Gaussian elmination for XOR constraints.

• Should such extensions be handled by standalone checkers or integrated into existing
DRAT checkers? The latter approach may pave the way to treating dynamic symmetry
breaking as well.

• Are symmetries (i.e., permutation of literals) the right level of abstraction? In principle,
any map that produces satisfying assignments from other satisfying assignments gives rise
to a lex-leader constraint.

• Technical details. What certificate format should be used? How should one handle the
fresh variables from the lex-leader constraints?

References

[1] L. Cruz-Filipe, M. Heule, W.A. Hunt, M. Kaufmann, and P. Schneider-Kamp. Efficient certified
RAT verification. In Proc. 26th International Conference on Automated Deduction, 2017. To appear.

[2] J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker. Improved static symmetry breaking
for SAT. In Proc. 19th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2016), volume 9710 of Lecture Notes in Computer Science, pages 104–122, 2016.

[3] M. Heule, W.A. Hunt, and N. Wetzler. Expressing symmetry breaking in DRAT proofs. In Proc.
24th International Conference on Automated Deduction, volume 9195 of Lecture Notes in Computer
Science, pages 591–606, 2015.

[4] M. Heule, B. Kiesl, and A. Biere. Short proofs without new variables. 2017. To appear.

3A syntactical symmetry is one that if applied to the input formula under consideration, results in the same
formula again, modulo associativity and commutation of ∨ and ∧.

3



Beyond DRAT: Challenges in Certifying UNSAT Bertram Felgenhauer

[5] M. Järvisalo, M.J.H. Heule, and A. Biere. Inprocessing rules. In Proc. 6th International Joint
Conference on Automated Reasoning, volume 7364 of Lecture Notes in Computer Science, pages
355–370, 2012.

[6] P. Lammich. Efficient verified (UN)SAT certificate checking. In Proc. 26th International Conference
on Automated Deduction, 2017. To appear.

[7] T. Pitassi, P. Beame, , and R. Impagliazzo. Exponential lower bounds for the pigeonhole principle.
Computational Complexity, 3(2):97–140, 1993.

[8] N. Wetzler, M.J.H. Heule, and W.A. Hunt. DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In Proc. 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2014), volume 8561 of Lecture Notes in Computer Science, pages 422–
429, 2014.

4


	Introduction
	Symmetry Breaking and DRAT
	Proposal

