
SC2 challenges: when Satisfiability Checking and

Symbolic Computation join forces

Erika Ábrahám1, John Abbott10, Bernd Becker2, Anna M. Bigatti3,
Martin Brain9, Alessandro Cimatti4, James H. Davenport5,
Matthew England6, Pascal Fontaine7, Stephen Forrest8,

Vijay Ganesh11, Alberto Griggio4, Daniel Kroening9, and Werner M. Seiler10

1 RWTH Aachen University, Aachen, Germany
2 Albert-Ludwigs-Universität, Freiburg, Germany

3 Università degli studi di Genova, Italy
4 Fondazione Bruno Kessler, Trento, Italy

5 University of Bath, Bath, U.K.
6 Coventry University, Coventry, U.K.

7 LORIA, Inria, Université de Lorraine, Nancy, France
8 Maplesoft Europe Ltd

9 University of Oxford, Oxford, U.K.
10 Universität Kassel, Kassel, Germany

11 University of Waterloo, Ontario, Canada

Abstract

Symbolic Computation and Satisfiability Checking are two research areas, both having
their individual scientific focus but with common interests, e.g., in the development, im-
plementation and application of decision procedures for arithmetic theories. Despite their
commonalities, the two communities are rather weakly connected. The aim of the SC2

initiative is to strengthen the connection between these communities by creating common
platforms, initiating interaction and exchange, identifying common challenges, and devel-
oping a common roadmap from theory along the way to tools and (industrial) applications.

1 Introduction

The use of advanced methods to solve practical and industrially relevant problems by computers
has a long history. While it is customary to think that “computers are getting faster” (and
indeed, they were, and are still getting more powerful in terms of multicores etc.), the progress
in algorithms and software has been even greater. One of the leaders in the field of linear and
mixed integer programming points out [8, slide 37] that you would be over 400 times better
off running today’s algorithms and software on a 1991 computer than you would running 1991
software on today’s computer. The practice is heavily inspired by the theory: [8, slide 31] shows
that the biggest version-on-version performance advance in software was caused by “mining the
theory”. But this progress has been in what is, mathematically, quite a limited domain: that
of linear programming, possibly where some of the variables are integer-valued.

There has been also much progress in the use of computers to solve hard non-linear algebraic1

problems, generally but not exclusively associative and commutative. This is the area generally
called Symbolic Computation (or Computer Algebra). It includes solving non-linear problems
over both the real and complex numbers, though generally with very different techniques. This
has produced many new applications and surprising developments: in an area everyone believed
was solved, non-linear solving over the reals (using cylindrical algebraic decomposition — CAD)



The SC2 challenge The SC2 consortium

has recently found a new algorithm for computing square roots [15]. CAD is another area where
practice is (sometimes) well ahead of theory: the theory [14, 9] states that the complexity is
doubly exponential in the number of variables, but useful problems can still be solved in practice
([4] points out that CAD is the most significant engine in the “Todai robot” project).

Independently and contemporaneously, there has been a lot of practical progress in solving
the SAT problem, i.e., checking the satisfiability of logical problems over the Boolean domain.
The SAT problem is known to be NP-complete [12]. Nevertheless, the Satisfiability Checking
[7] community has developed SAT solvers which can successfully handle inputs with millions
of Boolean variables. Among other industrial applications, these tools are now at the heart of
many techniques for verification and security of computer systems.

Driven by this success, big efforts were made to enrich propositional SAT-solving with
solver modules for different theories. Highly interesting techniques were implemented in SAT-
modulo-theories (SMT) solvers [5, 17] for checking easier theories, but the development for
quantifier-free non-linear real and integer arithmetic1 is still in its infancy.

The SC2 (Satisfiability Checking and Symbolic Computation) initiative, described further
in [3], aims at bridging these two communities, so that members are well informed about both
fields, and thus able to combine the knowledge and techniques of both fields to develop new
research and to resolve problems (both academic and industrial) currently beyond the scope of
either individual field. Formally, it is also a European Horizon 2020 Coordination and Support
Action, running from July 2016 to September 2018: see http://www.sc-square.org.

The main section of this short document is dedicated to a few research directions that we
believe could be tackled successfully by a unified SC2 community, as well as a few recent advances
as examples of low hanging fruits at the interface of Symbolic Computation and Satisfiability
Checking. Some upcoming actions of the SC2 initiative are advertised in conclusion.

2 A Few Challenges and Recent Advances

Ordering of Variables in Boolean Logic vs. Theories. The CAD method fixes a static
order of the theory variables and stays with it for the whole computation; changing this order
is very expensive (up to doubly exponential [9]). Conversely, dynamic variable ordering for
logic variables is one of the key reasons why SAT solvers are so efficient [19, 18]. This has been
witnessed by dramatic recent progress in dynamic variable ordering techniques in SAT solvers
through use of online machine learning [18]. However, similar sophisticated dynamic ordering
techniques for theory variables do not yet exist. In [6], a mechanism to influence theory variable
ordering is introduced: it gives higher preference to simple theory branches over more complex
ones. The authors currently know of no deeper theory-specific mechanisms for directing the
search based on observations made during previous theory checks, or research directly relating
the orderings of the logic and theory variables.

Inexpensive Theory Deductions. There may be deductions which are easy in the theory
world, but could greatly improve the logical process, or enable the logical process to use simpler
reasoning. For example, suppose x2 + y2 ≤ 4 is one of the terms in our proposition. This is
a nonlinear constraint involving two theory variables, and as such is relatively hard to handle.
But x2 + y2 ≤ 4 ⇒ (x ≥ −2) ∧ (x ≤ 2), and the implicand is linear and only involves one
variable. This is an example of a deduction which a theory system can make (simple projection

1It is usual in the SMT community to refer to these constraints as arithmetic. But, as they involve quantities
as yet unknown, manipulating them is algebra. Hence both words occur, with essentially the same meaning,
throughout this document.

2

http://www.sc-square.org


The SC2 challenge The SC2 consortium

if we are using CAD as our theory engine). The high potential of such deductions is not yet
well exploited.

Weakly Nonlinear Reasoning. When embedded as reasoning engines in formal verification
tools, SMT solvers are typically required to provide functionalities beyond pure satisfiability
checking like, e.g., incremental solving or the generation of models, unsatisfiable cores or Craig
interpolants. Though relevant progress has been made recently in SMT solving for non-linear
arithmetic (e.g. [16, 13]), current approaches do not yet fully satisfy the needs of formal
verification tools.

Motivated by the observation that in many important application domains systems are
“mostly-linear”, the authors of [11] propose a counterexample-guided abstraction refinement
approach to work with abstractions expressed over linear arithmetic with uninterpreted func-
tions, where nonlinear multiplication is modeled as an uninterpreted function. If the solver finds
a solution for the linear abstraction which does not satisfy the concrete non-linear problem (i.e.,
a spurious counterexample), then the abstraction is tightened by adding new linear constraints,
including tangent planes resulting from differential calculus, and monotonicity constraints. The
approach is implemented on top of the nuXmv model checker [10].

Combining Decision Procedures. Its doubly-exponential complexity restricts the practi-
cal applicability of the CAD method, the only available complete decision procedure for real
arithmetic. Thus for effective reasoning it is extremely important to exploit other methods for
preprocessing and solving parts of a given problem with other, more efficient methods. For
example, incomplete but fast Interval Arithmetic can be used to reduce the search space, the
Simplex method to check the linear part of the problem for satisfiability, or the Virtual Substitu-
tion method to eliminate variables that appear quadratically with less effort. A unique feature
of the SMT-RAT solver [13] is that it allows the user to define her own strategic combination
of decision procedures, optimised towards the given problem type, and with the possibility to
exploit parallelisation.

3 Conclusion

In this paper we discussed some common challenges and some examples of recent advances
in the areas of Satisfiability Checking and Symbolic Computation. In [3] we reported on the
activities of our SC2 project to strengthen the connections between these areas. To mention
the most important measures, as a platform for interdisciplinary communication and exchange,
we initiated an annual SC2 workshop [2]. To train PhD students and young scientists, the SC2

project also organises a summer school [1]. Last but not least, to support tool development,
testing and comparison, we work on extensions of the SMT-LIB language (http://smtlib.cs.
uiowa.edu/) and benchmark collection to strengthen support for non-linear arithmetic.

The project consists of not just the partner institutions but also associates from both EU
and non-EU research institutions and industry. Associates are regularly informed about project
activities and invited to corresponding events. If you would like to participate please contact
the Project Coordinator James Davenport (J.H.Davenport@bath.ac.uk).

Acknowledgements.

We are grateful for support by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689)
and the ANR project ANR-13-IS02-0001-01 SMArT.

3

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/


The SC2 challenge The SC2 consortium

References

[1] SC2 Summer School. http://www.sc-square.org/CSA/school/.

[2] Second International Workshop on Satisfiability Checking and Symbolic Computation. http:

//www.sc-square.org/CSA/workshop2.html.

[3] E. Ábrahám, B. Becker, A. Bigatti, B. Buchberger, C. Cimatti, J.H. Davenport, M. England,
P. Fontaine, S. Forrest, D. Kroening, W. Seiler, and T. Sturm. SC2: Satisfiability Checking meets
Symbolic Computation (Project Paper). In Proceedings CICM 2016, volume 9791 of LNCS, pages
28–43. Springer, 2016.

[4] N. H. Arai, T. Matsuzaki, H. Iwane, and H. Anai. Mathematics by machine. In Proceedings ISSAC
2014, pages 1–8. ACM, 2014.

[5] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 26,
pages 825–885. IOS Press, 2009.

[6] M. Berzish, Y. Zheng, and V. Ganesh. Z3str3: A string solver with theory-aware branching.
http://arXiv.org/abs/1704.07935, 2017.

[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[8] R. E. Bixby. Computational progress in linear and mixed integer programming. Presentation at
ICIAM 2015, 2015.

[9] C. W. Brown and J. H. Davenport. The complexity of quantifier elimination and cylindrical
algebraic decomposition. In Proceedings ISSAC 2007, pages 54–60. ACM, 2007.

[10] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri,
and S. Tonetta. The nuXmv symbolic model checker. In Proceedings CAV 2014, LNCS. Springer,
2014.

[11] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani. Invariant Checking of NRA
Transition Systems via Incremental Reduction to LRA with EUF. In Proceedings TACAS 2017,
volume 10205 of LNCS. Springer, 2017. To appear.

[12] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings STOC 1971, pages
151–158. ACM, 1971.

[13] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. SMT-RAT: An open source C++
toolbox for strategic and parallel SMT solving. In Proceedings SAT 2015, volume 9340 of LNCS,
pages 360–368. Springer, 2015.

[14] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. J. Symbolic
Computation, 5:29–35, 1988.

[15] M. Eraşcu and H. Hong. Synthesis of optimal numerical algorithms using real quantifier elimination
(Case study: Square root computation). In Proceedings ISSAC 2014, pages 162–169. ACM, 2014.

[16] D. Jovanović and L. de Moura. Solving non-linear arithmetic. In Proceedings IJCAR 2012, volume
7364 of LNAI, pages 339–354. Springer, 2012.

[17] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View. Springer,
2008.

[18] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki. Exponential Recency Weighted Average
Branching Heuristic for SAT Solvers. In Proceedings of AAAI-16, 2016.

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Proceedings of the 38th Annual Design Automation Conference, DAC ’01,
pages 530–535, New York, NY, USA, 2001. ACM.

4

http://www.sc-square.org/CSA/school/
http://www.sc-square.org/CSA/workshop2.html
http://www.sc-square.org/CSA/workshop2.html
http://arXiv.org/abs/1704.07935

	Introduction
	A Few Challenges and Recent Advances
	Conclusion

