
1

1O p enGA LEN

OWL Pizzas:
Practical Experience of Teaching OWL-DL:

Common Errors & Common Patterns

Alan Rector1, Nick Drummond1, Matthew Horridge1, Jeremy
Rogers1, Holger Knublauch2, Robert Stevens1, Hai Wang1,

Chris Wroe1

1Information Management Group / Bio Health Informatics Forum
Department of Computer Science, University of Manchester

2Stanford Medical Informatics, Stanford University

rector@cs.man.ac.uk
co-ode-admin@cs.man.ac.uk

www.co-ode.org
protege.stanford.org

2O p enGA LEN

Why do so few people use OWL and DLs?
Why so little use of classifiers?

Is part of the answer that…

• OWL/DLs run counter to common intuitions from
– Databases, UML, query languages (including RDQL)
– Logic programming & rule systems, e.g. JESS, PAL
– Frame systems – more difference than at first appears
– Object oriented programming

• Can Tools can help?
– Can we use tutorials and training to gather requirement?

• All examples here have occurred repeatedly in practice in tutorials or in
live ontology construction – often by experts in other formalisms

– Part of the requirements gathering for the Protégé-OWL interface

3O p enGA LEN

OWL Pizzas Tutorial

• Designed to address common errors
– We have seen lots of experienced people make the same simple

mistakes

• Why Pizzas?
– Naturally combinatorial
– No serious ontological issues
– Familiar and fun (at least to western audiences)
– Easy to illustrate most problems

• Extended version
– See 120 pg ‘textbook’ version on

http://www.co-ode.org

4O p enGA LEN

Issues and common errors
• Open world reasoning

– Domain and range constraints as axioms
– Trivial satisfiability of universal restrictions
– Subsumption (“is kind of”) as necessary implication

• Unfamiliar constructs – confusing notation/terminology
– Confusion of universal (allValuesFrom) rather than existential

restrictions (someValuesFrom)
– Need for explicit disjointness axioms

• Errors in understanding common logical constructs
– Confusing ‘and’ and ‘or’
– Defined vs primitive classes & conversion between them
– Use of subclass axioms as rules

• Understanding the effect of classification
– What to do when it all turns red – debugging
– Explaining classification

2

5O p enGA LEN

Open World Reasoning
“Vegetarian Pizzas”

The menu says that:
• “Margherita pizzas have tomato and

mozzarella toppings”

• “Vegetarian pizzas have no meat or fish
toppings”

What’s it mean?

6O p enGA LEN

Three Views from Protégé OWL tools

7O p enGA LEN

Vegetarian Pizza

8O p enGA LEN

Is a Margherita Pizza a Vegetarian Pizza?

• Not according to classifier

• And not according to the full paraphrases formulated
carefully

3

9O p enGA LEN

Open World Reasoning
Vegetarian & Margherita Pizzas

• “A vegetarian pizza is any pizza that, amongst
other things,

does not have any meat topping and
does not have any fish topping”

• “A margherita pizza is a pizza and, amongst
other things,

has some tomato topping and
has some mozarella topping”

10O p enGA LEN

Add “Closure Axiom”
• “A Margherita pizza has tomato and cheese

toppings and only tomato and cheese toppings”
– i.e. “A Margherita pizza has tomato and cheese toppings and only

toppings that are tomato or cheese”
• Tedious to create by hand, so provide automatic generation in tool

11O p enGA LEN

Now Classifies as Intended

• Provided:
Toppings mutually disjoint

12O p enGA LEN

Domain & Range Constraints

• Actually axioms
– Property P range(RangeClass)

means
• owl:Thing

restriction(P allValuesFrom RangeClass)

– Property P domain(DomainClass)
means

• owl:Thing
restriction(inverse(P) allValuesFrom DomainClass)

4

13O p enGA LEN

Non-Obvious Consequences

• Range constraint violations – unsatisfiable or ignored
– If filler and RangeClass are disjoint: unsatisfiable

– Otherwise nothing happens!

• Domain constraint violations – unsatisfiable or coerced
– If subject and DomainClass are disjoint: unsatisfiable

– Otherwise, subject reclassified (coerced) to kind of DomainClass!

• Furthermore cannot be fully checked before classification
– although tools can issue warnings.

14O p enGA LEN

Example of Coercion by Domain violation
• has_topping: domain(Pizza) range(Pizza_topping)

class Ice_cream_cone
has_topping some Ice_cream

• If Ice_cream_cone and Pizza are not disjoint:
– Ice_cream_cone is classified as a kind of Pizza

…but: Ice_cream is not classified as a kind of Pizza_topping

– Have shown that:
all Ice_cream_cones are a kinds of Pizzas,

but only that:
some Ice_cream is a kind of Pizza_topping

» Only domain constraints can cause reclassification
… by now most people are very confused - need lots of examples &

back to basics

15O p enGA LEN

Subsumption means necessary implication

• “B is a kind of A”
means

“All Bs are As”

– “Ice_cream_cone is a kind of Pizza”
means
“All ice_cream_cones are pizzas”

– From “Some Bs are As” we can deduce very little of interest in
DL terms

» “some ice_creams are pizza_toppings”
says nothing about “all ice creams”

16O p enGA LEN

Trivial Satisfiability:
More unintuitive results

• An existential (someValuesFrom) restriction with
an empty filler makes no sense:
– is unsatisfiable if its filler is unsatisfiable

• A Universal (allValuesFrom) restriction with an
unsatisfiable filler is trivially satisfiable
– provided there is no way to infer a existence of a filler

• Leads to errors being missed and then appearing later

5

17O p enGA LEN

Examples of Trivial Satisfaction

• Unsatisfiable filler:
disjoint(Meat_topping Fish_topping)
class(Protein_lovers_pizza complete

has_topping allValuesfrom (Meat_topping and Fish_topping))
• i.e. intersectionOf(Meat_topping, Fish_topping)
• i.e. only something that is both (Meat_topping and fish_topping)

• Range constraint violation:
disjoint(Ice_cream, Pizza_topping)
class(Ice_cream_pizza

has_topping allValuesFrom Ice_cream)

• Both legal unless/until there is an axiom such as:
Pizza has_topping someValuesFrom Pizza_topping

– i.e. “All pizzas have at least one topping”

18O p enGA LEN

Worse, Trivially Satisfied Restrictions
Classify under Anything

• Protein_lovers_pizza is a kind of Vegetarian_Pizza!

• Until we add:
Pizza has_topping some Pizza_topping
– “All pizzas have some topping”

“Only
does not
imply
some!”

19O p enGA LEN

The trouble with confusing “some” with “only”
someValuesFrom with allValuesFrom

• It works for a while
– The student defining

Protein_lovers_pizza thought they
were defining a pizza with meat
toppings and fish toppings

• Errors only show up later when
existentials are added elsewhere

20O p enGA LEN

The trouble with confusing “some” with “only”
someValuesFrom with allValuesFrom

• Even classification seems to work at first
– class(Meat_lovers_pizza complete

has_topping only Meat_topping)

• So people continue complacently
– Until the unexpected happens, e.g.

• It is also classified as a kind of vegetarian pizza
• It is made unsatisfiable by an existential axiom someplace

6

21O p enGA LEN

Defined vs Primitive Classes
• In OWL the difference is a single keyword

– “partial” vs “complete”

• In OilEd it was a single button
– “subclass” vs “same class as” or “partial” vs “complete”

• Also…
Any necessary restrictions on defined classes must
appear in separate subclassOf axioms
– Breaks the object oriented paradigm

• Hides information about the class on a different pane

– Makes migrating a primitive class to a defined class tedious
• Unless all restrictions become part of the definition

– Makes subclass axioms for implication hard to understand

22O p enGA LEN

Protégé-OWL – Everything in one place

• Spicy_Pizza_topping
Necessary & Sufficient:

Pizza_topping &
has_spiciness some Hot

Necessarily also
Not suitable_for any Small_child

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

23O p enGA LEN

Defined classes

• Have necessary and sufficient conditions

Primitive classes

• Have only necessary conditions
– The necessary and sufficient space is empty

24O p enGA LEN

Defined

Primitive

At least one
Necessary & Sufficient
condition

No
Necessary & Sufficient
conditions

7

25O p enGA LEN

Defined classes with necessary
conditions

• In effect this is a rule
– IF Pizza_toping and hasSpiciness some Hot

THEN not suitable_for any small_child
• Easier to understand than separate subclass axioms.

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

26O p enGA LEN

Protégé-OWL – Moving Conditions

• A common operation so:
– Cut & Paste
– Drag and Drop
– One click – convert to/from defined/primitive class

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

27O p enGA LEN

Managing Disjointness

• Basic; Must be explicit; Easy to forget
So make it easy to do
– Disjoint primitive siblings button
– “Create group of classes” Wizard
– Annotate parent – all primitive children disjoint

Add all primitive sibs disjoint button

Remove all primitive sibs disjoint button

28O p enGA LEN

Understanding Classification
• Asserted

– Simple tree
• Defined (orange)

classes have no
children

8

29O p enGA LEN

Understanding classification
• Inferred

– Polyhierarchy
• Defined (orange)

classes have
children

30O p enGA LEN

What to do when “Its all turned red”

• Unsatisfiability propagates – so trace it to its source
– Any class with an unsatisfiable filler in a someValuesFor

condition is unsatisfiable
– Any subclass of an unsatisfiable class is unsatisfiable

• Only a few possible sources
– Violation of disjoint axioms
– Unsatisfiable expressions

• Confusion of “and” and “or”

– Violation of a universal (allValuesFrom) constraint
(including range and domain constraints)

• Unsatisfiable domain or range constraints

• Tools coming RSN

Don’t Panic!

31O p enGA LEN

Web Site version
120 pp “Text book style”

www.co-ode.org

32O p enGA LEN

9

33O p enGA LEN

What’s it Mean?

• Paraphrases help clarify meaning
– someValuesFrom “some”
– allValuesFrom “only”
– complete “A … is any … that…”
– partial “All … are…have…”
– negation “does not have … any…”
– intersection “and” / “and also”
– union “or” / “and/or”
– not…someValuesFrom “not…any”
– not…allValuesfrom “does not …have only…”
– open world “amongst other things”

