OWL Pizzas: **Practical Experience of Teaching OWL-DL:** Common Errors & Common Patterns

Alan Rector¹, Nick Drummond¹, Matthew Horridge¹, Jeremy Rogers¹, Holger Knublauch², Robert Stevens¹, Hai Wang¹, Chris Wroe¹

> ¹Information Management Group / Bio Health Informatics Forum Department of Computer Science, University of Manchester

> > ²Stanford Medical Informatics, Stanford University

rector@cs.man.ac.uk co-ode-admin@cs.man.ac.uk

> www.co-ode.org protege.stanford.org

OWL Pizzas Tutorial

- · Designed to address common errors
 - We have seen lots of experienced people make the same simple mistakes
- · Why Pizzas?
 - Naturally combinatorial
 - No serious ontological issues
 - Familiar and fun (at least to western audiences)
 - Easy to illustrate most problems
- Extended version
 - See 120 pg 'textbook' version on http://www.co-ode.org

Why do so few people use OWL and DLs? Why so little use of classifiers? Is part of the answer that...

- OWL/DLs run counter to common intuitions from
 - Databases, UML, query languages (including RDQL)
 - Logic programming & rule systems, e.g. JESS, PAL
 - Frame systems more difference than at first appears
 - Object oriented programming
- Can Tools can help?
 - Can we use tutorials and training to gather requirement?
 - · All examples here have occurred repeatedly in practice in tutorials or in live ontology construction – often by experts in other formalisms
 - Part of the requirements gathering for the Protégé-OWL interface

Issues and common errors

- Open world reasoning
 - Domain and range constraints as axioms
 - Trivial satisfiability of universal restrictions
 - Subsumption ("is kind of") as necessary implication
- Unfamiliar constructs confusing notation/terminology
 - Confusion of universal (allValuesFrom) rather than existential restrictions (someValuesFrom)
 - Need for explicit disjointness axioms
- · Errors in understanding common logical constructs
 - Confusing 'and' and 'or'
 - Defined vs primitive classes & conversion between them
 - Use of subclass axioms as rules
- Understanding the effect of classification
 - What to do when it all turns red debugging
 - Explaining classification

Open World Reasoning Vegetarian & Margherita Pizzas • "A vegetarian pizza is any pizza that, amongst other things, does not have any meat topping and does not have any fish topping" • "A margherita pizza is a pizza and, amongst

- other things,
 has some tomato topping and
 has some mozarella topping"
- University of Southampton A Entitlement Lip

Non-Obvious Consequences

- Range constraint violations unsatisfiable or ignored
 - If filler and RangeClass are disjoint: unsatisfiable
 - Otherwise nothing happens!
- Domain constraint violations unsatisfiable or coerced
 - If subject and DomainClass are disjoint: unsatisfiable
 - Otherwise, subject reclassified (coerced) to kind of DomainClass!
- Furthermore cannot be fully checked before classification
 - although tools can issue warnings.

Subsumption means necessary implication

- "B is a kind of A" means "All Bs are As"

 - "Ice_cream_cone is a kind of Pizza"
 - "All ice cream cones are pizzas"
 - From "Some Bs are As" we can deduce very little of interest in DL terms
 - » "some ice_creams are pizza_toppings" says nothing about "all ice creams"

Example of Coercion by Domain violation

• has topping: domain(Pizza) range(Pizza topping)

class Ice cream cone has topping some Ice cream

- If Ice_cream_cone and Pizza are not disjoint:
 - Ice_cream_cone is classified as a kind of Pizza ...but: Ice cream is not classified as a kind of Pizza topping
 - Have shown that: all Ice_cream_cones are a kinds of Pizzas but only that: some Ice cream is a kind of Pizza topping
 - » Only domain constraints can cause reclassification ... by now most people are very confused - need lots of examples &

More unintuitive results

• An existential (someValuesFrom) restriction with an empty filler makes no sense:

- is unsatisfiable if its filler is unsatisfiable
- A Universal (allValuesFrom) restriction with an unsatisfiable filler is trivially satisfiable
 - provided there is no way to infer a existence of a filler
 - · Leads to errors being missed and then appearing later

Defined vs Primitive Classes In OWL the difference is a single keyword - "partial" vs "complete" In OilEd it was a single button - "subclass" vs "same class as" or "partial" vs "complete" Also... Any necessary restrictions on defined classes must appear in separate subclassOf axioms - Breaks the object oriented paradigm - Hides information about the class on a different pane - Makes migrating a primitive class to a defined class tedious - Unless all restrictions become part of the definition - Makes subclass axioms for implication hard to understand

What to do when "Its all turned red" Don't Panic!

- Unsatisfiability propagates so trace it to its source
 - Any class with an unsatisfiable filler in a some Values For condition is unsatisfiable
 - Any subclass of an unsatisfiable class is unsatisfiable
- Only a few possible sources
 - Violation of disjoint axioms
 - Unsatisfiable expressions
 - · Confusion of "and" and "or"
 - Violation of a universal (allValuesFrom) constraint (including range and domain constraints)
 - · Unsatisfiable domain or range constraints
- · Tools coming RSN

What's it Mean?

Paraphrases help clarify meaning

"some" - someValuesFrom "only" - allValuesFrom

- complete "A ... is any ... that..." - partial "All ... are...have..." - negation "does not have ... any..." "and" / "and also" - intersection

- union "or" / "and/or" - not...someValuesFrom "not...any"

- not...allValuesfrom "does not ...have only..." "amongst other things" open world

