
1O p enGA LEN

OWL Pizzas:
Practical Experience of Teaching OWL-DL:

Common Errors & Common Patterns

Alan Rector1, Nick Drummond1, Matthew Horridge1, Jeremy
Rogers1, Holger Knublauch2, Robert Stevens1, Hai Wang1,

Chris Wroe1

11Information Management Group / Bio Health Informatics ForumInformation Management Group / Bio Health Informatics Forum
Department of Computer Science, University of ManchesterDepartment of Computer Science, University of Manchester

22Stanford Medical Informatics, Stanford UniversityStanford Medical Informatics, Stanford University

rector@rector@cscs.man.ac..man.ac.uk uk
coco--odeode--admin@admin@cscs.man.ac..man.ac.ukuk

www.cowww.co--ode.orgode.org
protegeprotege..stanfordstanford.org.org

2O p enGA LEN

Why do so few people use OWL and DLs?Why do so few people use OWL and DLs?
Why so little use of classifiers?Why so little use of classifiers?

Is part of the answer that…Is part of the answer that…

• OWL/DLs run counter to common intuitions from
– Databases, UML, query languages (including RDQL)
– Logic programming & rule systems, e.g. JESS, PAL
– Frame systems – more difference than at first appears
– Object oriented programming

• Can Tools can help?
– Can we use tutorials and training to gather requirement?

• All examples here have occurred repeatedly in practice in tutorials or in
live ontology construction – often by experts in other formalisms

– Part of the requirements gathering for the Protégé-OWL interface

3O p enGA LEN

OWL Pizzas TutorialOWL Pizzas Tutorial

• Designed to address common errors
– We have seen lots of experienced people make the same simple

mistakes

• Why Pizzas?
– Naturally combinatorial
– No serious ontological issues
– Familiar and fun (at least to western audiences)
– Easy to illustrate most problems

• Extended version
– See 120 pg ‘textbook’ version on

http://www.co-ode.org

4O p enGA LEN

Issues and common errors Issues and common errors
• Open world reasoning

– Domain and range constraints as axioms
– Trivial satisfiability of universal restrictions
– Subsumption (“is kind of”) as necessary implication

• Unfamiliar constructs – confusing notation/terminology
– Confusion of universal (allValuesFrom) rather than existential

restrictions (someValuesFrom)
– Need for explicit disjointness axioms

• Errors in understanding common logical constructs
– Confusing ‘and’ and ‘or’
– Defined vs primitive classes & conversion between them
– Use of subclass axioms as rules

• Understanding the effect of classification
– What to do when it all turns red – debugging
– Explaining classification

5O p enGA LEN

Open World ReasoningOpen World Reasoning
“Vegetarian Pizzas”“Vegetarian Pizzas”

The menu says that:The menu says that:
• “Margherita pizzas have tomato and

mozzarella toppings”

• “Vegetarian pizzas have no meat or fish
toppings”

What’s it mean?What’s it mean?

6O p enGA LEN

Three Views from Protégé OWL toolsThree Views from Protégé OWL tools

7O p enGA LEN

Vegetarian PizzaVegetarian Pizza

8O p enGA LEN

Is a Margherita Pizza a Vegetarian Pizza?Is a Margherita Pizza a Vegetarian Pizza?

• Not according to classifier

• And not according to the full paraphrases formulated
carefully

9O p enGA LEN

Open World ReasoningOpen World Reasoning
Vegetarian & Margherita PizzasVegetarian & Margherita Pizzas

• “A vegetarian pizza is any pizza that, amongst
other things,

does not have any meat topping and
does not have any fish topping”

• “A margherita pizza is a pizza and, amongst
other things,

has some tomato topping and
has some mozarella topping”

10O p enGA LEN

Add “Closure Axiom”Add “Closure Axiom”
• “A Margherita pizza has tomato and cheese

toppings and only tomato and cheese toppings”
– i.e. “A Margherita pizza has tomato and cheese toppings and only

toppings that are tomato or cheese”
• Tedious to create by hand, so provide automatic generation in tool

11O p enGA LEN

Now Classifies as IntendedNow Classifies as Intended

• Provided:
Toppings mutually disjoint

12O p enGA LEN

Domain & Range ConstraintsDomain & Range Constraints

• Actually axioms
– Property P range(RangeClass)

means
• owl:Thing

restriction(P allValuesFrom RangeClass)

– Property P domain(DomainClass)
means

• owl:Thing
restriction(inverse(P) allValuesFrom DomainClass)

13O p enGA LEN

NonNon--Obvious ConsequencesObvious Consequences

• Range constraint violations – unsatisfiable or ignored
– If filler and RangeClass are disjoint: unsatisfiable

– Otherwise nothing happens!

• Domain constraint violations – unsatisfiable or coerced
– If subject and DomainClass are disjoint: unsatisfiable

– Otherwise, subject reclassified (coerced) to kind of DomainClass!

• Furthermore cannot be fully checked before classification
– although tools can issue warnings.

14O p enGA LEN

Example of Coercion by Domain violationExample of Coercion by Domain violation
• has_topping: domain(Pizza) range(Pizza_topping)

class Ice_cream_cone
has_topping some Ice_cream

• If Ice_cream_cone and Pizza are not disjoint:
– Ice_cream_cone is classified as a kind of Pizza

…but: Ice_cream is not classified as a kind of Pizza_topping

– Have shown that:
all Ice_cream_cones are a kinds of Pizzas,

but only that:
some Ice_cream is a kind of Pizza_topping

» Only domain constraints can cause reclassification
… by now most people are very confused - need lots of examples &

back to basics

15O p enGA LEN

Subsumption means necessary implicationSubsumption means necessary implication

• “B is a kind of A”
means

“All Bs are As”

– “Ice_cream_cone is a kind of Pizza”
means
“All ice_cream_cones are pizzas”

– From “Some Bs are As” we can deduce very little of interest in
DL terms

» “some ice_creams are pizza_toppings”
says nothing about “all ice creams”

16O p enGA LEN

Trivial Satisfiability:Trivial Satisfiability:
More unintuitive resultsMore unintuitive results

• An existential (someValuesFrom) restriction with
an empty filler makes no sense:
– is unsatisfiable if its filler is unsatisfiable

• A Universal (allValuesFrom) restriction with an
unsatisfiable filler is trivially satisfiable
– provided there is no way to infer a existence of a filler

• Leads to errors being missed and then appearing later

17O p enGA LEN

Examples of Trivial SatisfactionExamples of Trivial Satisfaction

• Unsatisfiable filler:
disjoint(Meat_topping Fish_topping)
class(Protein_lovers_pizza complete

has_topping allValuesfrom (Meat_topping and Fish_topping))
• i.e. intersectionOf(Meat_topping, Fish_topping)
• i.e. only something that is both (Meat_topping and fish_topping)

• Range constraint violation:
disjoint(Ice_cream, Pizza_topping)
class(Ice_cream_pizza

has_topping allValuesFrom Ice_cream)

• Both legal unless/until there is an axiom such as:
Pizza has_topping someValuesFrom Pizza_topping
– i.e. “All pizzas have at least one topping”

18O p enGA LEN

Worse, Trivially Satisfied Restrictions Worse, Trivially Satisfied Restrictions
Classify under AnythingClassify under Anything

• Protein_lovers_pizza is a kind of Vegetarian_Pizza!

• Until we add:
Pizza has_topping some Pizza_topping
– “All pizzas have some topping”

“Only “Only
does notdoes not
implyimply
some!”some!”

19O p enGA LEN

The trouble with confusing “some” with “only”The trouble with confusing “some” with “only”
someValuesFromsomeValuesFrom with with allValuesFromallValuesFrom

• It works for a while
– The student defining

Protein_lovers_pizza thought they
were defining a pizza with meat
toppings and fish toppings

• Errors only show up later when
existentials are added elsewhere

20O p enGA LEN

The trouble with confusing “some” with “only”The trouble with confusing “some” with “only”
someValuesFromsomeValuesFrom with with allValuesFromallValuesFrom

• Even classification seems to work at first
– class(Meat_lovers_pizza complete

has_topping only Meat_topping)

• So people continue complacently
– Until the unexpected happens, e.g.

• It is also classified as a kind of vegetarian pizza
• It is made unsatisfiable by an existential axiom someplace

21O p enGA LEN

Defined vs Primitive ClassesDefined vs Primitive Classes
• In OWL the difference is a single keyword

– “partial” vs “complete”

• In OilEd it was a single button
– “subclass” vs “same class as” or “partial” vs “complete”

• Also…
Any necessary restrictions on defined classes must
appear in separate subclassOf axioms
– Breaks the object oriented paradigm

• Hides information about the class on a different pane

– Makes migrating a primitive class to a defined class tedious
• Unless all restrictions become part of the definition

– Makes subclass axioms for implication hard to understand

22O p enGA LEN

ProtégéProtégé--OWL OWL –– Everything in one placeEverything in one place

• Spicy_Pizza_topping
Necessary & Sufficient:

Pizza_topping &
has_spiciness some Hot

Necessarily also
Not suitable_for any Small_child

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

23O p enGA LEN

Defined classesDefined classes

• Have necessary and sufficient conditions

Primitive classesPrimitive classes

• Have only necessary conditions
– The necessary and sufficient space is empty

24O p enGA LEN

DefinedDefined

PrimitivePrimitive

At least one
Necessary & Sufficient
condition

No
Necessary & Sufficient
conditions

25O p enGA LEN

Defined classes with necessary Defined classes with necessary
conditionsconditions

• In effect this is a rule
– IF Pizza_toping and hasSpiciness some Hot

THEN not suitable_for any small_child
• Easier to understand than separate subclass axioms.

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

26O p enGA LEN

ProtégéProtégé--OWL OWL –– Moving Conditions Moving Conditions

• A common operation so:
– Cut & Paste
– Drag and Drop
– One click – convert to/from defined/primitive class

Necessary conditions:

“Description”

Necessary & Sufficient
conditions:

“Definition”

27O p enGA LEN

Managing DisjointnessManaging Disjointness

• Basic; Must be explicit; Easy to forget
So make it easy to do
– Disjoint primitive siblings button
– “Create group of classes” Wizard
– Annotate parent – all primitive children disjoint

Add all primitive sibs disjoint button

Remove all primitive sibs disjoint button

28O p enGA LEN

Understanding ClassificationUnderstanding Classification
• Asserted

– Simple tree
• Defined (orange)

classes have no
children

29O p enGA LEN

Understanding classificationUnderstanding classification
• Inferred

– Polyhierarchy
• Defined (orange)

classes have
children

30O p enGA LEN

What to do when “Its all turned red”What to do when “Its all turned red”

• Unsatisfiability propagates – so trace it to its source
– Any class with an unsatisfiable filler in a someValuesFor

condition is unsatisfiable
– Any subclass of an unsatisfiable class is unsatisfiable

• Only a few possible sources
– Violation of disjoint axioms
– Unsatisfiable expressions

• Confusion of “and” and “or”

– Violation of a universal (allValuesFrom) constraint
(including range and domain constraints)

• Unsatisfiable domain or range constraints

• Tools coming RSN

Don’t Panic!Don’t Panic!

31O p enGA LEN

Web Site versionWeb Site version
120 pp “Text book style”120 pp “Text book style”

www.cowww.co--ode.orgode.org

32O p enGA LEN

33O p enGA LEN

What’s it Mean?What’s it Mean?

• Paraphrases help clarify meaning
– someValuesFrom “some”
– allValuesFrom “only”
– complete “A … is any … that…”
– partial “All … are…have…”
– negation “does not have … any…”
– intersection “and” / “and also”
– union “or” / “and/or”
– not…someValuesFrom “not…any”
– not…allValuesfrom “does not …have only…”
– open world “amongst other things”

