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Abstract— Applications that involve data integration among approaches to record linkage (see for instance the surveys
multiple sources often require a preliminary step of data jn [2], [3]) is the definition of a similarity functiosim (r1, rs)
reconciliation in order to ensure that tuples match correctly that applies to pairs of records andr,, along with decision

across the sources. In dynamic settings such as data mashupsr les that classi h as either a match or a non-
however, traditional offline data reconciliation techniques that 'Y'€S tha classify each pafri, ) :

require prior availability of the data may not be applicable. Match based on the similarity value, e.g. $iftn(ri,r2) > 0
The alternative, performing similarity joins at query time, is then match”, wherd is a pre-defined threshold.

computationally expensive, while ignoring the mismatch problem  performing record linkage on the tables ensures that the
altogether leads to an incomplete integration. In this paper we yaqt5 of subsequent join queries are as complete as possible.

make the assumption that, in some dynamic integration scenarios, This. however assumes that the tables are available prior to
users may agree to trade the completeness of a join result in IS, however, u val P

return for a faster computation. We explore the consequences their deployment as part of an application. Table analysis is
of this assumption by proposing a novel, hybrid join algorithm required for at least two reasons: firstly to tune the decision
that involves a combination of exact and approximate join ryles (i.e., to find a suitable value fa#), and secondly to
operators, managed using adaptive query processing techniques. .o qce the computational complexity. Tuning is required to
The algorithm is optimistic: it can switch between physical . . .
join operators multiple times throughout query processing, but improve the performanc_e. of th? linkage process, i.e., to redulce
it only resorts to approximate join operators when there is the number of false positives (i.e., the number of records pairs
statistical evidence that result completeness is compromised. Our erroneously reported) and false negatives (the number of true
experimental results show that sensible savings in join execution record pairs that the algorithm fails to match). This in general
time can be achieved in practice, at the expense of a modestieqyires the ability to scan the tables. Regarding complexity,
reduction in result completeness. Lo .
note that the need to measure the similarity of each pair of

records in two tables of size involvesn? comparisons; this
complexity can be reduced usibtpckingtechniques, whereby

The rise in prominence of rich Internet applications praecords are first partitioned into coarse-grain clusters, so that
vides new opportunities for on-the-fly integration of datpairwise comparison is only performed separately within each
from sources that are selected as a result of interactive usksster. Again, this requires that the tables be pre-processed
exploration. The problem of record linkage [10] is at therior to linkage.
heart of these data integration scenarios, where different and\dvance access to the tables, however, is increasingly
autonomously maintained tables are joined on the expectatimcoming an unrealistic assumption, for instanceniashup
that the values of some common attributes match, at leasgle integration scenarios, where two or more data sources
approximately. When two customer databases that belongat@ integrated on-the-fly, often by a third party who has no
different organisations are merged, for example, it is reasatentrol over either source, or when the data to be joined is a
able to expect that the common customers can be found dpntinuous stream. Here linkage is indeed required, because it
means of a join. Unless those customers are identified 8ems unreasonable to expect a perfect match among values
exactly the same way in both tables and in all instances, the two sources; but it can only be performed at query
however, the result will in general be incomplete. time, using a similarity, oapproximatejoin algorithm such

The term “record linkage” denotes a class of algorithms thas SSH join [4]. Here the similarity function and the match
attempt to identify pairs of records that are meant to represelgcision rules are embedded into the physical join operator.
the same real-world entity, despite minor differences in tha this case, however, the inevital¥n?) complexity results
values of their attributes. In this paper we refer to these recoiidshigh query response times.
as variants of each other (others, e.g., [5], have called them The research presented in this paper stems from the obser-
fuzzy duplicates). Common to the broad variety of existingation that, in some scenarios, users may be willing to accept

I. INTRODUCTION



a less complete result in return for faster join computationptimization technique to achieve a balance between the cost
Consider for example a mashup-based integration, where adrthe query, and the completeness of the result. The adaptive
organization collects data from various insurance companigsategy seems well-suited to achieve this goal by means of
into a large table of car accidents that have occurred natian-statististical model of the expected join result size at any
wide over a period of time, and that is updated frequentlgoint during the computation; this is critical to being able to
This data is then overlaid onto a map based on the accided#dect unexpected variants in the tables, and therefore to react
location, in order to visualize “accidents hot spots”. Suppo$y switching join operators. Our experimental results show
that the geographical information is obtained by joining thigat the technique is indeed viable, and that sensible savings
table —itself collated from various sources, with a referende join execution time can be achieved at the expense of a
table containing an atlas of all streets in every city, along witinodest reduction in result completeness.

their precise map location. Here performing a similarity join The paper offers the following specific contributions:

seems appropriate, since there is no guarantee that street namgsan adaptive join processing algorithm based on exact
in the accidents table match exaCtIy those in the reference atlas. and approximate Symmetric hash joins_ In particu|ar, we
On the other hand, a fuII-erdged S|m|Iar|ty join would prove have modified theSHJoin algorithm [4] to ensure that
expensive to compute, and furthermore, such computational operators can be switched safely at certain well-defined
cost may not be justified, as the proportion of mismatching points during the computation (Section I1);

accident locations, which is not known a priori, may turn , an instantiation of the generic Monitor-Assess-Respond
out to be modest. In this situation our organization may framework for adaptive query processing that uses the
be willing to trade the completeness of the result, i.e., the symmetric join operators, and its formalization (Sec-
number of accidents laid on the map, in return for a faster tjon I11);

visual presentation (the experimental evaluation presented in g definition of criteria to measure the algorithm's perfor-
Section IV makes use of data from this example). mance, along with experimental results (Section IV).

A. Goals and Contributions A discussion of related work (Section V) concludes the paper.

In this paper we explore such trade-offs. Specifically, we 1l. EXACT AND APPROXIMATE JOIN OPERATORS

propose a hybrid join algorithm that employs a combination we begin with an introduction to our model for adaptive join
of exact and approximate join operators and that is able ggocessing, inspired by the genenigonitor-assess-respond
dynamically switch between the two, depending on a tim&AR) framework for functional decomposition of autonomic
series of estimates of the number of variant records that oc@yktems [21]. As mentioned, we adapt a model previously
in the tables. As we show in Section 111-B, such estimates adﬁsigned to address query Optimization pr0b|em5 [14]' [15],
indeed available whenever a parent-child relationship betwegnaddress issues of record linkage.
the two tables is eXpeCted, but it is not enforced through We model the guery processor as a state machine, where
a constraint, and indeed the presence of variants reduce égh state represents one configuration of the query plan that
number of actual matches. In the example mentioned earligrcurrently being executed. In our case, all the processor can
for instance, we expect each accident record to match afi¢ is to dynamically switch between two join operators, one
record in the reference street atlas when there are no variagigact and one approximate. Therefore, in the simplest model
In this case the presence of variants can be detected bagRdprocessor has only two states, corresponding to each of
on the divergence between the observed and the expected g operators, and each operator switch corresponds to a state
result size, at various points during the computation. transition (in Section 111-D we will generalize the processor
Current results from the adaptive query processing (AQRodel to multiple states).
framework [8] show how, in certain cases, the query processorrhe control loop shown in Fig. 1 defines the overall adaptive
can use these estimates to modify the query plan during exgodel that we are going to use. Theonitor periodically
cution, namely by replacing a physical operator with anothgptains the values for some observable quantities from the
that performs the same function [12], [14], [15], [18], [19]query processor; thassessomperforms an analysis of those
[28], [25]. This idea has proven viable for pipelined queryalues, in order to determine whether a change of operator
plans [11], primarily as a dynamic optimization techniqugs required; when this is the case, thesponderperforms a
to improve the performance of a complex query, in casggate transition, which is enacted by the processor as an actual
where the initial query plan produced by the optimizer provesperator switch.
inefficient. In the rest of this section we describe the specific operators
In this paper we explore the applicability of the AQRjsed by the processors in our implementations, and the switch-
framework to our problem.Our goal is to control the tradgng mechanism. Details on the monitored variables and on the

off between the overall cost of the join vs. the completeneggsessor’s decision logic are presented in the next section.
of the result, i.e., by switching to an (inexpensive) exact join

when no variants are detected, and returning to an (expensife)R€quirements for Join Operators
approximate join when they are. To the best of our knowl- The choice of physical join operators is dictated by two
edge, this is the first attempt to apply a well-known quemnain requirements. Firstly, we need to make sure that the state
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Fig. 1. The Monitor-Assess-Respond adaptive framework

of the join execution can be transferred from one operator itois the most used for streams, and we have implemented a
the next without loss of data, i.e., of partial results, and atpelined version of thesSJoin algorithm proposed in [4],
specific points during the execution. denotedSSHJoin and briefly presented in next section.

As formally shown in [11], a sufficient condition for SHJoin is the pipeline version of the traditional hash join.
a “safe” switch, i.e., one where we can correctly compute uses two hash tables that are built in parallel while reading
the remainder of the join result after the switch withouhe tuples from both inputs. When reading a tuple from one
re-processing the tuples seen so far, is that the operatioysut, it is probed through the use of the hash table of the other
expose a particular state, calleghiescent In iterator-based input to identify matches. Therefore, results can be returned at
evaluation [16], an operator implements three operatioremy point of the join execution, using the partial information
i.e., OPEN(), NEXT() and CLOSE() (see Fig. 2). An actual contained in the tables, without having to wait for the input
execution trace is a path through the diagram. As shown timtal exhaustion.

[11], some of the stated” in the execution trace, i.e., the state )

the join algorithm is in when a call tNExT() has concluded, B- TheSSHJOIN Algorithm

are indeed quiescent states, making iterator-based algorithms &SHJoin is our pipelined, symmetric hash re-
suitable choice for our purposes. The precise characterizatioyplementation of theSSJoin operator [4]. For reasons of
of which V' states are quiescent states is specific to each jsipace, here we only give a short overview; a more detailed

algorithm. description is available [23].
*(0) = Open() called
-0 = Open() in progress t,
* [O] = Open() returned t,
- O = Open() concluded t,
«(N) = Next() called 4
* N = Next() in progress =
*[N] = Next() returned ts
+ N’ = Next() concluded
*(C) = Close() called o
+ C = Close() in progress t,
* [C] = Close() returned exact (tuples read so far) approximate
- C = Close() concluded

Fig. 3. SHJoin and SSHJoin State, per Operand
Fig. 2. State-Transition Diagram of an Iterator

A second requirement derives from the need to support 'oinsFig' 3 shows the hash data structures maintaineGHsjoin
d pport | anod SSHJoin, on the left and right, respectively, for each of

gmong_tables that are actually data S”e"."m.s- As mentloqﬁe two joining tables (only one is shown for simplicity). Each
in the introduction, the streaming scenario is one where . . :
algorithm operates by scanning each of the tables in turn, one

briort .a.naly5|s OT the tables |n.volved.|s not fea§|ble, makin ple at a timé. The main difference between the two is that,
adaptivity a particularly attractive option. For this reason, we

o ! : . while SHJoin computes a hash key of the join attribute values
use pipelined operators in our implementation. read so far, the entrieg on the right-side of Fig. 3 are the
Hash join operators can be made to satisfy these requiré- ' &5 9 9:
mems_' _In pamCUIar’ we have adOptEd a tradltlc_JnaI Symmem&ln line with other adaptive join techniques that use hash join (e.g., [28],
hash join [31] for the exact operator, denofdJoin, because [15]), we assume that join state can be held in main memory.



hashed values of all thg-grams seen bySJoin. The set of We also use the constraiaft’) > & to optimize on computing
g-grams of a string, denoted;(s), is the set of all substrings 7'(¢), as follows. Supposk(t)| = g. SSHJoin considers each
obtained by sliding a window of width (typically, ¢ = 3) over g-gram in reverse frequency order. For the figst & + 1 ¢-

s. In this work we usej-grams to measure string similarity,grams oft, the tuples containing thgtgram (obtained through

namely by computing thdaccard Coefficiert the hash table) are inserted irfftf¢) with a counter set to 1.
If the g-gram already occurs, the counter is incremented. For
sim(sy, s2) = w the remainingg-grams oft, the counters of the tuples where
lg(s1) U q(s2)] they occur, and which belong (¢), are incremented (but no

new tuples are inserted). The frequency afgram is simply
the number of tuples in the hash table which contain it; this
Hmber is saved along with thegram.

In this case, the bucket for agygramg contains references
to each scanned tuple that includges

Since the algorithms are symmetric, they maintain two ha8}
tables, one for each of the two joining tables (left and righ. Cost Implications

inputs). Thus, every tuple from each table is both inserted\we now present an analysis of the computational cost due to

into one of the hash tables, and also used to probe th@aptivity, namely(i) the relative additional cost of executing

other. SHJoin supports the traditional iterator-based, pull-onone or more steps usingSHJoin over that ofSHJoin, and

demand, pipelinedExT() operation. According to [11], in (ii) the overhead cost of switching operators.

this case a quiescent state is one in which the operator has

concluded a call ttNexT() and the last tuple read from either ~ Relative Computational and Space Cos&SHJoin is

the left or the right input has been joined with all the tuplesostlier thanSHJoin both in terms of processing time and

in the hash table for the right or the left input, resp., that inemory requirements. Concerning time, the increase in com-

matches. InfSHJoin, NEXT() is computed as follows: plexity can be estimated by looking at the differences between
a) If there is an outstandingrobe tuple for which not all SHJoin and SSHJoin w.r.t. the cost of operations (1)-(4)

matches have been returned yet, i.e., the state of 1cl‘J%scribed earlier in this section. These costs are summarized
operator is not quiescent, then the next match for th'%TabIe I, where]jA| is the average length in characters of a
probe tuple is returned. join attribute valuej A; ¢ is theg-gram size (thus, the number

b) If there are no outstanding tuples, i.e., we are in & ¢-9rams is|jA| — ¢ + 1); B°* is the average length of

quiescent state, the operator reads a new tuple, insdft§ Pucket forSHJoin; and 57 is the average length of the
it into the appropriate hash table, and uses it to prollgéjcket for SSHJoin (i.e., the number of tuples containing a
against the other hash table. g-gram that is hashed to that bucket).

) _ ) B°? can be estimated aB“® * (|jA| +q — 1), while |T(¢)|
SSHJO|.n follows the same basic beh.awou_r, but the result certainly less thaBe® « (|jA| + ¢ — 1)2. If we consider
of one invocation ofNEXT() when probing with tuplet and  g5ch transition between quiescent stateS&HJoin/SHJoin
joning, say, on attributet, is the get of tuple paw&,t’) such (corresponding to the computation of all the matches for a
that sim(t.A,t'.A) > k. Herek is a pre-defined threshold.ie) then the ratio between the two costs for each such
This involves computing ali-grams fort. 4, and probing the yansition is inO((|j A|+¢—1)2), i.e., quadratic in the number
g-grams hash table (right-hand ;lde of Fig. 3) Wlth each gk g-grams inj A.
them. The tuples’ that are retrieved at least times are Concerning space, let be the number of tuples processed
returned as part of the match. so far from one operand, letbe the average space required
The main differences betwee®SHJoin and SHJoin can  for a tuple, and lep be the space required for a pointer. For
be summarized as follows: both join algorithms, the tuples read so far are maintained only
1) an additional operation, i.e., obtaining tigrams in the once. Thus the space requirednis s. For each operand, the
join attribute of the tuple, is needed before any inserticspace required by th8HJoin hash table is: x p whereas the
can be made in the corresponding hash table; space required b$SHJoin hash table igix (|jA|+¢—1)*p.
2) an insertion of a tuple in a hash table additionally

requires the insertion of a pointer to that tuple for each o _
g-gram appearing in the join attribute of the tuple; Cost of Switching OperatorsThe main overhead cost

3) when probing a hash table opgrams with ¢, the incurred during a switch is due to the need to update the
operator builds a sef(t) of references to tupleg that hash tables. The tuples processed so far for both operands are
share at least one-gram with ¢, and it associates akept in main memory, together with the hash tables needed
counterc(#') of the commong-grams with each’ € by the algorithms. The hash table that is used by the current

T(t); algorithm is up-to-date, whereas the other lags behind, as it
4) the result consists of pairg, ') wheret' € T(t) and only contains the tuples processed until the previous switch
c(t') > k. point. Thepessimisti@pproach of maintaining up-to-date both

hash tables has not been considered because it imposes an
20ther similarity functions based apgrams can be exploited, see [5] foroverh_ead OI’! the_ exact Case' which we assume to be the cost-
example. effective optlon In most circumstances.



| | Operation | SHJoin [ SSHJoin |

(i) | obtaing-grams - [7A]
(i) | update hash table 1 A +¢—1
(i) | compute T(t) and associated counters (A +¢q—1) = B
(iv) | find matches Be® |T(t)]
TABLE |

CosT OFSSHJOIN AND SHJOIN OPERATIONS

Therefore, at each switch point, we need to update the indication that variants no longer occur, prompting the
appropriate hash table by inserting the tuples that weatgorithm to return to an exact join operator.
processed since the last switch. This means that when wé&he key point to note is the statistical significance of the
switch from exact to approximate, the hash tabley@rams is observed deviation from the expected course of events. This
updated with the tuples that were being processed by the exaetans that, depending on the relative frequency of the actual
algorithm, and similarly, when we switch from approximate tgariants in the table, the deviation may grow at different
exact, the hash table on attribute values is updated with ttates. In particular, when variants are rare and sparse, the
tuples that were being processed by the approximate algorittgontrol loop will “lag behind” and will respond slowly. This
Thus, the switch cost only depends on the number of tuplissan expected behaviour and is part of any adaptive strategy,
seensince the last switchrather than on all tuples scannedvhich is necessarily based on estimates, in line with the

since the start of the join computation. general adaptivity framework. Furthermore, as noted in the
literature [8], the success of the strategy relies on the accurate
[Il. ADAPTIVE JOIN PROCESSING FORVARIANTS tuning of the thresholds and parameters involved. Dynamically

We now discuss how the two operators just presented éi,r%ding the best setting for these thresholds and parameters

used to implement the actual adaptive behaviour defined by {fi¢® hard optimization problem which we (in line with other
Whreshold-based AQP proposals (e.g., [28], [18], [15]) do not

general MAR control loop of Fig. 1. We present an overvie ) ) !

of the algorithm and its formal details. address directly but only consider by means of an empirical
exploration of the space of available settings (in Sec. IV).

A. Algorithm Overview We now describe in detail the process.Specifically, we
describe the variables observed by thenitor, the logic of the

The overall algorithm consists of periodic activations of tthsessqrand the state machine controlled by tesponder

control loop, every,qq.p+ steps of the symmetric join. At any
one time, one of the two operators is active. One step consigtsEstimation of Result Completeness

of the sequence of elementary operations that move the activ%\s mentioned in the introduction, the monitor component of

operator from one quiescent state to the next, as descrit%ﬁ(ej adaptive strategy is based on the assumption that a parent-
above. One activation begins with thmeonitor reading the P gy P P

current size of the join result. Thassessorcomputes the child relationship is expected between the two input tables,

estimated result size at that point in the join, and determinggcommon case exemplified by the car accidents scenario

whether the divergence between observed and expected s ented earlier. Under this assumption, the expected result

il
sizes is statistically significant. With this information, th

Size at the end of the join is, of course, the size of the child
responderdetermines the next state for the query process r%tilﬁé "2‘@?@?2&25IeFLr]rtﬁe?mgjrgag‘% mg;zhtehsate i(r?grﬂeyaorgeno
since the current operator is by definition in a quiescent Sta\&/e’riantrs) anvwhere .and that at so,me F:);Ft)e of a symmetric hash
the state transition may involve an operator switch at this poinﬁ yw ' P y .

in n < |R| tuples have been scanned. The probability that

Initially Fhe system assumes, opt|m|st|gqlly, that ther_e W"efn given tuple inS has already found its match iR is the
be no variants and therefore the exact join operator is use " ) .
: L . N same as the probability that the corresponding tupl& inas
in the initial state. As variants occur in either of the twag ; "
: ) ) . already appeared among the tofuples, i.e.p(n) = . By
tables, their effect manifests itself as a reduction in the 4 . R .
extension, therefore, the observed result size after scanning

observed number of matching tuples. As soon as the I%gttgples, denotedD,, can be modelled as a sequence of

between observed and expected result size represents sufficien - : . .
. . i . n_independent Bernoulli trials, i.e., as a binomial random
statistical evidence to trigger a reaction by the responder, the

approximate join is activated. In turn, this has the effect gfanable with parameters andp(n):_ On ~ bm@»f’(")?- o
; ._Therefore, the problem of detecting a statistically significant
reducing the lag, because we are now guaranteed that vana(%s

will be detected. The monitor now observes a sliding window iscrepancy between the expected and observed result size

of similarity values between each tuple pair bein matche%fter " tuples,ireduces to the problem of deciding whether
Y pi€ p 9 an observatior®,, is an outlier with respect to its distribution.

A long sequence of consistently high similarities is taken Butliers are defined using a threshdlg,,, namely0,, is an
JAAl n

3As we point out later, past variants can be matched in addition to variarggt“er if _
that occur further down the table. P pn)(On £ 0) < Oput 1)



the left hash table. Now if; has its flag set to true, this means
that somet; in the right input exists that previously matched
to exactly. Therefores, a variant oft,, is also a variant of;

and unlesg; andt, are faulty in identical ways, we can also
conclude that it ists, rather thant, that prevents the exact
match between the two. Thus we have been able to conclude
that the right input is a source of variants. Of coursetsif

has not been seen before, and in particular it has not been
matched exactly with any tuple from the right input, then we
would not be able to glean any evidence from its approximate
match with¢s. This is not a problem, however, since in the
absence of specific evidence, the algorithm simply assumes
the default case, i.e., that variants occur in both tables.

D. State Machine for Adaptive Control

The complete state machine managed by the responder com-
ponent, that describes the adaptive behaviour of our algorithm,
takes account of the hybrid configurations just discussed, and
thus it consists of four states, shown in Fig. 4.
where P, .,y (.) is the cumulative distribution function for a  Each state represents one of the four possible combinations:
binomial with parameters, p(n). (a) in statdex/rex (short for “left exact, right exact”) the exact

With reference to the MAR framework, the monitor proJoin is used for both the left and the right inputs; (b)ap/rap
vides valuesD,, every .4, Steps, while the assessor com('left approximate, right approximate”) the approximate join
putesP, ,») (0, < O). Note thatP, ,,,)(.) changes at every IS used. for bqth the left and the right inputs; (c)lamp/rex the' .
step, i.e.,P effectively represents a whole family of functions@PProximate join is used for the left input, and the exact join
and its value at step cannot be used to compute the valuéor the right; and (d) vice versa fdex/rap. As mentioned,
at stepn + 1. In our experiments we have manually tunede algorithm optimistically begins in tHex/rex state.
parameter, ., to achieve a balance between the overhead The complete set of transitions is defined by predicates
incurred in computing the cumulative distribution functiony:(t), @ = 0...3, wheret indicates the step of the operator

Fig. 4. State machine for adaptive join control

and the granularity of the assessment. at which the responder is activated (recall that this is one of
the quiescent states). Informally, the transitions characterise
C. Identifying the Source of Perturbation the following circumstances:

there is no evidence that tuples from either of the
inputs include a statistically significant number of
variants. Note that this accounts for two scenarios.
Firstly, no variants have ever been detected (this is
the transition fronmex/rex onto itself); and secondly,
the algorithm has at some point reacted to variants,
by moving into one of the other states, but recent
tuples match with very high similarity, an indication
that we can revert to an exact join (transitions back
to lex/rex from other states);
(t): there is evidence that tuples include a statistically
significant number of variants, and it is not possible
to determine which of the inputs is responsible for
the loss of matches;

there is evidence that tuples include a statistically
significant number of variants, and furthermore we
can determine that they are located in the left input;

In order to detect the origin of variants, we add a flag to w3(t): symmetrically, the variant tuples are located in the

each scanned tuple in each of the inputs, to denote that the right input.

tuple has been successfully matched (at least once). Thatbs,Definition of State Transitions

initially the flag is set to false; we set the flag to true if, when Let us now formalize these transitions in terms of monitored
probed for an exact match, the tuple matches. Now, assumeagiables, threshold values, and predicates that the responder
tuple t3 is read off the right input that, through the use of anan evaluate.

approximate join, is found to match with a tupie stored in

So far we have assumed, implicitly, that the query processor wo(t):
employs either of the two join operators on both inputs. In a
symmetric hash join, however, we may also choose to use an
exact join when scanning from the left input, while using an
approximate join when scanning from the right input (and vice
versa). In this hybrid configuration, each tuple read from the
left is used to probe &HJoin hash table on the right, while a
tuple read from the right is used to probe ®®&HJoin defined
on the left input, as explained in Sec. II-B.

This is a useful property. Suppose that, in addition to
statistically detecting the presence of variants in the table, !
we are also able to determime which of the two inputshe
variants appear, for example in the left but not in the right.
We could then adopt a hybrid configuration where tuples read
from the left are matched approximately, while those from p2(t):
the right are matched exactly. Intuitively, this leads to a more
accurate use of the two operators.



[ Symbol | Interpretation | [ Symbol T Interpretation |
a(n) = Py pn)(On < 0) < Oout significant probability W size of sliding window
of discrepancy Osim string similarity threshold
Asw . . dadapt number or steps between successive activation of adaptive
wi(t) = =7~ < Ocurpert unlikely ¢ is currently control
P perturbed Oout outlier detection threshold
mi(t) = o<t L(pi(t")) < Opastpert | unlikely i was ever Ocurpert acceptable current perturbation threshold
perturbed Opastpert | acceptable past perturbation threshold
TABLE I TABLE IlI
PREDICATES COMPUTED BY THE ASSESSOR THRESHOLDS

Monitored Variables: Transitions ¢4 (t), @2(t), and
©3(t), i.e., from an exact to an approximate operator (left, @o(t) = 0 (t) A puert(t) A fhright (t)
right, or both) rely upon the observed result size at step;,
as mentioned in Sec. IlI-B. In addition, transitiopg(¢) from
any state other thalex/rex require the ability to recognize
that exact operators may be adequate after a portion of Fﬁ

join has been executed using the approximate operator. l_gglng exact joins for both left and right tuples (stéw/rex)

this purpose we use a sliding window of siZ¥, applied i<hoth effective (no matches will be lost) and efficient.

independently to each input table, and count the number of
approximate matches observed within the intefval W, ¢].

Intuitively, po(t) is true when there is no statistical evidence
of variants, nor of the left or the right inputs being currently in
gerturbation region. In this case, given the available evidence,

P1(t) = o (t) A st (t) A ~pirighe (¢)

We denote this number by . The o component accounts for evidence of mismatches, and
Note that the monitor also reports on the number of stejss specifically responsible for the transition out lek/rex.
t executed so far by the join. The other two components indicate that there is no specific

evidence to show that the perturbation originates from either
Assessor Predicates and Thresholdshe assessor usessource. In this case, therefore, transitionindaja/rap is more
the monitored variables to compute three types of predicateffective (it guarantees not to miss any variant pairs), at the
The first, already introduced in Sec. llI-B (Eq. 1), indicatesost of lower efficiency.
whether or not a statistically significant number of variants are
present in any of the tables: 02(t) = o(t) A ptiefe(t) A hright () A Tiere (t)

o(t) = Py (0 < O) < bouy indicates that there is evidence of (1) variants that are affecting
result completenessr), (2) the left (but not the right) input
being currently in a perturbation region, and (3) the left input
ke1aving been significantly free of past perturbations. In this
sr?uation, using an approximate join to match new left tuples
is appropriate (on effectiveness grounds), but we may continue
using the exact join to match new tuples from the right input.
Thus, this calls for a transition tap/rex.

whered,,; is the threshold used to define outliers.

The second type of predicate;(t) with ¢ € {left, right} is
true iff the relative frequency of observed approximate match
within the most recent window of siz@/ is less than a pre-
defined threshold.,,per+:

A w
i (t) = W < ecurpert

Finally, the third type of predicate looks at the entire history ©3(t) = o(t) A puiere(t) A —ptright (t) A Tright ()
of evaluations ofu;(¢) for anyt’ < t, in order to determine

how often in the past a hiah densitv of approximate match sIn this last case, symmetric with respect to the previous,
P } 9 y P five right (but not the left) input is currently in a perturbation
have been observed:

region, but the right input has been significantly free of past
mi(t) = Z I(1i(t) < Opastpert perturbations. Thus, this calls for a transition to staiérap.
vt IV. EXPERIMENTAL EVALUATION
whereI(true) = 1, I(false) = 0.

In addition. th tivates th d v if Our adaptive approach is designed to strike a balance
__'nadcition, Ih€ assessor activales the responder onty | tQt?tween gain, i.e., the increased size of the join result relative
interval between the current step of the executicand the to the size that would be obtained using a purely exact
previous is at leasb,qq,:. Tables Il and Ill summarize the

. . . . join algorithm, and cost, i.e., the increased computational
predicates and corresponding thresholds just described. cost that results from the intermittent use of an approximate

If?esptnlnde{hPr(:d|caFt¢£a§ef on t?eﬁe pr4ed|cates, we CafE)in. Therefore, the performance metrics presented here are
now formalize the transitiong; (t), as follows: based on the principle of relative gain with respect to a

“Note that all necessary state transitions can be defined using only a sua%%e“ne' Specifically, regardmg result completeness We use
of all possible conjunctions of those predicates. the number of matched pairs returned by the all-exact join as
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Fig. 5. Perturbation Patterns

a baseline, and count tlalditional number of tuple matched of the perturbation exhibited by any given region, i.e. the
by the hybrid algorithm. Likewise, for computational cost we@roportion of variants among all tuples in the perturbation
measure the savings in join computation time achieved by tregion, (i) the length of the perturbation region, andii)
hybrid algorithm, relative to the execution time in the allthe interval between two perturbation regions. The results
approximate case, used as the baseline. presented here aim to characterize the contexts in which our
In this section we report on the experimental evaluaticapproach is applicable, i.e., we aim to discover the perturbation
of our proposed technique, expressed using such cost.gaétterns that our adaptive techniques contend with well, and
ratio, and measured on test datasets with known perturbatibe threshold and parameter settings that are required for that

patterns. performance to be achieved.
_ Towards this goal, we started by generating a pair of parent-
A. Generation of Test Datasets child input tables for each of the four configurations in Fig. 5.

In order to verify the applicability of the developed alAlSO, we allow variants to appear in both inputs (independently
gorithm in a variety of real situations, we have developdfio™ one another), to account for all possible states in Fig. 4.
a test data generator that can produce a varietpatferns Throughout the experiments we have set the proportion of
of data perturbation We remark that considering a range o¥arants within an input at a fixed 10%. While our strategy
different possible situations is particular relevant because up¥guld clearly benefit from higher error rates, this rate is
now there is no real benchmark that can be exploited for tmgner_ally gccept_ed as representative of real-world datasets that
purpose (with annotation on the occurrences of variants). TH@ntain misspellings.
generator can produce a uniform distribution of variants acrossFig. 5.(a) represents a rather uniform distribution of variants
the length of an input, for example, as well as the presenidwoughout the input, with no distinguishable high-intensity
of perturbation regions (i.e., relatively long regions of varianperturbation regions. In this case, we expect a slow accumula-
rich tuples within the input), interleaved with perturbationtion of evidence of statistically-significant discrepancies in the
free regions. The latter pattern is designed to simulate varioeigserved result size, and, as a result, a slow reaction to the
real-life configurations, where batches of data from differesparse variants. Fig. 5.(b) captures the situation where low-
sources are collated possibly at different times. Perturbatitiensity perturbation regions (light gray) are interleaved with
regions of varying density are created when these sources réfgetches of unperturbed regions. Fig. 5.(c) has a small num-
to the same real-world entities using variants. Examples lo¢r of well-distinguished, high-intensity perturbation regions.
these patterns are shown in Fig. 5. Finally, Fig. 5.(d) exhibits many high-intensity perturbation re-

From a performance perspective, intuitively we expect bettgions (having fixed the total variant rate across the entire input,
results from datasets in which variants amet uniformly @ higher number of variant regions translates to perturbation
distributed, because a burst of variants in one of the two inpuiggions with shorter duration).
rapidly widens the gap between the observed and the expecteBurthermore, we distinguish the case where variants are
result size, allowing for quick detection of any anomaly andnly present in the child table, from the case where they
hence a timely switch of operators. appear in both tables. Faced with a large number of pattern

In our evaluation we have investigated how different pecombinations (each table may be perturbed according to one of
turbation patterns affect our adaptive strategy. Each patterrthie four patterns), we have chosen to focus on the cases where
described as a sequence of regions in each of the two jointhg same pattern applies to both tables. Our results (below)
inputs. Using our generator, we can cont(dl the intensity indicate only marginal differences in behaviour across the



patterns, suggesting that we would not have gained additio@l Measuring Gain and Cost

performance insights by further mixing the patterns. In the 15 assess the relative gaifl.;, for each test case, we

following, therefore, we consider eight distinct test caseggnsider the ga® — r between the result siz& obtained

namely two (variants in the child, variants in both tables) focgy executing the approximate join throughout, and the result

each pattern. sizer obtained by executing the exact join throughout. Since
Following our introductory example, we have used a paregiyr adaptive strategy produces an intermediate result size,

table containing locations within a country (i.e., all 8082 < ;. , = < R, we express the gain ake fraction of the
municipalities in Italy), and a child table containing recordgap that has been recovered

of car accidents that occurred in those locatfonghese

are joined on a single string representing location values, Grel = M

e.g., TAA BZ SANTA CRISTINA VALGARDENA vari- R—r

ant value is obtained by introducing a small, one-charact€he cost assessment is determined empirically, in agreement

variation in the string, e.g.TAA BZ SANTA CRISTINx with the analysis in Sec. II-C. In particular, the total cost

VALGARDENAresulting in an invalid location. Such editbreaks down into if the cost of performing each step of

distance of 1 is enough to guarantee failure of an exabie symmetric join, when the algorithm is in any one of

match, but at the same time makes it easy to tune ttle four possible states, plu§)(the overhead cost due to

similarity thresholdé,;,, in order to control the generationall the state transitions. Recall that one step of the algorithm

of false positives, i.e., of spurious matches, when using thecludes all the operations executed between two consecutive

approximate join. Recall that our goal is not to study thquiescent states. We express this total cost as a vector of eight

performance of similarity functions, but rather to measure tldements, thestate costssc;, plus thetransition coststc;,

effectiveness of our adaptive approach under the assumptian {lex/rex, lap/rex, lex/rap, lap/rap}. In turn, the execution

that the performance of the similarity function on the test datmst sc; in statei is the productsc; = t; - w; of the number

is known in advance. of stepst; spent in state, multiplied by the unit costy; of

a step in that particular state. The weightsare determined

experimentally, by collecting the actual elapsed times for each

step in each possible state. These times are averaged over all
The effectiveness of the approach is affected both by tegperiments; furthermore, since we use teg/rex baseline

setting of the MAR parameters described in Sec. llI-D, and lmase as the best cost, the weights are normalised by the

the way in which perturbation regions appear in the inputs. Tlegperimental unit costyerex- These weights are as follows:

suite of parameters that are used by the assessor makes fbidyiex, Wiapirex, Wiexsrap, Wiapirap] = [1,22.14, 51.8,70.2] This

potentially large space of configurations. The results presentadans, for instance, that one step in stafgrap costs about

below refer to the best possible configuration for each of th® times as much as one step in sthe/rex. Having set

eight test cases described above, obtained by experiment#ily weights, the actual costs; for a particular test case are

tuning the setting of these parameters. determined simply by counting; for each state during the
Somewhat surprisingly, we have found that the best setting¢ecution of that test case.

for each parameter oscillate within a small range regardless offhe transition costs are computed in a similar fashion, as

the test case. In particula#,;,,, was set in such a way thatthe productic; = tr; - v; of the numbertr; of transitions into

when the join runs exclusively in thap/rap state, the result statei throughout the join execution, times the weights

size is as close as possible to the expected size, i.e., thawbich are determined by observing the actual transition times

the child table. A value 00.85 turned out to be appropriateacross all test cases. Once again these times are normalised

for all test cases. by considering the unit step cogfeyrex @s the baseline. The
Similarly, daq4,¢, the frequency of assessment, is set empifveights v; are as follows:[vierex; Viapirex: Viexiraps Viapirap] =

cally by observing the relative gain for different frequencies. Al22.48,37.96,84.99,173.42]. Thus, e.g., transitioning into

value 0fd,4q,: Was deemed adequate. Also, we Bét= 100. statelap/rap has a cost that is equivalent to executing about

We also found that the algorithm is not very sensitive to the/3 steps in the baseline staéa/rex.

setting off,;, the threshold used in the predicate to trigger ~ The total absolute cost of execution is therefore

a transition fromlex/rex. We setf,,;, = 0.05 throughout. . . 4

However, variations imfcy,pert and Opgstpert, the thresholds Cabs = XZ: s€i + 27: fe

used for predicates and, respectively, result in appreciable

variations in the gain/cost ratio. The best settings were fourimilar to what we have done for the gain, we express this cost
to be f s =2and?2 < O,usere < 5, depending on the N relative terms, by considering the difference between the
curpert — = VUpastpert =~ Y

best possible cost, achieved by using the exact join through-
out, and the worst cost, incurredwhen the approximate join

_ is used throughout
5These tables were generated by the same generator used in [25] and
subsequently in several AQP papers. We thank Volker Markl for kindly Cabs

- . Crel =
allowing us access to it. C—c

B. Tuning of Parameters

pattern.
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Note that, in theory, it is possible to hawg,, > C, i.e., when transition)® Notably, the indicated gains are obtained while
the costsic; prevail, making for a strategy that is less efficienstill spending nearly 30% of the time performing an exact join.
than using the approximate join throughout. In our test cas&ince this fraction, as expected, has a negligible cost compared

however, this is never the case, as described next. to the approximate steps, this translates into a substantial
reduction in actual costs. This is shown in Fig. 8, where the
D. Experimental Results and Discussion relative weights above are applied to the raw execution steps

. . ) reported in Fig. 7. Similarly we note that the transition cost
Fig. 6 shows the overall gain/cost results across the eight t§8t.« ot contribute significantly to the overall cost.

cases. Thg s€ are the best result; across a range gf parame}%te' finally, that the type of perturbation pattern plays no
configurations, as discussed earlier. The efficiency index

particularly important role in the overall cost, similar to what
o Jrel we observed earlier regarding the overall gain.
Crel We draw two positive conclusions from the analysis above.
, Firstly, the behaviour of the algorithm does not seem to be
IS reported undpr each column. A,S We can see, bOth_ relat Snificantly affected by the variations in perturbation patterns
gains and relative costs are contained within a small interv resented by our test cases. Although we have not explored
regarglless of _th_e Spedﬁ.c pattef” used for the _teSt case, \ﬁﬂi broader space of possible pattern combinations, it would
the h|gh9r efﬁmency being achieved when variants are o difficult to conclude at this point that the technique works
present n the child table. ) distinctly better, or worse, for some patterns rather than for
To achieve these results, the algorithm makes use of all foyjf,o ¢ Secondly, the gains accrued using our strategy never

available states to various degrees. Fig. 7 shows a breakdqulr 4 cost that is higher than the cost of a purely approximate
of the proportion of the time (expressed as the number of steps)

spent_ln e_a(_:h state, as well as of the number of state trans_'t_lor'ﬁ;n the figure, AA denotes thiap/rap state, EE idex/rex, AE is lap/rex,
(for simplicity, we do not break the latter down by specifiand EA islex/rap.
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join. In other words, the algorithm may choose to transitiorecent proposals for data integration in mashups (e.qg., [29]). In
to the best state at each assessment step without payingoaly addressing a specific subproblem, however, we do provide
overwhelming price to do so. This suggests the importaatconcrete novel approach to address the key requirement
property that the algorithm may be tuned, possibly under ug@ighlighted in [29]) of performing data integration steps
control, for a target gain in terms of result completeness, whitiynamically with sufficient accuracy.

keeping the marginal cost over the exact join baseline withinWe rely on the approximate join technique proposed in [4]
a predictable limit. Additional work will be needed to exploréut have advanced on that proposal by adapting it to pipelined
this space of available trade-offs. evaluation. This implies that we use (in the classifications pro-
posed in [26]) a domain-independent, token-based similarity
function (as opposed to edit-based, as in [17]). For a survey
The problem of reconciling database records that represgfiapproximate join techniques, see [22].

variants of the same real-world entity, or “record linkage”, previous AQP work has focussed on QoS [12], [14], [15],
has a Iopg history, rooted in the practic_al problem of Temoy1g], [19], [28], [25] . We build on [11], where the notion
ing duplicates from large databases prior to conducting dgfoperator replacement in pipelined plans is considered. The
analysis, or to perform integration across data sources. Thisn of asymmetric combinations of joins algorithms (which
problem has been studied in detail (see, e.g., [10]) and Rgs pyild upon) has been discussed in [20] but not, as we do,

spurred the development of a number of research toolkitSih a view to achieving an effectiveness:efficiency balance.
These include Potter's wheel [27], Ajax [13], Tailor [9], and

BigMatch [32] (see also [2] for a survey of research-oriented
tools). Commercial tools are also available, typically from
providers of data warehousing and data integration solutiondn this paper we have addressed the trade-off between results
(e.g. Dataflux from SAS, and Vality). These toolkits usuallgompleteness and computational cost, that becomes available
involve data preparation steps, in support of which they prethen record linkage is performed using a combination of exact
vide a variety of utilities, for instance for record normalisatiorand approximate join operators. Such trade-off is interesting in
The need for data preparation, as well as for tuning of tlevariety of increasingly common on-the-fly data integration
linkage algorithms, is undeniable. In comparison, our approasbenarios, e.g. data mashups, where users may be interested
is at the same time limited, insofar as it focuses exclusiveily a fast, but incomplete join result and static integration is
on the matching phase and assumes the existence of suitaisfean option.

similarity functions, and innovative, in that it explores a new Our hybrid join algorithm builds upon an established frame-
direction in data quality research, by recognizing the emergimgrk for adaptive query processing (AQP), whereby the query
need to perform on-the-fly, mashup-style integration over dgteocessor can switch join operators at some well-defined
sources that are only made available at the time they greints during the computation, without loss of data. The
needed. In this respect, we have shown how elements of daligorithm involves symmetric hash join operators for exact
quality control can be woven into the fabric of the querand similarity-based tuples matching. In particular, we imple-
processor by exploiting techniques from the AQP area. Whented a variation of a known approximate join algorithm,
are not aware of previous attempts to control data qualiBHJoin, to make it suitable for pipelined processing and thus
adaptively. Note also that our work is much less ambitious thaompatible with the AQP framework.

V. RELATED WORK

VI. CONCLUSIONS
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