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Abstract— Applications that involve data integration among
multiple sources often require a preliminary step of data
reconciliation in order to ensure that tuples match correctly
across the sources. In dynamic settings such as data mashups,
however, traditional offline data reconciliation techniques that
require prior availability of the data may not be applicable.
The alternative, performing similarity joins at query time, is
computationally expensive, while ignoring the mismatch problem
altogether leads to an incomplete integration. In this paper we
make the assumption that, in some dynamic integration scenarios,
users may agree to trade the completeness of a join result in
return for a faster computation. We explore the consequences
of this assumption by proposing a novel, hybrid join algorithm
that involves a combination of exact and approximate join
operators, managed using adaptive query processing techniques.
The algorithm is optimistic: it can switch between physical
join operators multiple times throughout query processing, but
it only resorts to approximate join operators when there is
statistical evidence that result completeness is compromised. Our
experimental results show that sensible savings in join execution
time can be achieved in practice, at the expense of a modest
reduction in result completeness.

I. I NTRODUCTION

The rise in prominence of rich Internet applications pro-
vides new opportunities for on-the-fly integration of data
from sources that are selected as a result of interactive user
exploration. The problem of record linkage [10] is at the
heart of these data integration scenarios, where different and
autonomously maintained tables are joined on the expectation
that the values of some common attributes match, at least
approximately. When two customer databases that belong to
different organisations are merged, for example, it is reason-
able to expect that the common customers can be found by
means of a join. Unless those customers are identified in
exactly the same way in both tables and in all instances,
however, the result will in general be incomplete.

The term “record linkage” denotes a class of algorithms that
attempt to identify pairs of records that are meant to represent
the same real-world entity, despite minor differences in the
values of their attributes. In this paper we refer to these records
as variants of each other (others, e.g., [5], have called them
fuzzy duplicates). Common to the broad variety of existing

approaches to record linkage (see for instance the surveys
in [2], [3]) is the definition of a similarity functionsim(r1, r2)
that applies to pairs of recordsr1 andr2, along with decision
rules that classify each pair〈r1, r2〉 as either a match or a non-
match based on the similarity value, e.g. “ifsim(r1, r2) > θ
then match”, whereθ is a pre-defined threshold.

Performing record linkage on the tables ensures that the
results of subsequent join queries are as complete as possible.
This, however, assumes that the tables are available prior to
their deployment as part of an application. Table analysis is
required for at least two reasons: firstly to tune the decision
rules (i.e., to find a suitable value forθ), and secondly to
reduce the computational complexity. Tuning is required to
improve the performance of the linkage process, i.e., to reduce
the number of false positives (i.e., the number of records pairs
erroneously reported) and false negatives (the number of true
record pairs that the algorithm fails to match). This in general
requires the ability to scan the tables. Regarding complexity,
note that the need to measure the similarity of each pair of
records in two tables of sizen involvesn2 comparisons; this
complexity can be reduced usingblockingtechniques, whereby
records are first partitioned into coarse-grain clusters, so that
pairwise comparison is only performed separately within each
cluster. Again, this requires that the tables be pre-processed
prior to linkage.

Advance access to the tables, however, is increasingly
becoming an unrealistic assumption, for instance inmashup-
style integration scenarios, where two or more data sources
are integrated on-the-fly, often by a third party who has no
control over either source, or when the data to be joined is a
continuous stream. Here linkage is indeed required, because it
seems unreasonable to expect a perfect match among values
in the two sources; but it can only be performed at query
time, using a similarity, orapproximatejoin algorithm such
as SSH join [4]. Here the similarity function and the match
decision rules are embedded into the physical join operator.
In this case, however, the inevitableO(n2) complexity results
in high query response times.

The research presented in this paper stems from the obser-
vation that, in some scenarios, users may be willing to accept



a less complete result in return for faster join computation.
Consider for example a mashup-based integration, where an
organization collects data from various insurance companies
into a large table of car accidents that have occurred nation-
wide over a period of time, and that is updated frequently.
This data is then overlaid onto a map based on the accidents
location, in order to visualize “accidents hot spots“. Suppose
that the geographical information is obtained by joining this
table –itself collated from various sources, with a reference
table containing an atlas of all streets in every city, along with
their precise map location. Here performing a similarity join
seems appropriate, since there is no guarantee that street names
in the accidents table match exactly those in the reference atlas.
On the other hand, a full-fledged similarity join would prove
expensive to compute, and furthermore, such computational
cost may not be justified, as the proportion of mismatching
accident locations, which is not known a priori, may turn
out to be modest. In this situation our organization may
be willing to trade the completeness of the result, i.e., the
number of accidents laid on the map, in return for a faster
visual presentation (the experimental evaluation presented in
Section IV makes use of data from this example).

A. Goals and Contributions

In this paper we explore such trade-offs. Specifically, we
propose a hybrid join algorithm that employs a combination
of exact and approximate join operators and that is able to
dynamically switch between the two, depending on a time
series of estimates of the number of variant records that occur
in the tables. As we show in Section III-B, such estimates are
indeed available whenever a parent-child relationship between
the two tables is expected, but it is not enforced through
a constraint, and indeed the presence of variants reduce the
number of actual matches. In the example mentioned earlier,
for instance, we expect each accident record to match one
record in the reference street atlas when there are no variants.
In this case the presence of variants can be detected based
on the divergence between the observed and the expected join
result size, at various points during the computation.

Current results from the adaptive query processing (AQP)
framework [8] show how, in certain cases, the query processor
can use these estimates to modify the query plan during exe-
cution, namely by replacing a physical operator with another
that performs the same function [12], [14], [15], [18], [19],
[28], [25]. This idea has proven viable for pipelined query
plans [11], primarily as a dynamic optimization technique
to improve the performance of a complex query, in cases
where the initial query plan produced by the optimizer proves
inefficient.

In this paper we explore the applicability of the AQP
framework to our problem.Our goal is to control the trade-
off between the overall cost of the join vs. the completeness
of the result, i.e., by switching to an (inexpensive) exact join
when no variants are detected, and returning to an (expensive)
approximate join when they are. To the best of our knowl-
edge, this is the first attempt to apply a well-known query

optimization technique to achieve a balance between the cost
of the query, and the completeness of the result. The adaptive
strategy seems well-suited to achieve this goal by means of
a statististical model of the expected join result size at any
point during the computation; this is critical to being able to
detect unexpected variants in the tables, and therefore to react
by switching join operators. Our experimental results show
that the technique is indeed viable, and that sensible savings
in join execution time can be achieved at the expense of a
modest reduction in result completeness.

The paper offers the following specific contributions:

• an adaptive join processing algorithm based on exact
and approximate symmetric hash joins. In particular, we
have modified theSHJoin algorithm [4] to ensure that
operators can be switched safely at certain well-defined
points during the computation (Section II);

• an instantiation of the generic Monitor-Assess-Respond
framework for adaptive query processing that uses the
symmetric join operators, and its formalization (Sec-
tion III);

• a definition of criteria to measure the algorithm’s perfor-
mance, along with experimental results (Section IV).

A discussion of related work (Section V) concludes the paper.

II. EXACT AND APPROXIMATE JOIN OPERATORS

We begin with an introduction to our model for adaptive join
processing, inspired by the genericmonitor-assess-respond
(MAR) framework for functional decomposition of autonomic
systems [21]. As mentioned, we adapt a model previously
designed to address query optimization problems [14], [15],
to address issues of record linkage.

We model the query processor as a state machine, where
each state represents one configuration of the query plan that
is currently being executed. In our case, all the processor can
do is to dynamically switch between two join operators, one
exact and one approximate. Therefore, in the simplest model
the processor has only two states, corresponding to each of
the operators, and each operator switch corresponds to a state
transition (in Section III-D we will generalize the processor
model to multiple states).

The control loop shown in Fig. 1 defines the overall adaptive
model that we are going to use. Themonitor periodically
obtains the values for some observable quantities from the
query processor; theassessorperforms an analysis of those
values, in order to determine whether a change of operator
is required; when this is the case, theresponderperforms a
state transition, which is enacted by the processor as an actual
operator switch.

In the rest of this section we describe the specific operators
used by the processors in our implementations, and the switch-
ing mechanism. Details on the monitored variables and on the
assessor’s decision logic are presented in the next section.

A. Requirements for Join Operators

The choice of physical join operators is dictated by two
main requirements. Firstly, we need to make sure that the state



Fig. 1. The Monitor-Assess-Respond adaptive framework

of the join execution can be transferred from one operator to
the next without loss of data, i.e., of partial results, and at
specific points during the execution.

As formally shown in [11], a sufficient condition for
a “safe” switch, i.e., one where we can correctly compute
the remainder of the join result after the switch without
re-processing the tuples seen so far, is that the operators
expose a particular state, calledquiescent. In iterator-based
evaluation [16], an operator implements three operations,
i.e., OPEN(), NEXT() and CLOSE() (see Fig. 2). An actual
execution trace is a path through the diagram. As shown in
[11], some of the statesN ′ in the execution trace, i.e., the state
the join algorithm is in when a call toNEXT() has concluded,
are indeed quiescent states, making iterator-based algorithms a
suitable choice for our purposes. The precise characterization
of which N ′ states are quiescent states is specific to each join
algorithm.

Fig. 2. State-Transition Diagram of an Iterator

A second requirement derives from the need to support joins
among tables that are actually data streams. As mentioned
in the introduction, the streaming scenario is one where a
priori analysis of the tables involved is not feasible, making
adaptivity a particularly attractive option. For this reason, we
use pipelined operators in our implementation.

Hash join operators can be made to satisfy these require-
ments. In particular, we have adopted a traditional symmetric
hash join [31] for the exact operator, denotedSHJoin, because

it is the most used for streams, and we have implemented a
pipelined version of theSSJoin algorithm proposed in [4],
denotedSSHJoin and briefly presented in next section.

SHJoin is the pipeline version of the traditional hash join.
It uses two hash tables that are built in parallel while reading
the tuples from both inputs. When reading a tuple from one
input, it is probed through the use of the hash table of the other
input to identify matches. Therefore, results can be returned at
any point of the join execution, using the partial information
contained in the tables, without having to wait for the input
total exhaustion.

B. TheSSHJOIN Algorithm

SSHJoin is our pipelined, symmetric hash re-
implementation of theSSJoin operator [4]. For reasons of
space, here we only give a short overview; a more detailed
description is available [23].

Fig. 3. SHJoin andSSHJoin State, per Operand

Fig. 3 shows the hash data structures maintained bySHJoin
and SSHJoin, on the left and right, respectively, for each of
the two joining tables (only one is shown for simplicity). Each
algorithm operates by scanning each of the tables in turn, one
tuple at a time1. The main difference between the two is that,
while SHJoin computes a hash key of the join attribute values
read so far, the entriesqi on the right-side of Fig. 3 are the

1In line with other adaptive join techniques that use hash join (e.g., [28],
[15]), we assume that join state can be held in main memory.



hashed values of all theq-grams seen bySSJoin. The set of
q-grams of a strings, denotedq(s), is the set of all substrings
obtained by sliding a window of widthq (typically, q = 3) over
s. In this work we useq-grams to measure string similarity,
namely by computing theJaccard Coefficient2:

sim(s1, s2) =
|q(s1) ∩ q(s2)|
|q(s1) ∪ q(s2)|

In this case, the bucket for anyq-gramq contains references
to each scanned tuple that includesq.

Since the algorithms are symmetric, they maintain two hash
tables, one for each of the two joining tables (left and right
inputs). Thus, every tuple from each table is both inserted
into one of the hash tables, and also used to probe the
other.SHJoin supports the traditional iterator-based, pull-on-
demand, pipelinedNEXT() operation. According to [11], in
this case a quiescent state is one in which the operator has
concluded a call toNEXT() and the last tuple read from either
the left or the right input has been joined with all the tuples
in the hash table for the right or the left input, resp., that it
matches. InSHJoin, NEXT() is computed as follows:

a) If there is an outstandingprobe tuple for which not all
matches have been returned yet, i.e., the state of the
operator is not quiescent, then the next match for that
probe tuple is returned.

b) If there are no outstanding tuples, i.e., we are in a
quiescent state, the operator reads a new tuple, inserts
it into the appropriate hash table, and uses it to probe
against the other hash table.

SSHJoin follows the same basic behaviour, but the result
of one invocation ofNEXT() when probing with tuplet and
joining, say, on attributeA, is the set of tuple pairs〈t, t′〉 such
that sim(t.A, t′.A) > k. Here k is a pre-defined threshold.
This involves computing allq-grams fort.A, and probing the
q-grams hash table (right-hand side of Fig. 3) with each of
them. The tuplest′ that are retrieved at leastk times are
returned as part of the match.

The main differences betweenSSHJoin and SHJoin can
be summarized as follows:

1) an additional operation, i.e., obtaining theq-grams in the
join attribute of the tuple, is needed before any insertion
can be made in the corresponding hash table;

2) an insertion of a tuple in a hash table additionally
requires the insertion of a pointer to that tuple for each
q-gram appearing in the join attribute of the tuple;

3) when probing a hash table onq-grams with t, the
operator builds a setT (t) of references to tuplest′ that
share at least oneq-gram with t, and it associates a
counterc(t′) of the commonq-grams with eacht′ ∈
T (t);

4) the result consists of pairs〈t, t′〉 where t′ ∈ T (t) and
c(t′) ≥ k.

2Other similarity functions based onq-grams can be exploited, see [5] for
example.

We also use the constraintc(t′) ≥ k to optimize on computing
T (t), as follows. Suppose|q(t)| = g. SSHJoin considers each
q-gram in reverse frequency order. For the firstg − k + 1 q-
grams oft, the tuples containing thatq-gram (obtained through
the hash table) are inserted intoT (t) with a counter set to 1.
If the q-gram already occurs, the counter is incremented. For
the remainingq-grams oft, the counters of the tuples where
they occur, and which belong toT (t), are incremented (but no
new tuples are inserted). The frequency of aq-gram is simply
the number of tuples in the hash table which contain it; this
number is saved along with theq-gram.

C. Cost Implications

We now present an analysis of the computational cost due to
adaptivity, namely(i) the relative additional cost of executing
one or more steps usingSSHJoin over that ofSHJoin, and
(ii) the overhead cost of switching operators.

Relative Computational and Space Costs:SSHJoin is
costlier thanSHJoin both in terms of processing time and
memory requirements. Concerning time, the increase in com-
plexity can be estimated by looking at the differences between
SHJoin and SSHJoin w.r.t. the cost of operations (1)-(4)
described earlier in this section. These costs are summarized
in Table I, where:|jA| is the average length in characters of a
join attribute valuejA; q is theq-gram size (thus, the number
of q-grams is |jA| − q + 1); Bex is the average length of
the bucket forSHJoin; andBap is the average length of the
bucket forSSHJoin (i.e., the number of tuples containing a
q-gram that is hashed to that bucket).

Bap can be estimated asBex ∗ (|jA|+ q− 1), while |T (t)|
is certainly less thanBex ∗ (|jA| + q − 1)2. If we consider
each transition between quiescent states inSSHJoin/SHJoin
(corresponding to the computation of all the matches for a
tuple), then the ratio between the two costs for each such
transition is inO((|jA|+q−1)2), i.e., quadratic in the number
of q-grams injA.

Concerning space, letn be the number of tuples processed
so far from one operand, lets be the average space required
for a tuple, and letp be the space required for a pointer. For
both join algorithms, the tuples read so far are maintained only
once. Thus the space required isn ∗ s. For each operand, the
space required by theSHJoin hash table isn ∗ p whereas the
space required bySSHJoin hash table isn∗(|jA|+q−1)∗p.

Cost of Switching Operators:The main overhead cost
incurred during a switch is due to the need to update the
hash tables. The tuples processed so far for both operands are
kept in main memory, together with the hash tables needed
by the algorithms. The hash table that is used by the current
algorithm is up-to-date, whereas the other lags behind, as it
only contains the tuples processed until the previous switch
point. Thepessimisticapproach of maintaining up-to-date both
hash tables has not been considered because it imposes an
overhead on the exact case, which we assume to be the cost-
effective option in most circumstances.



Operation SHJoin SSHJoin

(i) obtainq-grams – |jA|
(ii) update hash table 1 |jA|+ q − 1
(iii) compute T(t) and associated counters (|jA|+ q − 1) ∗Bap

(iv) find matches Bex |T (t)|
TABLE I

COST OFSSHJOIN AND SHJOIN OPERATIONS

Therefore, at each switch point, we need to update the
appropriate hash table by inserting the tuples that were
processed since the last switch. This means that when we
switch from exact to approximate, the hash table onq-grams is
updated with the tuples that were being processed by the exact
algorithm, and similarly, when we switch from approximate to
exact, the hash table on attribute values is updated with the
tuples that were being processed by the approximate algorithm.
Thus, the switch cost only depends on the number of tuples
seensince the last switch, rather than on all tuples scanned
since the start of the join computation.

III. A DAPTIVE JOIN PROCESSING FORVARIANTS

We now discuss how the two operators just presented are
used to implement the actual adaptive behaviour defined by the
general MAR control loop of Fig. 1. We present an overview
of the algorithm and its formal details.

A. Algorithm Overview

The overall algorithm consists of periodic activations of the
control loop, everyδadapt steps of the symmetric join. At any
one time, one of the two operators is active. One step consists
of the sequence of elementary operations that move the active
operator from one quiescent state to the next, as described
above. One activation begins with themonitor reading the
current size of the join result. Theassessorcomputes the
estimated result size at that point in the join, and determines
whether the divergence between observed and expected result
sizes is statistically significant. With this information, the
responderdetermines the next state for the query processor;
since the current operator is by definition in a quiescent state,
the state transition may involve an operator switch at this point.

Initially the system assumes, optimistically, that there will
be no variants and therefore the exact join operator is used
in the initial state. As variants occur in either of the two
tables, their effect manifests itself as a reduction in the
observed number of matching tuples. As soon as the lag
between observed and expected result size represents sufficient
statistical evidence to trigger a reaction by the responder, the
approximate join is activated. In turn, this has the effect of
reducing the lag, because we are now guaranteed that variants
will be detected3. The monitor now observes a sliding window
of similarity values between each tuple pair being matched.
A long sequence of consistently high similarities is taken as

3As we point out later, past variants can be matched in addition to variants
that occur further down the table.

an indication that variants no longer occur, prompting the
algorithm to return to an exact join operator.

The key point to note is the statistical significance of the
observed deviation from the expected course of events. This
means that, depending on the relative frequency of the actual
variants in the table, the deviation may grow at different
rates. In particular, when variants are rare and sparse, the
control loop will “lag behind” and will respond slowly. This
is an expected behaviour and is part of any adaptive strategy,
which is necessarily based on estimates, in line with the
general adaptivity framework. Furthermore, as noted in the
literature [8], the success of the strategy relies on the accurate
tuning of the thresholds and parameters involved. Dynamically
finding the best setting for these thresholds and parameters
is a hard optimization problem which we (in line with other
threshold-based AQP proposals (e.g., [28], [18], [15]) do not
address directly but only consider by means of an empirical
exploration of the space of available settings (in Sec. IV).

We now describe in detail the process.Specifically, we
describe the variables observed by themonitor, the logic of the
assessor, and the state machine controlled by theresponder.

B. Estimation of Result Completeness

As mentioned in the introduction, the monitor component of
the adaptive strategy is based on the assumption that a parent-
child relationship is expected between the two input tables,
a common case exemplified by the car accidents scenario
presented earlier. Under this assumption, the expected result
size at the end of the join is, of course, the size of the child
table, i.e., each tuple in a child tableS matches exactly one
in the parent tableR. Furthermore, suppose that there are no
variants anywhere, and that at some step of a symmetric hash
join n < |R| tuples have been scanned. The probability that
any given tuple inS has already found its match inR is the
same as the probability that the corresponding tuple inR has
already appeared among the topn tuples, i.e.,p(n) = n

|R| . By
extension, therefore, the observed result size after scanning
n tuples, denotedOn, can be modelled as a sequence of
n independent Bernoulli trials, i.e., as a binomial random
variable with parametersn andp(n): On ∼ bin(n, p(n)).

Therefore, the problem of detecting a statistically significant
discrepancy between the expected and observed result size
after n tuples, reduces to the problem of deciding whether
an observation̄On is an outlier with respect to its distribution.
Outliers are defined using a thresholdθout, namelyŌn is an
outlier iff

Pn,p(n)(Ōn ≤ O) ≤ θout (1)



Fig. 4. State machine for adaptive join control

wherePn,p(n)(.) is the cumulative distribution function for a
binomial with parametersn, p(n).

With reference to the MAR framework, the monitor pro-
vides valuesŌn every δadapt steps, while the assessor com-
putesPn,p(n)(Ōn ≤ O). Note thatPn,p(n)(.) changes at every
step, i.e.,P effectively represents a whole family of functions,
and its value at stepn cannot be used to compute the value
at stepn + 1. In our experiments we have manually tuned
parameterδadapt to achieve a balance between the overhead
incurred in computing the cumulative distribution function,
and the granularity of the assessment.

C. Identifying the Source of Perturbation

So far we have assumed, implicitly, that the query processor
employs either of the two join operators on both inputs. In a
symmetric hash join, however, we may also choose to use an
exact join when scanning from the left input, while using an
approximate join when scanning from the right input (and vice
versa). In this hybrid configuration, each tuple read from the
left is used to probe aSHJoin hash table on the right, while a
tuple read from the right is used to probe theSSHJoin defined
on the left input, as explained in Sec. II-B.

This is a useful property. Suppose that, in addition to
statistically detecting the presence of variants in the table,
we are also able to determinein which of the two inputsthe
variants appear, for example in the left but not in the right.
We could then adopt a hybrid configuration where tuples read
from the left are matched approximately, while those from
the right are matched exactly. Intuitively, this leads to a more
accurate use of the two operators.

In order to detect the origin of variants, we add a flag to
each scanned tuple in each of the inputs, to denote that the
tuple has been successfully matched (at least once). That is,
initially the flag is set to false; we set the flag to true if, when
probed for an exact match, the tuple matches. Now, assume a
tuple t3 is read off the right input that, through the use of an
approximate join, is found to match with a tuplet2 stored in

the left hash table. Now ift2 has its flag set to true, this means
that somet1 in the right input exists that previously matched
t2 exactly. Thereforet3, a variant oft2, is also a variant oft1
and unlesst1 andt2 are faulty in identical ways, we can also
conclude that it ist3, rather thant2 that prevents the exact
match between the two. Thus we have been able to conclude
that the right input is a source of variants. Of course, ift2
has not been seen before, and in particular it has not been
matched exactly with any tuple from the right input, then we
would not be able to glean any evidence from its approximate
match with t3. This is not a problem, however, since in the
absence of specific evidence, the algorithm simply assumes
the default case, i.e., that variants occur in both tables.

D. State Machine for Adaptive Control

The complete state machine managed by the responder com-
ponent, that describes the adaptive behaviour of our algorithm,
takes account of the hybrid configurations just discussed, and
thus it consists of four states, shown in Fig. 4.

Each state represents one of the four possible combinations:
(a) in statelex/rex (short for “left exact, right exact”) the exact
join is used for both the left and the right inputs; (b) inlap/rap
(“left approximate, right approximate”) the approximate join
is used for both the left and the right inputs; (c) inlap/rex the
approximate join is used for the left input, and the exact join
for the right; and (d) vice versa forlex/rap. As mentioned,
the algorithm optimistically begins in thelex/rex state.

The complete set of transitions is defined by predicates
ϕi(t), i : 0 . . . 3, where t indicates the step of the operator
at which the responder is activated (recall that this is one of
the quiescent states). Informally, the transitions characterise
the following circumstances:

ϕ0(t): there is no evidence that tuples from either of the
inputs include a statistically significant number of
variants. Note that this accounts for two scenarios.
Firstly, no variants have ever been detected (this is
the transition fromlex/rex onto itself); and secondly,
the algorithm has at some point reacted to variants,
by moving into one of the other states, but recent
tuples match with very high similarity, an indication
that we can revert to an exact join (transitions back
to lex/rex from other states);

ϕ1(t): there is evidence that tuples include a statistically
significant number of variants, and it is not possible
to determine which of the inputs is responsible for
the loss of matches;

ϕ2(t): there is evidence that tuples include a statistically
significant number of variants, and furthermore we
can determine that they are located in the left input;

ϕ3(t): symmetrically, the variant tuples are located in the
right input.

E. Definition of State Transitions
Let us now formalize these transitions in terms of monitored

variables, threshold values, and predicates that the responder
can evaluate.



Symbol Interpretation

σ(n) ≡ Pn,p(n)(Ōn ≤ O) ≤ θout significant probability
of discrepancy

µi(t) ≡ At,W

W
≤ θcurpert unlikely i is currently

perturbed

πi(t) ≡
P

t′<t I(µi(t
′)) ≤ θpastpert unlikely i was ever

perturbed

TABLE II

PREDICATESCOMPUTED BY THE ASSESSOR

Monitored Variables: Transitions ϕ1(t), ϕ2(t), and
ϕ3(t), i.e., from an exact to an approximate operator (left,
right, or both) rely upon the observed result size at stept, Ōt,
as mentioned in Sec. III-B. In addition, transitionsϕ0(t) from
any state other thanlex/rex require the ability to recognize
that exact operators may be adequate after a portion of the
join has been executed using the approximate operator. For
this purpose we use a sliding window of sizeW , applied
independently to each input table, and count the number of
approximate matches observed within the interval[t −W, t].
We denote this number byAt,W .

Note that the monitor also reports on the number of steps
t executed so far by the join.

Assessor Predicates and Thresholds:The assessor uses
the monitored variables to compute three types of predicates.
The first, already introduced in Sec. III-B (Eq. 1), indicates
whether or not a statistically significant number of variants are
present in any of the tables:

σ(t) ≡ Pt,p(t)(Ōt ≤ O) ≤ θout

whereθout is the threshold used to define outliers.
The second type of predicate,µi(t) with i ∈ {left, right} is

true iff the relative frequency of observed approximate matches
within the most recent window of sizeW is less than a pre-
defined threshold,θcurpert:

µi(t) ≡ At,W

W
≤ θcurpert

Finally, the third type of predicate looks at the entire history
of evaluations ofµi(t′) for any t′ < t, in order to determine
how often in the past a high density of approximate matches
have been observed:

πi(t) ≡
∑

t′<t

I(µi(t′)) ≤ θpastpert

whereI(true) = 1, I(false) = 0.
In addition, the assessor activates the responder only if the

interval between the current step of the executiont and the
previous is at leastδadapt. Tables II and III summarize the
predicates and corresponding thresholds just described.

Responder Predicates:Based on these predicates, we can
now formalize the transitionsϕi(t), as follows.4

4Note that all necessary state transitions can be defined using only a subset
of all possible conjunctions of those predicates.

Symbol Interpretation

W size of sliding window
θsim string similarity threshold
δadapt number or steps between successive activation of adaptive

control
θout outlier detection threshold
θcurpert acceptable current perturbation threshold
θpastpert acceptable past perturbation threshold

TABLE III

THRESHOLDS

ϕ0(t) = ¬σ(t) ∧ µleft(t) ∧ µright(t)

Intuitively, ϕ0(t) is true when there is no statistical evidence
of variants, nor of the left or the right inputs being currently in
a perturbation region. In this case, given the available evidence,
using exact joins for both left and right tuples (statelex/rex)
is both effective (no matches will be lost) and efficient.

ϕ1(t) = σ(t) ∧ ¬µleft(t) ∧ ¬µright(t)

Theσ component accounts for evidence of mismatches, and
is specifically responsible for the transition out oflex/rex.
The other two components indicate that there is no specific
evidence to show that the perturbation originates from either
source. In this case, therefore, transitioning tolap/rap is more
effective (it guarantees not to miss any variant pairs), at the
cost of lower efficiency.

ϕ2(t) = σ(t) ∧ ¬µleft(t) ∧ µright(t) ∧ πleft(t)

indicates that there is evidence of (1) variants that are affecting
result completeness (σ), (2) the left (but not the right) input
being currently in a perturbation region, and (3) the left input
having been significantly free of past perturbations. In this
situation, using an approximate join to match new left tuples
is appropriate (on effectiveness grounds), but we may continue
using the exact join to match new tuples from the right input.
Thus, this calls for a transition tolap/rex.

ϕ3(t) = σ(t) ∧ µleft(t) ∧ ¬µright(t) ∧ πright(t)

In this last case, symmetric with respect to the previous,
the right (but not the left) input is currently in a perturbation
region, but the right input has been significantly free of past
perturbations. Thus, this calls for a transition to statelex/rap.

IV. EXPERIMENTAL EVALUATION

Our adaptive approach is designed to strike a balance
between gain, i.e., the increased size of the join result relative
to the size that would be obtained using a purely exact
join algorithm, and cost, i.e., the increased computational
cost that results from the intermittent use of an approximate
join. Therefore, the performance metrics presented here are
based on the principle of relative gain with respect to a
baseline. Specifically, regarding result completeness we use
the number of matched pairs returned by the all-exact join as



Fig. 5. Perturbation Patterns

a baseline, and count theadditional number of tuple matched
by the hybrid algorithm. Likewise, for computational cost we
measure the savings in join computation time achieved by the
hybrid algorithm, relative to the execution time in the all-
approximate case, used as the baseline.

In this section we report on the experimental evaluation
of our proposed technique, expressed using such cost:gain
ratio, and measured on test datasets with known perturbation
patterns.

A. Generation of Test Datasets

In order to verify the applicability of the developed al-
gorithm in a variety of real situations, we have developed
a test data generator that can produce a variety ofpatterns
of data perturbation. We remark that considering a range of
different possible situations is particular relevant because up to
now there is no real benchmark that can be exploited for this
purpose (with annotation on the occurrences of variants). The
generator can produce a uniform distribution of variants across
the length of an input, for example, as well as the presence
of perturbation regions (i.e., relatively long regions of variant-
rich tuples within the input), interleaved with perturbation-
free regions. The latter pattern is designed to simulate various
real-life configurations, where batches of data from different
sources are collated possibly at different times. Perturbation
regions of varying density are created when these sources refer
to the same real-world entities using variants. Examples of
these patterns are shown in Fig. 5.

From a performance perspective, intuitively we expect better
results from datasets in which variants arenot uniformly
distributed, because a burst of variants in one of the two inputs
rapidly widens the gap between the observed and the expected
result size, allowing for quick detection of any anomaly and
hence a timely switch of operators.

In our evaluation we have investigated how different per-
turbation patterns affect our adaptive strategy. Each pattern is
described as a sequence of regions in each of the two joining
inputs. Using our generator, we can control(i) the intensity

of the perturbation exhibited by any given region, i.e. the
proportion of variants among all tuples in the perturbation
region, (ii) the length of the perturbation region, and(iii)
the interval between two perturbation regions. The results
presented here aim to characterize the contexts in which our
approach is applicable, i.e., we aim to discover the perturbation
patterns that our adaptive techniques contend with well, and
the threshold and parameter settings that are required for that
performance to be achieved.

Towards this goal, we started by generating a pair of parent-
child input tables for each of the four configurations in Fig. 5.
Also, we allow variants to appear in both inputs (independently
from one another), to account for all possible states in Fig. 4.
Throughout the experiments we have set the proportion of
variants within an input at a fixed 10%. While our strategy
would clearly benefit from higher error rates, this rate is
generally accepted as representative of real-world datasets that
contain misspellings.

Fig. 5.(a) represents a rather uniform distribution of variants
throughout the input, with no distinguishable high-intensity
perturbation regions. In this case, we expect a slow accumula-
tion of evidence of statistically-significant discrepancies in the
observed result size, and, as a result, a slow reaction to the
sparse variants. Fig. 5.(b) captures the situation where low-
intensity perturbation regions (light gray) are interleaved with
stretches of unperturbed regions. Fig. 5.(c) has a small num-
ber of well-distinguished, high-intensity perturbation regions.
Finally, Fig. 5.(d) exhibits many high-intensity perturbation re-
gions (having fixed the total variant rate across the entire input,
a higher number of variant regions translates to perturbation
regions with shorter duration).

Furthermore, we distinguish the case where variants are
only present in the child table, from the case where they
appear in both tables. Faced with a large number of pattern
combinations (each table may be perturbed according to one of
the four patterns), we have chosen to focus on the cases where
the same pattern applies to both tables. Our results (below)
indicate only marginal differences in behaviour across the



patterns, suggesting that we would not have gained additional
performance insights by further mixing the patterns. In the
following, therefore, we consider eight distinct test cases,
namely two (variants in the child, variants in both tables) for
each pattern.

Following our introductory example, we have used a parent
table containing locations within a country (i.e., all 8082
municipalities in Italy), and a child table containing records
of car accidents that occurred in those locations5. These
are joined on a single string representing location values,
e.g., TAA BZ SANTA CRISTINA VALGARDENA. A vari-
ant value is obtained by introducing a small, one-character
variation in the string, e.g.,TAA BZ SANTA CRISTINx
VALGARDENA, resulting in an invalid location. Such edit
distance of 1 is enough to guarantee failure of an exact
match, but at the same time makes it easy to tune the
similarity thresholdθsim in order to control the generation
of false positives, i.e., of spurious matches, when using the
approximate join. Recall that our goal is not to study the
performance of similarity functions, but rather to measure the
effectiveness of our adaptive approach under the assumption
that the performance of the similarity function on the test data
is known in advance.

B. Tuning of Parameters

The effectiveness of the approach is affected both by the
setting of the MAR parameters described in Sec. III-D, and by
the way in which perturbation regions appear in the inputs. The
suite of parameters that are used by the assessor makes for a
potentially large space of configurations. The results presented
below refer to the best possible configuration for each of the
eight test cases described above, obtained by experimentally
tuning the setting of these parameters.

Somewhat surprisingly, we have found that the best settings
for each parameter oscillate within a small range regardless of
the test case. In particular,θsim was set in such a way that
when the join runs exclusively in thelap/rap state, the result
size is as close as possible to the expected size, i.e., that of
the child table. A value of0.85 turned out to be appropriate
for all test cases.

Similarly, δadapt, the frequency of assessment, is set empiri-
cally by observing the relative gain for different frequencies. A
value ofδadapt was deemed adequate. Also, we setW = 100.
We also found that the algorithm is not very sensitive to the
setting ofθout, the threshold used in theσ predicate to trigger
a transition fromlex/rex. We setθout = 0.05 throughout.
However, variations inθcurpert and θpastpert, the thresholds
used for predicatesπ andµ, respectively, result in appreciable
variations in the gain/cost ratio. The best settings were found
to be θcurpert = 2 and 2 ≤ θpastpert ≤ 5, depending on the
pattern.

5These tables were generated by the same generator used in [25] and
subsequently in several AQP papers. We thank Volker Markl for kindly
allowing us access to it.

C. Measuring Gain and Cost

To assess the relative gaingrel , for each test case, we
consider the gapR − r between the result sizeR obtained
by executing the approximate join throughout, and the result
sizer obtained by executing the exact join throughout. Since
our adaptive strategy produces an intermediate result size,
r ≤ rabs ≤ R, we express the gain asthe fraction of the
gap that has been recovered:

grel =
(rabs − r)

R− r

The cost assessment is determined empirically, in agreement
with the analysis in Sec. II-C. In particular, the total cost
breaks down into (i) the cost of performing each step of
the symmetric join, when the algorithm is in any one of
the four possible states, plus (ii ) the overhead cost due to
all the state transitions. Recall that one step of the algorithm
includes all the operations executed between two consecutive
quiescent states. We express this total cost as a vector of eight
elements, thestate costssci, plus the transition coststci,
i ∈ {lex/rex, lap/rex, lex/rap, lap/rap}. In turn, the execution
cost sci in statei is the productsci = ti · wi of the number
of stepsti spent in statei, multiplied by the unit costwi of
a step in that particular state. The weightswi are determined
experimentally, by collecting the actual elapsed times for each
step in each possible state. These times are averaged over all
experiments; furthermore, since we use thelex/rex baseline
case as the best cost, the weights are normalised by the
experimental unit costwlex/rex. These weights are as follows:
[wlex/rex, wlap/rex, wlex/rap, wlap/rap] = [1, 22.14, 51.8, 70.2] This
means, for instance, that one step in statelap/rap costs about
70 times as much as one step in statelex/rex. Having set
the weights, the actual costssci for a particular test case are
determined simply by countingti for each state during the
execution of that test case.

The transition costs are computed in a similar fashion, as
the producttci = tr i · vi of the numbertr i of transitions into
state i throughout the join execution, times the weightsvi,
which are determined by observing the actual transition times
across all test cases. Once again these times are normalised
by considering the unit step costwlex/rex as the baseline. The
weights vi are as follows:[vlex/rex, vlap/rex, vlex/rap, vlap/rap] =
[122.48, 37.96, 84.99, 173.42]. Thus, e.g., transitioning into
statelap/rap has a cost that is equivalent to executing about
173 steps in the baseline statelex/rex.

The total absolute cost of execution is therefore

cabs =
∑

i

sci +
∑

i

tci

Similar to what we have done for the gain, we express this cost
in relative terms, by considering the difference between the
best possible costc, achieved by using the exact join through-
out, and the worst costC, incurredwhen the approximate join
is used throughout:

crel =
cabs

C − c



Fig. 6. Gain and Cost across all Test Cases

Fig. 7. Breakdown of Relative Execution Times

Note that, in theory, it is possible to havecabs > C, i.e., when
the coststci prevail, making for a strategy that is less efficient
than using the approximate join throughout. In our test cases,
however, this is never the case, as described next.

D. Experimental Results and Discussion

Fig. 6 shows the overall gain/cost results across the eight test
cases. These are the best results across a range of parameter
configurations, as discussed earlier. The efficiency index

e =
grel

crel

is reported under each column. As we can see, both relative
gains and relative costs are contained within a small interval,
regardless of the specific pattern used for the test case, with
the higher efficiency being achieved when variants are only
present in the child table.

To achieve these results, the algorithm makes use of all four
available states to various degrees. Fig. 7 shows a breakdown
of the proportion of the time (expressed as the number of steps)
spent in each state, as well as of the number of state transitions
(for simplicity, we do not break the latter down by specific

transition).6 Notably, the indicated gains are obtained while
still spending nearly 30% of the time performing an exact join.
Since this fraction, as expected, has a negligible cost compared
to the approximate steps, this translates into a substantial
reduction in actual costs. This is shown in Fig. 8, where the
relative weights above are applied to the raw execution steps
reported in Fig. 7. Similarly we note that the transition cost
does not contribute significantly to the overall cost.

Note, finally, that the type of perturbation pattern plays no
particularly important role in the overall cost, similar to what
we observed earlier regarding the overall gain.

We draw two positive conclusions from the analysis above.
Firstly, the behaviour of the algorithm does not seem to be
significantly affected by the variations in perturbation patterns
represented by our test cases. Although we have not explored
the broader space of possible pattern combinations, it would
be difficult to conclude at this point that the technique works
distinctly better, or worse, for some patterns rather than for
others. Secondly, the gains accrued using our strategy never
incur a cost that is higher than the cost of a purely approximate

6In the figure, AA denotes thelap/rap state, EE islex/rex, AE is lap/rex,
and EA is lex/rap.



Fig. 8. Breakdown of Relative Execution Costs

join. In other words, the algorithm may choose to transition
to the best state at each assessment step without paying an
overwhelming price to do so. This suggests the important
property that the algorithm may be tuned, possibly under user
control, for a target gain in terms of result completeness, while
keeping the marginal cost over the exact join baseline within
a predictable limit. Additional work will be needed to explore
this space of available trade-offs.

V. RELATED WORK

The problem of reconciling database records that represent
variants of the same real-world entity, or “record linkage”,
has a long history, rooted in the practical problem of remov-
ing duplicates from large databases prior to conducting data
analysis, or to perform integration across data sources. The
problem has been studied in detail (see, e.g., [10]) and has
spurred the development of a number of research toolkits.
These include Potter’s wheel [27], Ajax [13], Tailor [9], and
BigMatch [32] (see also [2] for a survey of research-oriented
tools). Commercial tools are also available, typically from
providers of data warehousing and data integration solutions
(e.g. Dataflux from SAS, and Vality). These toolkits usually
involve data preparation steps, in support of which they pro-
vide a variety of utilities, for instance for record normalisation.
The need for data preparation, as well as for tuning of the
linkage algorithms, is undeniable. In comparison, our approach
is at the same time limited, insofar as it focuses exclusively
on the matching phase and assumes the existence of suitable
similarity functions, and innovative, in that it explores a new
direction in data quality research, by recognizing the emerging
need to perform on-the-fly, mashup-style integration over data
sources that are only made available at the time they are
needed. In this respect, we have shown how elements of data
quality control can be woven into the fabric of the query
processor by exploiting techniques from the AQP area. We
are not aware of previous attempts to control data quality
adaptively. Note also that our work is much less ambitious than

recent proposals for data integration in mashups (e.g., [29]). In
only addressing a specific subproblem, however, we do provide
a concrete novel approach to address the key requirement
(highlighted in [29]) of performing data integration steps
dynamically with sufficient accuracy.

We rely on the approximate join technique proposed in [4]
but have advanced on that proposal by adapting it to pipelined
evaluation. This implies that we use (in the classifications pro-
posed in [26]) a domain-independent, token-based similarity
function (as opposed to edit-based, as in [17]). For a survey
of approximate join techniques, see [22].

Previous AQP work has focussed on QoS [12], [14], [15],
[18], [19], [28], [25] . We build on [11], where the notion
of operator replacement in pipelined plans is considered. The
notion of asymmetric combinations of joins algorithms (which
we build upon) has been discussed in [20] but not, as we do,
with a view to achieving an effectiveness:efficiency balance.

VI. CONCLUSIONS

In this paper we have addressed the trade-off between results
completeness and computational cost, that becomes available
when record linkage is performed using a combination of exact
and approximate join operators. Such trade-off is interesting in
a variety of increasingly common on-the-fly data integration
scenarios, e.g. data mashups, where users may be interested
in a fast, but incomplete join result and static integration is
not an option.

Our hybrid join algorithm builds upon an established frame-
work for adaptive query processing (AQP), whereby the query
processor can switch join operators at some well-defined
points during the computation, without loss of data. The
algorithm involves symmetric hash join operators for exact
and similarity-based tuples matching. In particular, we imple-
mented a variation of a known approximate join algorithm,
SHJoin, to make it suitable for pipelined processing and thus
compatible with the AQP framework.



We have experimentally measured the gain:benefit ratio of
our hybrid approach, compared with an all-exact and all-
approximate join algorithm, using a suite of synthetically
generated datasets that represent a variety of data perturbation
patterns. Our results indicate that the algorithm achieves
appreciable cost savings, at the expense of modest loss in
completeness of the join result.
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