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Context and scope 
Ongoing work on a new provenance component for Taverna 
•  myGrid consortium 

Scope: 
•  capture raw provenance events 

–  data transformations, data transfers  
•  store one lineage graph for each dataflow execution 
•  query over single or multiple lineage graphs 
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Example (Taverna) dataflow 

QTL -> genes -> Kegg pathways 



IPAW'08 – Salt Lake City, Utah, June 2008 

Some user questions on lineage 
•  on a single workflow run: 

–  find all genes that participate in some pathway p 
–  find all pathways derived from Uniprot genes 
–  describe the complete derivation of each pathway in 

which gene g is involved 

•  on a collection of runs: 
–  find all distinct pathways produced by runs of a 

dataflow 
[over a period of time,  
produced by a member of my group, ...] 
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Shortcomings of lineage data 
•  Granularity 

–  risk of returning trivial answers 
–  “all outputs depend on all inputs” 

•  Semantics 
– Results not expressed in the language of the designer 

•  Abstraction level, noise – the “latent data model”  
– many processors are irrelevant – shims, mundane 

tasks 
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The need for selective annotations 
•  As long as processors are black boxes, these 

remain difficult problems 
•  Adding annotations to processors is tempting 

Scope of this work:  
to explore the “gray box” region 
•  simple annotations with minimal semantics 
•  driving principle: justified by technical benefits 

–  precision of query results 
–  efficiency of query processing 
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Test dataflow model 

P1 extract query terms 

P3 query1 

P4 query 2 

P6 
merge results 

P1VI1 documents configuration 

merged 
results 

number of 
duplicates 

P2 query prep 

P5 post-proc 

P7 sort 

P1VI2 

P1VO1 
P2VI1 P4VI1 

P2VO1 
P4VO1 

P3VI1 P5VI1 

P3VO1 P5VO1 

P6VI1 P6VI2 

P6VO1 P6VO2 

P7VI 

P7VO 
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Two main annotation types 

Focusing: processor selection 
  some processors are more interesting than others  

  “boring” annotations 
  query-time user selection of interesting processors 

Precision: fine-grained lineage tracing 
  goal: trace lineage of individual items within a 

collection  
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Abstraction by modularization 
Lucene_query 

NERecognize  extract diseases 
from OMIM 

shims 
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Abstraction by selection 

select 
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Abstraction by selection 

select 
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Focusing – processor selection 

P1 extract query terms 

P3 query1 

P4 query 2 

P6 
merge results 

P1VI1 

P2 query prep 

P5 post-proc 

P7 sort 

P1VI2 

P1VO1 
P2VI1 P4VI1 

P2VO1 
P4VO1 

P3VI1 P5VI1 

P3VO1 P5VO1 

P6VI1 P6VI2 

P6VO1 P6VO2 

P7VI 

P7VO 

= b 

= a1 = a2 

= b = b 

= g 

P4 is 
the 
o
nly interesting processor 

Assume all values atomic 
Query: lineage(P7VO,{P4}) 

Goal: 
•  avoid recursive queries on 

instance tables 
Idea: 
  use recursion on static 

model to generate a 
targeted query 

  execute query only once 
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Precision: elements within collections 
Problem: xform() also applies to list values 
•  It may be impossible to trace individual elements 

–  “which pathways (out) depend on which genes (in)”? 

Goal: extend the query generation idea just sketched to 
trace element-level lineage within collections 

Approach: exploit static typing of Taverna processors 

P1 

P1Vo: l(s) = [a, b, 
c] 

P2VI: l(s) = [a, b, c] 

P2 

P1 

P1Vo: l(s) = [a, b, 
c] 

P2VI:    s    [a, b, c] 

P2 

Taverna resolves 
mismatches 
on nesting levels: 
(map P2 [a,b,c]) 
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Loss of precision in transformations 

PVI: l(s) = [a, b, c] 

P 

PVO: s =      x 

possible behaviours: 
•  selection of an element 
•  aggregation 

fun
c
tion f() useful annotation: 
lineage(PVO) = f(PVI) 

 PVI: s = a 

P 

PVO: s =  a' 

PVI: s =         a 

P 

PVO: l(s) =  [x, y, z] 

P 

PVI: l(s) = [a, b, c] 

PVO: l(s) = [x, y] 
PVO: l(s) = [a',b',c'] 

“lossless” 
transformations 

only useful annotation: 
P is index-preserving: 

PVO[i] = PVI[i] 
lineage(PVO[i]) = PVI[i] 

x → [a, b, c] 
lossy 

x → [a, b, c] 
y → [a, b, c] 
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Cooperative processors 

PVI: l(s) = [a, b, c] 

P 

PVO: s =      x 

P 

PVI: l(s) = [a, b, c] 

PVO: l(s) = [x, y] 

–  Passive processors do not contribute explicit 
provenance info 

– Cooperative processors actively feed metadata to 
the lineage service 

Dynamic 
annotations: 

Static 
annotations: 

aggregation f() PVO[i] = PVI[i] 

selection: 
x = PVI[i] 

sorting: 
PVO = Π(PVI) 
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Other annotations 
•  Distinction between configuration 

and input data 
–  PVI3 is a configuration parameter 
–  compare effect of different config. 

across multiple runs 

•  specific functional dependencies 
[ PVI1, PVI2 ] → PVO  

•  stateless processor 
–  execute process ↔ retrieve 

provenance 

PVI1 

P 

PVO 

PVI2 PVI3 

More evaluation needed on these 
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Towards a 2 tier provenance model 

Taverna 
runtime 

P1 

P2 

P3 

P4 

P5 

P6 

P1 

P2 

P3 

P4 

P5 

P6 

P1 

P2 

P3 

P4 

P5 

P6 

dataflow topology + 
raw lineage events 

Lineage service 
lineag

e
 database 

(RDB) structural 
annotations 

query 

semantic 
resource 

annotations 

“describe the derivation of 
each pathway through Kegg, 
in which gene g is involved” 

reference 
ontologies 

Semantic 
overlays 
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Conclusions 
A data lineage model for Taverna workflows 

•  Raw lineage data has shortcomings 
•  A few, selected lightweight annotations added in a 

principled way 
– win-win:  
–  helpful to users 
–  and enable query optimization 

•  Form the base layer in a broader approach to 
efficient querying of semantic provenance for e-
science 

•  Ongoing implementation 


