
IPAW'08 – Salt Lake City, Utah, June 2008

Data lineage model for Taverna
workflows

with lightweight annotation requirements
Paolo Missier, Khalid Belhajjame, Jun Zhao, Carole

Goble

School of Computer Science
The University of Manchester, UK

IPAW'08 – Salt Lake City, Utah, June 2008

Context and scope
Ongoing work on a new provenance component for Taverna
•  myGrid consortium

Scope:
•  capture raw provenance events

–  data transformations, data transfers
•  store one lineage graph for each dataflow execution
•  query over single or multiple lineage graphs

IPAW'08 – Salt Lake City, Utah, June 2008

Example (Taverna) dataflow

QTL -> genes -> Kegg pathways

IPAW'08 – Salt Lake City, Utah, June 2008

Some user questions on lineage
•  on a single workflow run:

–  find all genes that participate in some pathway p
–  find all pathways derived from Uniprot genes
–  describe the complete derivation of each pathway in

which gene g is involved

•  on a collection of runs:
–  find all distinct pathways produced by runs of a

dataflow
[over a period of time,
produced by a member of my group, ...]

IPAW'08 – Salt Lake City, Utah, June 2008

Shortcomings of lineage data
•  Granularity

–  risk of returning trivial answers
–  “all outputs depend on all inputs”

•  Semantics
– Results not expressed in the language of the designer

•  Abstraction level, noise – the “latent data model”
– many processors are irrelevant – shims, mundane

tasks

IPAW'08 – Salt Lake City, Utah, June 2008

The need for selective annotations
•  As long as processors are black boxes, these

remain difficult problems
•  Adding annotations to processors is tempting

Scope of this work:
to explore the “gray box” region
•  simple annotations with minimal semantics
•  driving principle: justified by technical benefits

–  precision of query results
–  efficiency of query processing

IPAW'08 – Salt Lake City, Utah, June 2008

Test dataflow model

P1 extract query terms

P3 query1

P4 query 2

P6
merge results

P1VI1 documents configuration

merged
results

number of
duplicates

P2 query prep

P5 post-proc

P7 sort

P1VI2

P1VO1
P2VI1 P4VI1

P2VO1
P4VO1

P3VI1 P5VI1

P3VO1 P5VO1

P6VI1 P6VI2

P6VO1 P6VO2

P7VI

P7VO

IPAW'08 – Salt Lake City, Utah, June 2008

Two main annotation types

Focusing: processor selection
  some processors are more interesting than others

  “boring” annotations
  query-time user selection of interesting processors

Precision: fine-grained lineage tracing
  goal: trace lineage of individual items within a

collection

IPAW'08 – Salt Lake City, Utah, June 2008

Abstraction by modularization
Lucene_query

NERecognize extract diseases
from OMIM

shims

IPAW'08 – Salt Lake City, Utah, June 2008

Abstraction by selection

select

IPAW'08 – Salt Lake City, Utah, June 2008

Abstraction by selection

select

IPAW'08 – Salt Lake City, Utah, June 2008

Focusing – processor selection

P1 extract query terms

P3 query1

P4 query 2

P6
merge results

P1VI1

P2 query prep

P5 post-proc

P7 sort

P1VI2

P1VO1
P2VI1 P4VI1

P2VO1
P4VO1

P3VI1 P5VI1

P3VO1 P5VO1

P6VI1 P6VI2

P6VO1 P6VO2

P7VI

P7VO

= b

= a1 = a2

= b = b

= g

P4 is
the
o
nly interesting processor

Assume all values atomic
Query: lineage(P7VO,{P4})

Goal:
•  avoid recursive queries on

instance tables
Idea:
  use recursion on static

model to generate a
targeted query

  execute query only once

IPAW'08 – Salt Lake City, Utah, June 2008

Precision: elements within collections
Problem: xform() also applies to list values
•  It may be impossible to trace individual elements

–  “which pathways (out) depend on which genes (in)”?

Goal: extend the query generation idea just sketched to
trace element-level lineage within collections

Approach: exploit static typing of Taverna processors

P1

P1Vo: l(s) = [a, b,
c]

P2VI: l(s) = [a, b, c]

P2

P1

P1Vo: l(s) = [a, b,
c]

P2VI: s [a, b, c]

P2

Taverna resolves
mismatches
on nesting levels:
(map P2 [a,b,c])

IPAW'08 – Salt Lake City, Utah, June 2008

Loss of precision in transformations

PVI: l(s) = [a, b, c]

P

PVO: s = x

possible behaviours:
•  selection of an element
•  aggregation

fun
c
tion f() useful annotation:
lineage(PVO) = f(PVI)

 PVI: s = a

P

PVO: s = a'

PVI: s = a

P

PVO: l(s) = [x, y, z]

P

PVI: l(s) = [a, b, c]

PVO: l(s) = [x, y]
PVO: l(s) = [a',b',c']

“lossless”
transformations

only useful annotation:
P is index-preserving:

PVO[i] = PVI[i]
lineage(PVO[i]) = PVI[i]

x → [a, b, c]
lossy

x → [a, b, c]
y → [a, b, c]

IPAW'08 – Salt Lake City, Utah, June 2008

Cooperative processors

PVI: l(s) = [a, b, c]

P

PVO: s = x

P

PVI: l(s) = [a, b, c]

PVO: l(s) = [x, y]

–  Passive processors do not contribute explicit
provenance info

– Cooperative processors actively feed metadata to
the lineage service

Dynamic
annotations:

Static
annotations:

aggregation f() PVO[i] = PVI[i]

selection:
x = PVI[i]

sorting:
PVO = Π(PVI)

IPAW'08 – Salt Lake City, Utah, June 2008

Other annotations
•  Distinction between configuration

and input data
–  PVI3 is a configuration parameter
–  compare effect of different config.

across multiple runs

•  specific functional dependencies
[PVI1, PVI2] → PVO

•  stateless processor
–  execute process ↔ retrieve

provenance

PVI1

P

PVO

PVI2 PVI3

More evaluation needed on these

IPAW'08 – Salt Lake City, Utah, June 2008

Towards a 2 tier provenance model

Taverna
runtime

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

dataflow topology +
raw lineage events

Lineage service
lineag

e
 database

(RDB) structural
annotations

query

semantic
resource

annotations

“describe the derivation of
each pathway through Kegg,
in which gene g is involved”

reference
ontologies

Semantic
overlays

IPAW'08 – Salt Lake City, Utah, June 2008

Conclusions
A data lineage model for Taverna workflows

•  Raw lineage data has shortcomings
•  A few, selected lightweight annotations added in a

principled way
– win-win:
–  helpful to users
–  and enable query optimization

•  Form the base layer in a broader approach to
efficient querying of semantic provenance for e-
science

•  Ongoing implementation

