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Janus:
Fine-grained and efficient 

provenance querying for Taverna
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• Motivation: Taverna for rapid information integration

• Fine-grained process provenance and its role in 
Taverna

• Context and scope: forms and uses for process 
provenance

• Technical challenges in querying provenance traces

• A solution, and experimental results

2

Outline
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The genes→pathways workflow in action
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An alternative design  
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[ path:mmu04010 MAPK signaling, 
  path:mmu04370 VEGF signaling ]

[ [ path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], 
  [ path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...] ]

List-structured 
KEGG gene ids:

[ [ mmu:26416 ],
  [ mmu:328788 ] ]
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Is either design better?
• Pros: 

–simpler to design and understand (hopefully)
– (no shims!)
–accepts multiple gene sets

• returns list of pathways separately for each gene set
• in addition to those shared by the union of all sets

• Cons:
–no genes in output list:

– so the relationship between the gene set and the 
pathway set is lost...
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[ [ path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], 
  [ path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...] ]

...Or is it?
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Provenance trace to the rescue
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Taverna + provenance 
• Taverna type system: strings + nested lists

–“cat”, [“cat”, “dog”], [ [“cat”, “dog”], [“large”, “small”] ]

• Taverna dataflow model: data-driven execution
• services activate when input is ready 

• Workflow provenance: a detailed trace of workflow 
execution
– which services were executed
– when
– inputs used, outputs produced

8
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Taverna dataflow model + provenance traces
can be a powerful combination



IMG Seminar, Manchester, June 2009 - P. Missier

Some additional user questions
• Causal relations:

 which pathway sets come from which gene sets?
– which processes contributed to producing this image? 
– which process(es) caused this data to be incorrect?
– which data caused this process to fail?

• Process and data analytics:
– show me the variations in output in relation to an input 

parameter sweep (multiple process runs)
– how often has my favourite service been executed?

• on what inputs?
– who produced this data?
– how often does this pathway turn up when the input 

genes range over a certain set S?

9
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Forms of provenance ...
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raw provenance metadata provenance metadata +
interpretation framework

design • process structure (workflow 
graph)
• history of process composition - 
reuse

• process versions

• service annotations:
• ex. get_pathways_by_genes

• who created /edited:  attribution
• why: purpose, intent

execution process events:
- service invocation
- data production / consumption
- causal dependency graphs

ex.:
- list_of_geneIDList = [ a, b, c]
- paths_per_gene = [ [d,e,f], [g,h,j]]
- ... in run #32

- data annotations, 
results interpretation in terms of 
conceptual data model:
set of pathways → gene sets

Focus is on the data: the observable outcomes from a process
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...and their uses and associated challenges
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raw provenance metadata provenance metadata +
interpretation framework

design • exploiting semantic properties of 
the process structure to improve 
provenance exploitation
• exploring process space across 
versions and structural similarities

• graph matching

• semantic-based search of process 
space

execution - enabling partial re-runs of 
resource-intensive workflows

- storing very large provenance 
traces that accumulate over time

- efficient query over large traces
- presentation of query answers

- semantic-based query answering 
over annotated traces
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Querying provenance traces
• Lineage queries involve traversing a provenance 

graph from bottom to top

12

[ p1, ....]

[ g1, ....]
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Naive provenance trace queries
– In most approaches, the originating process are not 

used for querying
–consequence: query requires provenance graph traversal

•  large traces → computationally complex
•  view materialization used in practice to get around the 
computational complexity

13
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Requirements for lineage queries - I

I - Focusing:
Not all processors are 
interesting:
–report lineage only at 

specified nodes in the 
graph
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Requirements for lineage queries - II

15

List-structured 
KEGG gene ids:

[ [ mmu:26416 ],
  [ mmu:328788 ] ]

[ path:mmu04010 MAPK signaling, 
  path:mmu04370 VEGF signaling ]

[ [ path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], 
  [ path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...] ]

II - Granularity:
Trace lineage for individual 
elements within collections
- when possible!
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Requirements for lineage queries - III
• III - Answer queries efficiently without special 

auxiliary data structures
• (and, please provide declarative query specification)

16

Example:

BACKTRACE
    (paths_per_gene[3,4],  paths_per_gene[1,2]) 
         AT get_pathway_by_genes
AND
    commonPathways[1] 
        AT TOP

[ [ path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], 
  [ path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...] ]
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Requirements for lineage queries - III
• III - Answer queries efficiently without special 

auxiliary data structures
• (and, please provide declarative query specification)
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Example:

BACKTRACE
    (paths_per_gene[3,4],  paths_per_gene[1,2]) 
         AT get_pathway_by_genes
AND
    commonPathways[1] 
        AT TOP

targets

selected
processors

[ [ path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], 
  [ path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...] ]
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Hypothesis:
we can exploit the static workflow graph 
structure to avoid explicitly traversing 
the entire trace to answer a query
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The path projection rule
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X1 X2

Y

P

X3
1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow 
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j]  → X1[i], X2[], X3[j] 

[i1 . i2 . ... . ik] = 
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Query processing

• Query processing:
–alternating sequence 

of xform and xfer steps 
• apply path projection at 

each xform step

• A complete granular and 
focused query can be 
answered by traversing 
the workflow graph alone
–starting from the target 

vars
–one simple query for 

each selected 
processor input port
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Advantages
• Scalability:

–query time depends on size of workflow graph, not size 
of provenance graph

–workflow graphs are small, fit in memory, can be indexed 
easily, etc.

–search over a graph at least as large as the workflow 
graph is inevitable -- this is the baseline cost!

• Graceful degradation:
–worst case is a completely unfocused query
–one query to trace at each xform step
–no worse than other approaches

• Fine-grain answers provided at no additional cost

22
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Experimental setup - I

23

• Performance evaluation performed on programmatically 
generated dataflows

– the “T-towers”

control:
- size of the lists involved
- length of the paths
- includes one cross product
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Experimental results - I
• query response time: naive vs. “path projection” approaches
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Experimental results - II
• workflow search time by path length (“tower height”)

– common to all strategies!
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• performance degradation on fully unfocused queries
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Summary
• An original approach to lineage queries for Taverna 

that combines
– efficiency and fine-granularity

• Relies on semantic properties of the Taverna 
dataflow model

• Further work:
– visual specification of user query
– visual presentation of query answer
– space compression
– semantic overlays, annotations

• To be bundled with some future version of Taverna...
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