

Janus: Fine-grained and efficient provenance querying for Taverna

Paolo Missier Information Management Group School of Computer Science, University of Manchester, UK

in collaboration with:

Norman Paton, Khalid Belhajjame

IMG Seminar, June 2009

- Motivation: Taverna for rapid information integration
- Fine-grained process provenance and its role in Taverna
- Context and scope: forms and uses for process provenance
- Technical challenges in querying provenance traces
- A solution, and experimental results

Workflow as data integrator

June 2009 - P. Missier

Workflow as data integrator

June 2009 - P. Missier

MANCHESTER 1824

The genes \rightarrow pathways workflow in action

4

MANCHESTER 1824

The genes \rightarrow pathways workflow in action

p2 VEGF signaling pathway

4

The genes→pathways workflow in action

MANCHESTER 1824

The genes \rightarrow pathways workflow in action

MANCHESTER

goal:

- list all pathways that are mapped from both sets of genes

- substantial list manipulation involved in achieving this

> "p1 MAPK signaling pathway p2 VEGF signaling pathway

4

The genes→pathways workflow in action

MANCHESTER

- list all pathways that are mapped from both sets of genes

- substantial list manipulation involved in achieving this

[[g1, g2, g3], ["g1 p1 p2 ...", "g2 p1 p2 ...", "g3 p1 p2 ..."] [g1, g2, g3]]

> "p1 MAPK signaling pathway p2 VEGF signaling pathway

4

An alternative design

An alternative design

An alternative design

Is either design better?

• Pros:

-simpler to design and understand (hopefully)

- (no shims!)
- -accepts multiple gene sets
 - returns list of pathways separately for each gene set
 - in addition to those shared by the union of all sets
- Cons:

-no genes in output list:

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...], [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

- so the relationship between the gene set and the pathway set is lost...
 - ...Or is it?

IMG Seminar, Manchester, June 2009 - P. Missier

lhe Universit of Mancheste

IMG Seminar, Manchester, June 2009 - P. Missier

IMG Seminar, Manchester, June 2009 - P. Missier

Taverna + provenance

- The University of Mancheste
- Taverna type system: strings + nested lists —"cat", ["cat", "dog"], [["cat", "dog"], ["large", "small"]]
- Taverna dataflow model: data-driven execution
 services activate when input is ready
- Workflow provenance: a detailed trace of workflow execution
 - which services were executed
 - when
 - inputs used, outputs produced

Taverna + provenance

- Taverna type system: strings + nested lists —"cat", ["cat", "dog"], [["cat", "dog"], ["large", "small"]]
- Taverna dataflow model: data-driven execution
 services activate when input is ready
- Workflow provenance: a detailed trace of workflow execution
 - which services were executed
 - when
 - inputs used, outputs produced

Taverna dataflow model + provenance traces can be a powerful combination

- Causal relations:
 - Which pathway sets come from which gene sets?
 - which processes contributed to producing this image?
 - which process(es) caused this data to be incorrect?
 - which data caused this process to fail?
- Process and data analytics:
 - show me the variations in output in relation to an input parameter sweep (multiple process runs)
 - how often has my favourite service been executed?
 on what inputs?
 - who produced this data?
 - how often does this pathway turn up when the input genes range over a certain set S?

9

Forms of provenance ...

Focus is on the data: the observable outcomes from a process

	raw provenance metadata	provenance metadata + interpretation framework
design	 process structure (workflow graph) history of process composition - reuse process versions 	 service annotations: ex. get_pathways_by_genes who created /edited: attribution why: purpose, intent
execution	<pre>process events: - service invocation - data production / consumption - causal dependency graphs ex.: - list_of_geneIDList = [a, b, c] - paths_per_gene = [[d,e,f], [g,h,j]] in run #32</pre>	 data annotations, results interpretation in terms of conceptual data model: set of pathways → gene sets

IMG Seminar, Manchester, June 2009 - P. Missier

MANCHESTER 1824 ... and their uses and associated challenges

())
S S S S S S S S S S S S S S S S S S S
$a_1 \cup$
\sim \sim
>

	raw provenance metadata	provenance metadata + interpretation framework
design	 exploiting semantic properties of the process structure to improve provenance exploitation 	 semantic-based search of process space
	 exploring process space across versions and structural similarities 	
	 graph matching 	
execution	 enabling partial re-runs of resource-intensive workflows 	 semantic-based query answering over annotated traces
	 storing very large provenance traces that accumulate over time 	
	- efficient query over large traces	
	- presentation of query answers	

MANCHESTER 1824 ... and their uses and associated challenges

())
S S S S S S S S S S S S S S S S S S S
$a_1 \cup$

	raw provenance metadata	provenance metadata + interpretation framework
design	 exploiting semantic properties of the process structure to improve provenance exploitation 	 semantic-based search of process space
	 exploring process space across versions and structural similarities 	
	 graph matching 	
execution	 enabling partial re-runs of resource-intensive workflows 	 semantic-based query answering over annotated traces
	- storing very large provenance traces that accumulate over time	
	- efficient query over large traces	
	- presentation of query answers	The rest of this talk!

MANCHESTER 1824 ... and their uses and associated challenges

	raw provenance metadata	provenance metadata +
		interpretation framework
design	• exploiting semantic properties of the process structure to improve provenance exploitation	 semantic-based search of process space
	 exploring process space across versions and structural similarities 	
	 graph matching 	
execution	 enabling partial re-runs of resource-intensive workflows 	- semantic-based query answering over annotated traces
	- storing very large provenance traces that accumulate over time	
	- efficient query over large traces	
	- presentation of query answers	The rest of

Querying provenance traces

MANCHESTER

1824

Lineage queries involve traversing a provenance graph from bottom to top

- In most approaches, the originating process are not used for querying
- -consequence: query requires provenance graph traversal
 - large traces \rightarrow computationally complex
 - view materialization used in practice to get around the computational complexity

June 2009 - P. Missier

Requirements for lineage queries - I

MANCHESTER

1824

IPAW'08 – Salt Lake City, Utah, June 2008

Requirements for lineage queries -

MANCHESTER

1824

IMG Seminar, Manchester, June 2009 - P. Missier

MANCHESTER Requirements for lineage queries - III

- III Answer queries efficiently without special auxiliary data structures
- (and, please provide declarative query specification)

MANCHESTER Requirements for lineage queries - III

- III Answer queries efficiently without special auxiliary data structures
- (and, please provide declarative query specification)

MANCHESTER Requirements for lineage queries - III

- III Answer queries efficiently without special auxiliary data structures
- (and, please provide declarative query specification)

Depth mismatch between declared / offered type:

$$depth(P:X2) = depth(c) = 1$$

depth(P:X3) = 1 but depth(c) = 1

Depth mismatch between declared / offered type:

```
depth(P:X1) = 0 but depth(a) = 1
```

```
depth(P:X2) = depth(c) = 1
```

depth(P:X3) = 1 but depth(c) = 1

How *y* is computed at P:

let I = a \otimes b = [[<a_i, b_j > | b_j \in b] | a_i \in a] // cross product

I' = [[<a_i, c, b_j > | b_j \in b] | $a_i \in a$] // same product but with c interleaved

$$y = (map (map P) I') = [(map P [...]), ..., (map P [...])] = [[y_{11} ... y_{1n}], ... [y_{n1} ... y_{nm}]]$$

Depth mismatch between declared / offered type:

```
depth(P:X1) = 0 but depth(a) = 1
```

```
depth(P:X2) = depth(c) = 1
```

$$depth(P:X3) = 1$$
 but $depth(c) = 1$

How *y* is computed at P:

let I = a \otimes b = [[<a_i, b_j > | b_j \in b] | a_i \in a] // cross product

I' = [[<a_i, c, b_j > | b_j \in b] | $a_i \in a$] // same product but with c interleaved

$$y = (map (map P) I') = [(map P [...]), ..., (map P [...])] = [[y_{11} ... y_{1n}], ... [y_{n1} ... y_{nm}]]$$

How *y* is computed at P:

let I = a \otimes b = [[<a_i, b_j > | b_j \in b] | a_i \in a] // cross product

I' = [[<a_i, c, b_j > | b_j \in b] | $a_i \in a$] // same product but with c interleaved

 $y = (map (map P) I') = [(map P [<a_1, c, b_1 > ... <a_1, c, b_m >]), ..., (map P [<a_n, c, b_1 > ... <a_n, c, b_m >])] = [[y_{11} ... y_{1n}], ... [y_{n1} ... y_{nm}]]$

Extensional vs intensional tracing

Workflow structure graph

Extensional vs intensional tracing

MANCHESTER 1824

Extensional vs intensional tracing

MANCHESTER 1824

ymn

W

bm

b₁

1) In general the actual depth at the output is:

```
depth(y) = depth(Y) + \sum \delta(X_i = x_i)
```

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

$Y[i.j] \rightarrow X1[i], X2[], X3[j]$

 $[i_1 . i_2 i_k] = -------$

(0,<mark>2</mark>)

$\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

depth(y) = depth(Y) +
$$\sum \delta(X_i = x_i)$$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

 $[i_1 . i_2 i_k] = ----$

(0,<mark>2</mark>)

 $\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

 $depth(y) = depth(Y) + \sum \delta(X_i = x_i)$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

$$[i_1 . i_2 i_k] = \frac{\delta(X_1 = x_1)}{k_1 - k_2}$$

(0,<mark>2</mark>)

$\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

$$depth(y) = depth(Y) + \sum \delta(X_i = x_i)$$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

 $[i_1 . i_2 i_k] =$

(0,<mark>2</mark>)

 $\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

 $depth(y) = depth(Y) + \sum \delta(X_i = x_i)$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

[i₁ . i₂ i_k] =

$$\delta(X_2 = x_2)$$

$$X_1$$

(0,<mark>2</mark>)

$\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

depth(y) = depth(Y) +
$$\sum \delta(X_i = x_i)$$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

 $[i_1 . i_2 i_k] =$

(0,<mark>2</mark>)

 $\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

 $depth(y) = depth(Y) + \sum \delta(X_i = x_i)$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

 $[i_1 . i_2 i_k] =$

$$\delta(X_k = x_k)$$

X₁ X₂

(0,<mark>2</mark>)

$\label{eq:Yiij} Y[i.j] \rightarrow X1[i], X2[], X3[j]$

1) In general the actual depth at the output is:

depth(y) = depth(Y) +
$$\sum \delta(X_i = x_i)$$

where $\delta(X_i = x_i) = depth(x_i) - depth(X_i)$

Therefore:

 $\delta(X=x)$ can be computed statically on the workflow graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

 $[i_1 . i_2 i_k] =$

X₁ X₂ X_k

Extension to the entire workflow graph

MANCHESTER 1824

Extension to the entire workflow graph

The Universit of Mancheste

Y = [[...], ... [...]]

MANCHESTER 1824

Extension to the entire workflow graph

The Universit of Mancheste

 $lineage(P:Y[3,4]) \rightarrow lineage(P:X1[3]),$ lineage(P:X2[]),lineage(P:X2[4]) The University of Manchester MANCHESTER 1824

(0,1)

Х

Extension to the entire workflow graph

Q R Y Y (0,1)(1,1) (1,1) **(**0,**1**) (0,1) **X**₃ **X**₁ X_2 [3] Ρ [4] Y

(0,0)

Х

 $lineage(P:Y[3,4]) \rightarrow lineage(P:X1[3]),$ lineage(P:X2[]),lineage(P:X2[4])

Y = [[...], ... [...]]

(0, 2)

20

The University of Manchester MANCHESTER 1824

(0,1)

Х

[3]

Extension to the entire workflow graph

Ρ

Y

(0, 2)

(0,0)

[4]

Х

Y = [[...], ... [...]]

The University of Manchester MANCHESTER 1824

[3]

(0,1) (0,0)Х Х [3] Q R Y Y (0,1)(1,1)[3] (1,1) **(**0,**1**) (0,1) **X**₃ **X**₁ X_2

Ρ

Y

(0,2)

[4]

Extension to the entire workflow graph

Y = [[...], ... [...]]

Extension to the entire workflow graph

[3]

MANCHESTER 1824

Y = [[...], ... [...]]

- lineage(P:Y[3,4]) \rightarrow lineage(P:X1[3]), lineage(P:X2[]), lineage(P:X2[4])
- lineage(P:X1[3]) = lineage(Q:Y[3]) \rightarrow lineage(Q:X[3])

lineage(P:X3[4]) = lineage(R:Y[4]) \rightarrow lineage(R:X[])

MANCHESTER 1824

Extension to the entire workflow graph

Query processing

- Query processing:
 - alternating sequence
 of *xform* and *xfer* steps
- apply path projection at each *xform* step
- A complete granular and focused query can be answered by traversing the workflow graph alone
 - starting from the target vars
 - one simple query for each selected processor input port

- Scalability:
 - -query time depends on size of workflow graph, not size of provenance graph
 - -workflow graphs are small, fit in memory, can be indexed easily, etc.
 - –search over a graph at least as large as the workflow graph is inevitable -- this is the baseline cost!
- Graceful degradation:
 - -worst case is a completely unfocused query
 - -one query to trace at each *xform* step
 - -no worse than other approaches
- Fine-grain answers provided at no additional cost

22

Advantages

Experimental setup - I

- Performance evaluation performed on programmatically generated dataflows
- -the "T-towers"

control:

- size of the lists involved
- length of the paths
- includes one cross product

Experimental results - I

query response time: naive vs. "path projection" approaches

24

Experimental results - II

workflow search time by path length ("tower height") - common to all strategies!

performance degradation on fully unfocused queries

- An original approach to lineage queries for Taverna that combines
 - efficiency and fine-granularity
- Relies on semantic properties of the Taverna dataflow model
- Further work:
 - visual specification of user query
 - visual presentation of query answer
 - space compression
 - semantic overlays, annotations
- To be bundled with some future version of Taverna...