
Paolo Missier
Information Management Group

School of Computer Science, University of Manchester, UK

in collaboration with:
Norman Paton, Khalid Belhajjame

IMG Seminar, June 2009

1

Janus:
Fine-grained and efficient

provenance querying for Taverna

IMG Seminar, Manchester, June 2009 - P. Missier

• Motivation: Taverna for rapid information integration

• Fine-grained process provenance and its role in
Taverna

• Context and scope: forms and uses for process
provenance

• Technical challenges in querying provenance traces

• A solution, and experimental results

2

Outline

IMG Seminar, Manchester, June 2009 - P. Missier

Workflow as data integrator

QTL
genomic
regions

genes
in QTL

metabolic
pathways
(KEGG)

IMG Seminar, Manchester, June 2009 - P. Missier

Workflow as data integrator

QTL
genomic
regions

genes
in QTL

metabolic
pathways
(KEGG)

4

The genes→pathways workflow in action

“p1 MAPK signaling pathway
 p2 VEGF signaling pathway
... “

KEGG gene ids:
“mmu:20816 (g1)
mmu:26416 (g2)
mmu:328788 (g3)”

[p1, p2, p3, ...]

4

The genes→pathways workflow in action

“p1 MAPK signaling pathway
 p2 VEGF signaling pathway
... “

KEGG gene ids:
“mmu:20816 (g1)
mmu:26416 (g2)
mmu:328788 (g3)”

[p1, p2, p3, ...]

KEGG DB
lookups

4

The genes→pathways workflow in action

“p1 MAPK signaling pathway
 p2 VEGF signaling pathway
... “

KEGG gene ids:
“mmu:20816 (g1)
mmu:26416 (g2)
mmu:328788 (g3)”

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[p1, p2, p3, ...]

KEGG DB
lookups

4

The genes→pathways workflow in action

goal:
- list all pathways that are mapped from both

sets of genes

- substantial list manipulation involved in
achieving this

“p1 MAPK signaling pathway
 p2 VEGF signaling pathway
... “

KEGG gene ids:
“mmu:20816 (g1)
mmu:26416 (g2)
mmu:328788 (g3)”

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[p1, p2, p3, ...]

KEGG DB
lookups

4

The genes→pathways workflow in action

goal:
- list all pathways that are mapped from both

sets of genes

- substantial list manipulation involved in
achieving this

“p1 MAPK signaling pathway
 p2 VEGF signaling pathway
... “

KEGG gene ids:
“mmu:20816 (g1)
mmu:26416 (g2)
mmu:328788 (g3)”

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[[g1, g2, g3],
 [“g1 p1 p2 ...”, “g2 p1 p2 ...” ,“g3 p1 p2 ...”]
 [g1, g2, g3]]

[p1, p2, p3, ...]

KEGG DB
lookups

IMG Seminar, Manchester, June 2009 - P. Missier

An alternative design

5

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

IMG Seminar, Manchester, June 2009 - P. Missier

An alternative design

5

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

IMG Seminar, Manchester, June 2009 - P. Missier

An alternative design

5

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

IMG Seminar, Manchester, June 2009 - P. Missier

Is either design better?
• Pros:

–simpler to design and understand (hopefully)
– (no shims!)
–accepts multiple gene sets

• returns list of pathways separately for each gene set
• in addition to those shared by the union of all sets

• Cons:
–no genes in output list:

– so the relationship between the gene set and the
pathway set is lost...

6

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

...Or is it?

IMG Seminar, Manchester, June 2009 - P. Missier

Provenance trace to the rescue

7

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Provenance trace to the rescue

7

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Provenance trace to the rescue

7

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Provenance trace to the rescue

7

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

geneIDs pathways

•
•

•
•

•
•

•

•
•

•

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Taverna + provenance
• Taverna type system: strings + nested lists

–“cat”, [“cat”, “dog”], [[“cat”, “dog”], [“large”, “small”]]

• Taverna dataflow model: data-driven execution
• services activate when input is ready

• Workflow provenance: a detailed trace of workflow
execution
– which services were executed
– when
– inputs used, outputs produced

8

IMG Seminar, Manchester, June 2009 - P. Missier

Taverna + provenance
• Taverna type system: strings + nested lists

–“cat”, [“cat”, “dog”], [[“cat”, “dog”], [“large”, “small”]]

• Taverna dataflow model: data-driven execution
• services activate when input is ready

• Workflow provenance: a detailed trace of workflow
execution
– which services were executed
– when
– inputs used, outputs produced

8

Taverna dataflow model + provenance traces
can be a powerful combination

IMG Seminar, Manchester, June 2009 - P. Missier

Some additional user questions
• Causal relations:

 which pathway sets come from which gene sets?
– which processes contributed to producing this image?
– which process(es) caused this data to be incorrect?
– which data caused this process to fail?

• Process and data analytics:
– show me the variations in output in relation to an input

parameter sweep (multiple process runs)
– how often has my favourite service been executed?

• on what inputs?
– who produced this data?
– how often does this pathway turn up when the input

genes range over a certain set S?

9

IMG Seminar, Manchester, June 2009 - P. Missier

Forms of provenance ...

10

raw provenance metadata provenance metadata +
interpretation framework

design • process structure (workflow
graph)
• history of process composition -
reuse

• process versions

• service annotations:
• ex. get_pathways_by_genes

• who created /edited: attribution
• why: purpose, intent

execution process events:
- service invocation
- data production / consumption
- causal dependency graphs

ex.:
- list_of_geneIDList = [a, b, c]
- paths_per_gene = [[d,e,f], [g,h,j]]
- ... in run #32

- data annotations,
results interpretation in terms of
conceptual data model:
set of pathways → gene sets

Focus is on the data: the observable outcomes from a process

IMG Seminar, Manchester, June 2009 - P. Missier

...and their uses and associated challenges

11

raw provenance metadata provenance metadata +
interpretation framework

design • exploiting semantic properties of
the process structure to improve
provenance exploitation
• exploring process space across
versions and structural similarities

• graph matching

• semantic-based search of process
space

execution - enabling partial re-runs of
resource-intensive workflows

- storing very large provenance
traces that accumulate over time

- efficient query over large traces
- presentation of query answers

- semantic-based query answering
over annotated traces

IMG Seminar, Manchester, June 2009 - P. Missier

...and their uses and associated challenges

11

raw provenance metadata provenance metadata +
interpretation framework

design • exploiting semantic properties of
the process structure to improve
provenance exploitation
• exploring process space across
versions and structural similarities

• graph matching

• semantic-based search of process
space

execution - enabling partial re-runs of
resource-intensive workflows

- storing very large provenance
traces that accumulate over time

- efficient query over large traces
- presentation of query answers

- semantic-based query answering
over annotated traces

The rest of
this talk!

IMG Seminar, Manchester, June 2009 - P. Missier

...and their uses and associated challenges

11

raw provenance metadata provenance metadata +
interpretation framework

design • exploiting semantic properties of
the process structure to improve
provenance exploitation
• exploring process space across
versions and structural similarities

• graph matching

• semantic-based search of process
space

execution - enabling partial re-runs of
resource-intensive workflows

- storing very large provenance
traces that accumulate over time

- efficient query over large traces
- presentation of query answers

- semantic-based query answering
over annotated traces

The rest of
this talk!

IMG Seminar, Manchester, June 2009 - P. Missier

Querying provenance traces
• Lineage queries involve traversing a provenance

graph from bottom to top

12

[p1,]

[g1,]

IMG Seminar, Manchester, June 2009 - P. Missier

Naive provenance trace queries
– In most approaches, the originating process are not

used for querying
–consequence: query requires provenance graph traversal

• large traces → computationally complex
• view materialization used in practice to get around the
computational complexity

13

IPAW'08 – Salt Lake City, Utah, June 2008

Requirements for lineage queries - I

I - Focusing:
Not all processors are
interesting:
–report lineage only at

specified nodes in the
graph

IMG Seminar, Manchester, June 2009 - P. Missier

Requirements for lineage queries - II

15

List-structured
KEGG gene ids:

[[mmu:26416],
 [mmu:328788]]

[path:mmu04010 MAPK signaling,
 path:mmu04370 VEGF signaling]

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

II - Granularity:
Trace lineage for individual
elements within collections
- when possible!

IMG Seminar, Manchester, June 2009 - P. Missier

Requirements for lineage queries - III
• III - Answer queries efficiently without special

auxiliary data structures
• (and, please provide declarative query specification)

16

Example:

BACKTRACE
 (paths_per_gene[3,4], paths_per_gene[1,2])
 AT get_pathway_by_genes
AND
 commonPathways[1]
 AT TOP

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Requirements for lineage queries - III
• III - Answer queries efficiently without special

auxiliary data structures
• (and, please provide declarative query specification)

16

Example:

BACKTRACE
 (paths_per_gene[3,4], paths_per_gene[1,2])
 AT get_pathway_by_genes
AND
 commonPathways[1]
 AT TOP

targets

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Requirements for lineage queries - III
• III - Answer queries efficiently without special

auxiliary data structures
• (and, please provide declarative query specification)

16

Example:

BACKTRACE
 (paths_per_gene[3,4], paths_per_gene[1,2])
 AT get_pathway_by_genes
AND
 commonPathways[1]
 AT TOP

targets

selected
processors

[[path:mmu04210 Apoptosis, path:mmu04010 MAPK signaling, ...],
 [path:mmu04010 MAPK signaling , path:mmu04620 Toll-like receptor, ...]]

How: Implicit iteration in Taverna

17

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

How: Implicit iteration in Taverna

17

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

Depth mismatch between declared / offered
type:

depth(P:X1) = 0 but depth(a) = 1

depth(P:X2) = depth(c) = 1

depth(P:X3) = 1 but depth(c) = 1

(0,1) (0,1)(1,1)

How: Implicit iteration in Taverna

17

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

Depth mismatch between declared / offered
type:

depth(P:X1) = 0 but depth(a) = 1

depth(P:X2) = depth(c) = 1

depth(P:X3) = 1 but depth(c) = 1

(0,1) (0,1)(1,1)

How y is computed at P:

let I = a ⊗ b = [[<ai, bj> | bj ∈ b] | ai ∈ a] // cross product

I’ = [[<ai, c, bj> | bj ∈ b] | ai ∈ a] // same product but with c interleaved

y = (map (map P) I’) = [(map P [<a1,c, b1> ... <a1,c, bm>]), ...,
 (map P [<an,c, b1> ... <an,c, bm>])] =
 [[y11 ... y1n], ... [yn1 ... ynm]]

How: Implicit iteration in Taverna

17

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

y = [[y11 ... y1n],
 ...
 [ym1 ... ymn]]

Depth mismatch between declared / offered
type:

depth(P:X1) = 0 but depth(a) = 1

depth(P:X2) = depth(c) = 1

depth(P:X3) = 1 but depth(c) = 1

(0,1) (0,1)(1,1)

How y is computed at P:

let I = a ⊗ b = [[<ai, bj> | bj ∈ b] | ai ∈ a] // cross product

I’ = [[<ai, c, bj> | bj ∈ b] | ai ∈ a] // same product but with c interleaved

y = (map (map P) I’) = [(map P [<a1,c, b1> ... <a1,c, bm>]), ...,
 (map P [<an,c, b1> ... <an,c, bm>])] =
 [[y11 ... y1n], ... [yn1 ... ynm]]

How: Implicit iteration in Taverna

17

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

y = [[y11 ... y1n],
 ...
 [ym1 ... ymn]]

Depth mismatch between declared / offered
type:

depth(P:X1) = 0 but depth(a) = 1

depth(P:X2) = depth(c) = 1

depth(P:X3) = 1 but depth(c) = 1

(0,1) (0,1)(1,1)

How y is computed at P:

let I = a ⊗ b = [[<ai, bj> | bj ∈ b] | ai ∈ a] // cross product

I’ = [[<ai, c, bj> | bj ∈ b] | ai ∈ a] // same product but with c interleaved

y = (map (map P) I’) = [(map P [<a1,c, b1> ... <a1,c, bm>]), ...,
 (map P [<an,c, b1> ... <an,c, bm>])] =
 [[y11 ... y1n], ... [yn1 ... ynm]]

bottom line:
yij depends only on values ai, c, bj

Extensional vs intensional tracing

18

...

Workflow structure graph

X1 X2

Y

P

X3a = [a1 ... an]
b = [b1 ... bm]

c = [c1 ... ck]

y = [[y11 ... y1n],
 ...
 [ym1 ... ymn]]

X

Y

R

w

X

Y

Q

v = [v1 ... vn]

Extensional vs intensional tracing

18

...

y11

a1 b1

ymn

bman

wv1 vn

... ...

...

...

Provenance graphWorkflow structure graph

X1 X2

Y

P

X3a = [a1 ... an]
b = [b1 ... bm]

c = [c1 ... ck]

y = [[y11 ... y1n],
 ...
 [ym1 ... ymn]]

X

Y

R

w

X

Y

Q

v = [v1 ... vn]

Extensional vs intensional tracing

18

...

y11

a1 b1

ymn

bman

wv1 vn

... ...

...

...

Provenance graph

Hypothesis:
we can exploit the static workflow graph
structure to avoid explicitly traversing
the entire trace to answer a query

Workflow structure graph

X1 X2

Y

P

X3a = [a1 ... an]
b = [b1 ... bm]

c = [c1 ... ck]

y = [[y11 ... y1n],
 ...
 [ym1 ... ymn]]

X

Y

R

w

X

Y

Q

v = [v1 ... vn]

The path projection rule

19

X1 X2

Y

P

X3
1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =
δ(X1 = x1)

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =

X1

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =
δ(X2 = x2)

X1

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =

X1 X2

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =
δ(Xk = xk)

X1 X2

The path projection rule

19

X1 X2

Y

P

X3

(0,1) (0,1)(1,1)

(0,2)

1) In general the actual depth at the output is:

depth(y) = depth(Y) + Σ δ(Xi = xi)

where δ(Xi = xi) = depth(xi) - depth(Xi)

Therefore:
δ(X=x) can be computed statically on the workflow
graph structure,

- given the declared depth(X)
- using a simple propagation algorithm

Y[i.j] → X1[i], X2[], X3[j]

[i1 . i2 ik] =

X1 X2 Xk

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])[4][3]

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])

lineage(P:X1[3]) = lineage(Q:Y[3]) →
 lineage(Q:X[3])

[4][3]

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])

lineage(P:X1[3]) = lineage(Q:Y[3]) →
 lineage(Q:X[3])

[4][3]

[3]

[3]

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])

lineage(P:X1[3]) = lineage(Q:Y[3]) →
 lineage(Q:X[3])

[4][3]

[3]

[3]

lineage(P:X3[4]) = lineage(R:Y[4]) →
 lineage(R:X[])

Y = [[...], ... [...]]

Extension to the entire workflow graph

20

X1 X2

Y

P

X3

X

Y

R

X

Y

Q

(0,1) (0,1)(1,1)

(0,2)

(1,1)

(0,0)(0,1)

(0,1)

lineage(P:Y[3,4]) → lineage(P:X1[3]),
 lineage(P:X2[]),
 lineage(P:X2[4])

lineage(P:X1[3]) = lineage(Q:Y[3]) →
 lineage(Q:X[3])

[4]

[4]

[3]

[3]

[3] []

lineage(P:X3[4]) = lineage(R:Y[4]) →
 lineage(R:X[])

Y = [[...], ... [...]]

IMG Seminar, Manchester, June 2009 - P. Missier

Query processing

• Query processing:
–alternating sequence

of xform and xfer steps
• apply path projection at

each xform step

• A complete granular and
focused query can be
answered by traversing
the workflow graph alone
–starting from the target

vars
–one simple query for

each selected
processor input port

21

xform

xfer

xform

xform

xfer l

d

IMG Seminar, Manchester, June 2009 - P. Missier

Advantages
• Scalability:

–query time depends on size of workflow graph, not size
of provenance graph

–workflow graphs are small, fit in memory, can be indexed
easily, etc.

–search over a graph at least as large as the workflow
graph is inevitable -- this is the baseline cost!

• Graceful degradation:
–worst case is a completely unfocused query
–one query to trace at each xform step
–no worse than other approaches

• Fine-grain answers provided at no additional cost

22

IMG Seminar, Manchester, June 2009 - P. Missier

Experimental setup - I

23

• Performance evaluation performed on programmatically
generated dataflows

– the “T-towers”

control:
- size of the lists involved
- length of the paths
- includes one cross product

IMG Seminar, Manchester, June 2009 - P. Missier

Experimental results - I
• query response time: naive vs. “path projection” approaches

24

10 28 50 75 100 150

0

25

50

75

100

125

150

175

200

225

d=10

NI

NGQ

PP

path length l

ti
m

e
 (

m
s
)

10 25 50 75 100 150

0

25

50

75

100

125

150

175

200

225

d=150

NR

NGQ

PP

path length l

ti
m

e
 (

m
s
)

IMG Seminar, Manchester, June 2009 - P. Missier

Experimental results - II
• workflow search time by path length (“tower height”)

– common to all strategies!

25

10 28 50 75 100 150 200
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

124
256

440

700

1000

2024

3257

workflow pre-processing time by graph size

path length l

ti
m

e
 (

m
s
)

• performance degradation on fully unfocused queries

1.33% 6.67% 13.33% 20.00% 26.67% 33.33% 40.00% 46.67%

0

10

20

30

40

50

60

70

80

90

100

110

120

130

response times for PP on unfocused queries (l=150)

% of processors in target set

ti
m

e
 (

m
s
)

IMG Seminar, Manchester, June 2009 - P. Missier

Summary
• An original approach to lineage queries for Taverna

that combines
– efficiency and fine-granularity

• Relies on semantic properties of the Taverna
dataflow model

• Further work:
– visual specification of user query
– visual presentation of query answer
– space compression
– semantic overlays, annotations

• To be bundled with some future version of Taverna...

26

