
Accelerating Disease Gene Identification Through
Integrated SNP Data Analysis

P. Missier∗, S. Embury∗, C. Hedeler∗, M. Greenwood∗, J. Pennock†, and A. Brass∗†

∗University of Manchester, School of Computer Science, Manchester, UK
†University of Manchester, School of Biological Sciences, Manchester, UK

Abstract. Information about small genetic variations in organisms, known as
single nucleotide polymorphism (SNPs), is crucial to identify candidate genes
that have a role in disease susceptibility, a long-standing research goal in biology.
While a number of established public SNP databases are available, the specifica-
tion of effective techniques for SNP analysis remains an open issue. We describe
a secondary SNP database that integrates data from multiple public sources, de-
signed to support various experimental ranking models for SNPs. By prioritizing
SNPs within large regions of the genome, scientists are able to rapidly narrow
their search for candidate genes. In the paper we describe the ranking models, the
data integration architecture, and preliminary experimental results.

1 Introduction

The integration of scientific data sets can reveal opportunities for performing new forms
of data analysis that cannot be supported by individual data sets, or which would oth-
erwise lack sufficient coverage or depth. When the details of this analysis are known in
advance, then we can design the integrated schema and the necessary data transforma-
tion steps with the needs of the intended application in mind. However, in many cases,
converting the scientific ideas into concrete algorithms over the data is a non-obvious
task. Different approaches must be prototyped and experimented with, before the most
appropriate algorithm or model can be found. This requires a more flexible approach to
data integration, since we cannot afford to lose information in the integration that may
turn out to be critical to the implementation of the best analysis algorithm.

A problem in the life sciences that illustrates the need for experimentation, and
consequent complication of the integration process, is the identification of the genes
that are responsible for phenotypes in model organisms. A phenotypic trait is some
observable behaviour or disease response and includes, for example, body size and
susceptibility to some disease. Many phenotypes are typically the result of complex
interactions among several genes, thus posing considerable challenges to the biologist
wishing to understand their genetic origins.

Establishing the relationship between phenotype and one or more regions of the
genome has been a research objective for quite some time [1]. The current methodology
for establishing the genes which may be responsible for a quantitative trait uses elabo-
rate breeding schemes to identify genomic regions where sequence differences among
strains of the organism under study can be correlated to differences in the phenotype of
interest. These regions are known as Quantitative Trait Loci (QTLs). They vary in size



but inevitably contain many genes (100’s to 1000’s), all with the potential to influence
the trait by some means. The challenge for biologists is then to narrow this down to a
more manageable set of candidate genes, the roles of which can then be investigated
using less expensive and time consuming experimental techniques.

As a result of recent research on this problem, a large number of studies identifying
genetic variations within the mouse genome are now available, for many inbred strains
with documented phenotypes. Each variation takes the form of a Single Nucleotide
Polymorphism (SNP) — that is, a difference in a single base pair between one strain and
the reference strain of the model organism. SNPs thus provide a key tool for scientists
wishing to target likely candidate genes within a QTL. If a variation in phenotype (such
as susceptibility to a particular disease) has a genetic cause, then there should be clear
differences in the SNPs of the strains exhibiting this variation. Moreover, the locations
of the SNPs within the genome can indicate the genes that play a role in determining
whether an individual will exhibit the phenotype of interest or not. While it is clear that
some SNPs found in QTLs are more informative than others, the precise criteria needed
to isolate these SNPs are not completely clear, and their investigation is part of current
research. At the same time, the sheer volume of SNPs under consideration, typically of
the order of tens of thousands for a single QTL region, calls for an automation of the
analysis process. Our goal is to support this exploration by providing biologists with a
software environment for the semi-automated SNP analysis of SNP ”informativeness”.

Recognition of the value of SNPs in detecting the genes involved in specific phe-
notypes has fuelled the development of several publicly-accessible SNP databases. No-
table among these are Ensembl [5], dbSNP [14], the Perlegen Sciences database1, MGD
[4], UCSC [8], and Wellcome-CTC Mouse Strain SNP Genotype Set2. Each of these
resources allows the retrieval of SNPs from a given chromosome region, but they are
also highly heterogeneous, in terms of access mechanisms, structure, content and qual-
ity. For example, Ensembl contains high-quality data that has been assessed by expert
curators, while dbSNP contains more recent but more speculative SNPs that have not
been subjected to such rigorous quality control.

In order to get a good coverage of both strains and chromosomal regions for SNP
analysis, therefore, it is necessary to integrate data from several sources. Since data
volumes are high (there are currently around 8 million confirmed SNPs in the mouse
genome, for example), and since the various resources do not all provide suitable pro-
grammatic access to data, a materialised integration is necessary. However, at present,
the main purpose of this integration is not to support a specific known application but
to allow experimentation with a variety of hypothesised algorithms for assessing the
likely role of a SNP in producing a given phenotypic response. We do not know at the
outset what quality or coverage of SNPs will be required to provide reliable analyses
of this kind. Therefore, rather than a conventional, tight integration to a fixed common
schema, with “one-time” data cleaning steps, we have instead adopted a loose inte-
gration approach, which allows the user to experiment with different combinations of
sources and integration approaches.

1 Perlegen: http://www.perlegen.com/
2 http://www.well.ox.ac.uk/mouse/INBREDS/



The first results of this experimentation have been implemented in a web-accessible
database called SNPit. The SNPit database is populated with a loose integration of SNP
and strain data covering the entire mouse genome. This paper describes our experiences
in constructing SNPit and the loose integration approach that supports it. We begin, in
Section 3, by describing the kinds of SNP scoring models that must be supported by
a system such as SNPit. We then discuss the integration problems that arise and our
solutions for them (Section 4), and present experimental evidence for the usefulness of
the resulting scores (Section 5). Finally, Section 6 concludes and outlines our plans for
further exploitation of the SNPit database through the discovery and implementation of
additional SNP scoring models.

2 Related work

While many examples of data integration projects can be found in bioinformatics, it
is interesting to note the increased importance of automating SNP analysis, a sign that
the role of SNPs in the discovery of genes responsible for particular phenotypes is
widely recognized. It is no surprise, therefore, that a number of SNP searching tools are
available in the public domain. A common goal of these tools is to perform large-scale
searches through genome-wide collections of SNPs, in order to narrow the genotyping
analysis to a small set of “optimal” SNPs. Where the tools differ is in the specific type
of search filters, the analysis features offered, and the choice of primary data sources.
SNPHunter, for example, retrieves SNPs that lie inside or around a given candidate
gene [12]. The SNPper application described in [11] lets the user focus on highly poly-
morphic regions, and filter SNPs based on their submitter (since users may attribute
different reliability to SNPs coming from different submitters). Some systems, like
PolyDoms [7] and the SNP function portal [13], integrate multiple data sources, but
only one of these is a SNP database (dbSNP). The former provides filter options for
predicted functional properties of SNPs, such as “Damaging non-synonymous SNPs”,
while in the latter search criteria can be expressed on a long list of annotations obtained
from various other databases, e.g. at the genome, protein, pathway levels. Others, like
PupaSuite [2] and SNPeffect [9], add functionality to predict the functional effect of
SNPs on the structure and function of the affected protein.

We note two important differences between these tools and our SNPit database.
Firstly, we integrate multiple sources of SNP data, allowing users to perform searches
on specific sources, or to compare analysis results across sources. Secondly, since all the
cited tools are specific to the human genome, SNP analysis cannot be based on observed
phenotype differences among strains (because no collections of strains are available for
humans). In contrast, by targeting the mouse (an important model organism), we are
able to exploit the complete genome sequencing of different mouse strains, along with
the growing number of available QTLs already identified for the mouse. One secondary
mouse SNP database, called Mouse SNP Miner, is indeed described in the recent liter-
ature [10]; but it is designed to perform batch analysis of potential damaging effect of
SNPs, rather than for interactive search.



3 Capturing SNP ”informativeness”

As mentioned, SNPs allow us to identify sets of candidate polymorphic genes within
a QTL region which may be responsible for the disease response (or other behaviour)
observed in various strains. The main intuition behind this process is the following:
since different strains of the model organism exhibit the phenotype in different ways,
if we can identify the regions of greatest genetic difference between those strains then
we can prioritise the genes that are located in those regions for further investigation. In
other words, we would like to rank the SNPs within a QTL in some way that indicates
the likelihood that it contributes to the phenotypic differences observed between strains.
From this, we can create a secondary ranking on the genes in which the SNPs appear.

In order to perform this ranking reliably, we need to gather together information
about as many known SNPs in the QTL as possible. Since no one database, at present,
can guarantee to provide this, we must collect data from several databases and integrate
it. Unfortunately, there is no single way to translate the biologists’ intuition regarding
the informativeness of SNPs in identifying candidate genes into a procedure precise
enough to be implemented in software. Therefore, we have proposed several different
variants on the basic score model. The integrated data must be able to support experi-
mentation with all these variants, so that their relative reliabilities can be explored.

The basic score model compares, for each SNP, the nucleotide base replacement
observed in a single, user-selected strain, i.e., the strain that exhibits the phenotype un-
der investigation, with those that occur in all other known strains. Each such alternative
base is called an allele. A SNP in which the allele for the selected strain is different
from that observed in all the others supports the hypothesis that the SNP plays a role
in the phenotype associated with the selected strain; the SNP should therefore receive a
high score.

To make this intuition precise, consider the set S = {S1, ..., SN} of all known
mouse strains (about 60) for which SNPs have been sequenced. Ideally, we would like
to have allele information about each SNP in the entire genome for each of the strains,
i.e., Ai,j ∈ {G,C,A,T} for each SNP i and strain Sj . In reality, sequencing efforts
focus on particular genome regions and on particular strains, so that this information is
missing for some strains on some SNPs – we indicate missing alleles with Ai,j = N.
Note that the set Ai = {Ai,j , j : 1..N} of all alleles for a SNP is a bag, rather than
as set, because alleles from different strains may coincide, as shown in the example of
Table 3(a).

In the basic score model, the user selects a single strain Sref ∈ S as the reference.
For each SNP i, we compute a base score si,0 as the number of non-null alleles Ai,j 6=
N that are distinct from the reference, or j 6= ref and Ai,j 6= Ai,ref . This is then
normalized by the number n′

i of non-null, distinct alleles Ai,j for each j 6= ref , to
yield the final score:

si,ref = si,0/n′
i

This model gives a high score to SNPs for which the selected strain has a unique allele
but where all other alleles are the same. Consider the example of Table 3(a), available
from Perlegen for SNP rs61647296 on chromosome 12. For selected strain A/J, the



allele G is indeed unique (s0 = 9 because 9 non-reference strains have allele T), and
furthermore, the only other known allele is T (n′ = 1). This yields a score sA/J = s0

n′ =
9. For comparison, in the SNP in Table 3(b) (rs61646963), the score for the reference
strain (allele G) is only 0.5, because the allele appears among the non-selected strains,
only one allele (A for strain BALB/cByJ) is different, and the non-selected strains
contain two distinct values.

Table 1. Strains and alleles example 1

(a)
Strain StrainAllele
DBA/2J T
A/J G
BALB/cByJ T
C3H/HeJ N
AKR/J T
FVB/NJ T
129S1/SvIm N
NOD/LtJ T
WSB/EiJ N
PWD/PhJ T
BTBR T+ tf N
CAST/EiJ T
MOLF/EiJ T
NZW/LacJ N
KK/HlJ N
C57BL/6J T

(b)
Strain StrainAllele
DBA/2J N
A/J G
BALB/cByJ A
C3H/HeJ G
AKR/J N
FVB/NJ N
129S1/SvIm G
NOD/LtJ N
WSB/EiJ N
PWD/PhJ N
BTBR T+ tf G
CAST/EiJ N
MOLF/EiJ N
NZW/LacJ G
KK/HlJ G
C57BL/6J G

In summary, this simple model rewards SNPs where the selected strain is unique,
and the alleles for all other strains are the same. Note that the score is 0 for SNPs where
the allele is missing for the selected strain.

The second score model, called the group score model, generalises the first by al-
lowing the comparison of two user-selected groups of strains, rather than comparing a
single strain against all others. This is useful because it is often the case that a particular
phenotype is observed in more than one strain. For example, it is common to want to
compare strains which are known to be susceptible to a particular disease with those
strains which are known to be resistant. There may be other strains for which we do
not know the phenotype, and these should be excluded from the analysis. This score
therefore rewards SNPs for which (i) the sets of alleles in the two selected groups are
disjoint, and (ii) the alleles for each individual group are homogeneous — in the ideal
case, the strains in one group will all exhibit one allele, while the strains in the other
group all exhibit another allele.

Consider two disjoint sets of strains S1 = {S1, ..., Sn} and S2 = {S′
1, ..., S

′
m},

and, for a given SNP, the corresponding bags of alleles A1 = {A1, ..., An} and A2 =
{A′

1, ..., A
′
m} (the SNP index i is omitted for simplicity). Let δ be the number of dis-

tinct, non-null alleles that are common to A1 and A2: δ = |A1 ∩ A2|, and n′, m′ the
number of distinct alleles in A1 and A2, respectively. We define three variations for the
group score. The simplest takes the form:

gs0(A1,A2) = 1 − δ

n′ + m′



This model rewards disjoint sets of alleles, regardless of their internal homogeneity.
Note however that, when using gs0, one SNP for which one entire group of alleles is
null gets a perfect score, because δ = 0 in that case. This seems counter-intuitive, i.e.,
it would be misleading to give a high rank to SNPs for which a score simply cannot be
computed. To counter this effect, the second variation of the model, gs1, extends gs0

by introducing penalty factors with values proportional to the number of null alleles in
the groups under consideration:

p1 =
|{Aj ∈ A1|Aj = N}|

|A1|

(p2 is defined similarly for A2). The resulting adjusted score is

gs1(A1,A2) = gs0(A1,A2) · p1 · p2

Table 2. Strains and alleles example 2

(a)
Strain StrainAllele
DBA/2J G
A/J A
BALB/cByJ G
C3H/HeJ A
AKR/J G
FVB/NJ G
129S1/SvIm A
NOD/LtJ G
WSB/EiJ G
PWD/PhJ G
BTBR T+ tf A
CAST/EiJ G
MOLF/EiJ G
NZW/LacJ A
KK/HlJ A
C57BL/6J G

(b)
Strain StrainAllele
DBA/2J A
A/J N
BALB/cByJ A
C3H/HeJ N
AKR/J N
FVB/NJ A
129S1/SvIm N
NOD/LtJ A
WSB/EiJ N
PWD/PhJ T
BTBR T+ tf N
CAST/EiJ A
MOLF/EiJ N
NZW/LacJ N
KK/HlJ N
C57BL/6J A

Note that the values of penalties decrease as expected (because they are multiplying
factors) when the number of null alleles increases. Consider the example in Table 3(a),
and the two groups {A/J,BALB/cByJ} and {AKR/J,C57BL/6J}, corresponding to
allele groups A1 = {A,G} and A2 = {G,G}. We have δ = |{G,G}| = 1, n′ = n = 2,
m′ = 1, and gs1(A1,A2) = 2

3 , with no penalties since there are no missing alleles. The
effect of penalties can be observed in the example of Table 3(b), where the alleles for
A/J and AKR/J are missing. Here p1 = p2 = 1

2 , and gs1(A1,A2) = (1− 1
2 ) ·p1 ·p2 =

1
8 .

The third variation of this model accounts for the heterogeneity of each of the two
groups, represented by the elements h1 = n′

n and h2 = m′

m . The resulting score:

gs2(A1,A2) =
gs0(A1,A2)

h1 + h2

is lower for highly heterogeneous groups. Using gs2(), the score for the example of
Table 3(b) would become 4

9 , because h1 = 1, h2 = 1
2 . It is possible, of course, to



combine gs1() and gs2() to take into account both penalties and group heterogeneity.
Note also that the scores do not take into account the number of strains in each group,
which is typically very small.

Preliminary results on the performance of one of these models, gs1(), are presented
in Section 5.

4 Gathering and Integrating SNP Data
From the SNP analysis described in the previous session, we derive a number of re-
quirements and design decisions for the management of SNP data. First of all, there
is choice of publicly-accessible databases containing SNP data for specific organisms
— including the mouse. These databases partially overlap in structure and content, de-
pending on the submission policy and procedures of the controlling organization. The
update frequency of the data, and thus its currency, also varies. Users tend to choose
among the available data sources based on their prior confidence in its reliability, pos-
sibly cross-referencing the retrieved data with other sources for validation afterwards.

There is currently no single reference data source for SNP data, and therefore SNPs
from multiple sources must be combined in order to achieve the coverage levels re-
quired by the score models described in the previous section. We have selected three of
the most prominent public SNP databases, on the basis of their completeness, authorita-
tiveness, and the complementarity of their respective content. First is Ensembl Mouse3,
a well-known source for the mouse genome, which is regarded as being of high quality
thanks to the team of expert curators who make sure that only confirmed and established
data is included. The second database is dbSNP, maintained by NCBI4; the quality of
its data is known to be less consistent, since the submission process involves relatively
little quality control. This, at the same time, makes dbSNP a good source for recently
discovered SNPs. Thirdly, we have selected the database from Perlegen Sciences, the
result of a project devoted specifically to sequencing the whole mouse genome across
15 mouse strains with high accuracy.

Programmatic access to these data sources is provided through a range of different
mechanisms, including Web services (for instance, NCBI’s eUtils), direct data layer
access (Ensembl accepts public connections to its mySQL database) and through bulk
data download. Since each region-wide SNP analysis involves retrieving and joining
data sets of the order of tens of thousands of elements, followed by the execution of ad
hoc algorithms, the performance of frequent bulk queries on the remote sources is likely
to be poor. There is thus a need for some form of data localization, and the potential
for developing further of analysis algorithms also requires the design of an integrated
schema.

4.1 Data Integration Approach

These considerations led us to the design of a new database for SNPs, called SNPit,
which consolidates data from the three data sources mentioned. Unlike typical OLAP

3 Ensembl Mouse genome: http://www.ensembl.org/Mus musculus/
4 dbSNP: http://www.ncbi.nlm.nih.gov/SNP/



integration projects, the new schema is designed so that individual relations are very
similar in structure to the corresponding relations in the source schemas. In practice,
the database consists of a collection of materialized views on the sources, which can
be pairwise joined through the use of common identifiers for the SNPs. A sketch of
the data integration scenario appears in Figure 1, where the flow of SNP data across
the sources is highlighted (top half). Perlegen SNPs are gradually being submitted to
dbSNP, making this one of its major contributors (although the process is not yet com-
plete).5 In turn, data from dbSNP is gradually incorporated into Ensembl, through a
slower curation process. Ensembl also includes SNP data that has been discovered by
the ongoing sequencing work of the Sanger Institute in the UK.6 As the figure shows,
independent loading procedures processes have been setup for each of the three sources,
using various offline data transformation techniques. As a result, we expect some of the
Perlegen SNPs to appear in our dbSNP and Ensembl tables.

Maintaining separate sets of relations for each data sources has several advantages.
Firstly, by directing their queries to views on a specific source, users may limit the scope
of their analysis to familiar data. Secondly, overlapping SNPs from different sources are
retained as separate data items, thus avoiding the problem of having to resolve all pos-
sible inconsistencies (eg different alleles detected for the same SNP and strain) upon
loading. Also, tracking the correct propagation of the same SNP information from one
database to the next can be done at the application level. Thirdly, both dbSNP and En-
sembl are subject to ongoing revision and using separate relations makes the reloading
of updated versions more manageable. Finally, since there is built-in redundancy in the
loosely integrated schema, additional data sources with partially overlapping data may
be added without disrupting the schema. One minor shortcoming of this approach is
the need to create additional views for each useful combination of sources that are fre-
quently queried together. The schema is designed to model the following main aspects
of SNP data:

– the one-to-many relationship between a SNP and the strains in which it is known
to occur. The number of strains alleles available for each SNP varies, in Ensembl,
between 1 and over 60, depending on the sequencing effort carried out by the orig-
inating lab. In general, we expect that the more alleles are available, the better the
chance of correlating the SNPs to phenotype differences among the strains;

– the position of the SNP, expressed as the number of bases from the start of a chro-
mosome. This translates into a one-to-many relationship between a gene (whose
position is identified by an interval of bases within a chromosome) and the SNPs
that occur within its boundaries.7

– SNP provenance, i.e., the submitter institution along with the version of the genome
used to specify the SNP position (called “build”), and other similar data;

– SNP location, i.e., whether the SNP occurs in a DNA fragment that is involved in
the translation process for protein synthesis (a coding region), or in a non-coding

5 Perlegen currently contributes about 44% of the dbSNP SNPs.
6 http://www.sanger.ac.uk/
7 SNPs may also occur in between genes. For this reason, we have complemented the collection

of genes with a set of labels corresponding to the intergenic regions, for the purpose of our
study.



Fig. 1. Primary sources and main relations for the SNPit database. The number figures are data
volumes for a single chromosome (12)

region. This is relevant in assessing the potential consequences of a single-base
mutation.

Both the Ensembl and the Perlegen views include SNP-to-strain and SNP-to-gene
relationships, and are used to calculate the score models for data in these sources. Native
Perlegen data does not include gene information, however, and we have had to add it to
our database separately, as part of the loading process. This was done using the mouse
genome in the Ensembl gene database. The provenance data is currently being used in a
separate study concerning methods to assess the reliability of SNPs (as opposed to their
“biological informativeness”), and is not discussed further in this paper. We plan to
exploit location data to improve upon our current score models for SNPs, as explained
in our conclusions section.

Successful joins in our schema rely upon the use of common SNP identifiers. Unfor-
tunately, SNPs are given different types of identifier at different stages of their “accep-
tance” (they are also known by different names, as described in [3]). While a reference
ID “rsId” (for instance rs61647296) is issued by Ensembl curators for accepted
SNPs, Perlegen uses its own private naming scheme. To complicate matters still further,
dbSNP makes a distinction between the SNP reference ID (when available) and the sub-
mitter ID ssID, issued by dbSNP at the time the SNP is entered into the database. The
purpose of using reference IDs is to represent SNPs that have been identified by more



Fig. 2. Score model selection in the SNPit application

than one lab, using a submitter-independent numbering scheme. This complicates the
task of tracking multiple occurrences of the same SNP in our schema, since, for exam-
ple, only the Perlegen SNPs that have already reached Ensembl will have an rsID. The
bottom part of Figure 1 shows how rsID and ssID are used in combination with the
dbSNP view, to mediate between the Ensembl and Perlegen views. This means that the
scope of a comparative analysis over the SNPs that occur in both views is limited to the
subset indicated by the dotted box. The numbers in the figure provide an example, for
one sample chromosome, of the amount of overlapping SNPs among the sources.

4.2 The SNPit web application

The SNPit MySQL database contains the entire set of known mouse SNPs from the
three sources. A Web application (written using JSP technology) makes the score mod-
els available to end users. The application allows the biologist to (i) select SNPs for a
region of interest, eg. an entire QTL, or for a set of individual genes, with some filtering
capability, for example by selecting SNPs that belong to highly polymorphic regions;
and (ii) repeatedly apply various score models on this selection. The available scoring



options are shown in Figure 2. At this stage, the application has already fetched about
38,000 SNPs from both Perlegen and Ensembl, for a user-specified region8. Next, users
may select a score model (three of them are available in the Web form), along with the
strain or strain groups they wish to analyse (Figure 2).

Once the user has selected their preferred ranking method, the SNPs are retrieved,
scored and displayed, as illustrated in Figure 3. The ranked SNPs are shown in the table
on the left (with the name of each associated gene shown in the leftmost column). On
the right of the main SNP result table, we also show histograms of the score distribution
for the returned SNPs. Ideally, we would hope to see a highly skewed distribution, with
most of the SNPs receiving low scores, but with a long thin tail showing a small number
of high scoring SNPs. In order to assist the user in understanding the characteristics
of this tail, we also display the histogram using a log-linear scale, which amplifies
the results in the tail. The application is scheduled to be released for public access in

Fig. 3. Ranked SNPs in the SNPit application

the near future. In addition, Web Service access to the analysis functionality is also
being implemented. This will make the score models available to scientific workflow

8 The Ensembl data source is known in the application as “Biomart”, since the Biomart version
of the data has been used to populate the view. Biomart (http://www.biomart.org) is an open
source project that makes data available as a data mart for analysis purposes.



applications, i.e., as part of the myGrid suite of services, which includes the Taverna
workflow management system [6].

5 Experimental Evaluation of the Score Models

The integrated views of SNP data that we have created for the SNPit application are
only of value if they can support experimentation with different score models. In this
section, we describe how we have evaluated the gs1() model over the integrated views.

5.1 Experiment design

The goal of the experiments was twofold: firstly, to assess the performance of the gs1()
model, i.e., to determine how well the resulting SNP ranking reflects an expert’s judg-
ment of their informativeness. More importantly, we also wanted to test the hypothesis
that the SNP ranking induces a meaningful ranking on the genes themselves, by placing
the best candidates at the top with sufficiently high accuracy.

The gs1() model was evaluated using three independent, manually selected test data
sets consisting of SNPs from three separate, highly polymorphic QTL regions on the
mouse genome, two on chromosome 12, with a size of 23 (denoted as Chr12-A) and 6
Mbases (Chr12-B), respectively, and one on chromosome 17 (8.2 Mbases), denoted as
Chr17. In the experiment, the biologist selected a limited number of SNPs from a few
genes that are known to be good candidates for a particular phenotype. The selection
was made based on the known difference in phenotype between two groups of strains;
the same two groups were then used to assign a gs1() score to all the SNPs in the
selected regions. The main limitation factor for the size of the test sets, as is usually the
case, is the amount of effort required to manually sift through the SNPs (the number
of SNPs found in each of these regions ranges in the tens of thousands, as shown in
Table 3).

5.2 SNP-level performance

A common way of assessing the performance of a score model is to compare the com-
puted ranking with a correct binary classification (i.e., interesting vs. non-interesting)
for a test data set. The performance can then be expressed in a standard way using a
ROC curve, in which the ratios of false positives to true positives are plotted for various
ranking thresholds.

Table 3. SNPs and genes volume for the experiment QTL regions



In our case, two problems complicate this procedure. Firstly, biologists find that pro-
viding positive examples, i.e. for ”definitely interesting SNPs”, is much easier that pro-
viding negative examples. This reflects the nature of the experimental process, whereby
the initial, large set of SNPs are all considered potentially interesting, and experimental
evidence as well as prior experience is applied to make some of them stand out as gen-
uinely important. Thus, while it is natural for the expert to indicate that a data element
is of interest, ruling it out completely seems harder. The second problem is the high cost
of manual SNP analysis, which results in a small test set (less than 100 SNPs for each
of three experiments).

Given these limitations, we decided to perform only an informal SNP analysis, and
instead invest additional expert time into higher-level gene-level analysis. Thus, we
only count the user-selected SNPs which are found towards the top of our ranking (the
true positives), normalized by the total number of user-selected positives. These rates
are greater than 95% throughout (details are omitted due to space constraints), with the
exception of one of the three experiments. In that case, SNP information was simply
missing from the Ensembl database at the entire gene level. The ability to perform
the same analysis on alternate data sources for the same region proved important in
this case; indeed, the corresponding rate for the Perlegen SNPs, our second source, is
unsurprisingly high.

5.3 Gene-level performance

In the second part of the performance assessment, the genes corresponding to the test
SNPs were compared to the genes for the top-ranked SNPs. As we have mentioned,
not all SNPs occur within genes – many occur in between genes, and indeed, these
SNPs may be among the most important, since some of these inter-genic regions are
responsible for controlling the transcription rates of the neighbouring genes. We use
labels of the form “between X and Y” to record the location of each such SNP; these
labels count as actual genes for the purposes of our study.

The comparison of the automatically and manually ordered genes was performed as
follows. For each of the three test data sets (i.e. regions), the entire set of genes for that
region was ranked according to the underlying ranking of their corresponding SNPs,
using a novel metric that we call density of interesting SNPs. Specifically, suppose that
X SNPs are known for gene G, and that x SNPs out of the X are above a given threshold
t, applied to the computed ranking. We say that G has a density x/X of interesting
genes at threshold t. This choice of ranking metric follows the intuition that, from a
biology perspective, a gene whose SNPs are considered for the most part informative,
according to our definition based of strain differences, has a higher chance of explaining
the phenotype than genes with only few interesting SNPs.

As in the case of the SNPs, we were again only given positive examples of strong
candidate genes by the biologist, making it difficult to estimate the number of false
negatives. In this case, however, the number of genes is much smaller than the number
of SNPs (less than one hundred for each experiment). Thus we can afford to have our
biologist manually analyse the top-ranked genes, in order to identify additional posi-
tives that may have escaped attention due to the size of the original list of genes. These



represent the real added-value information to the biologist: interesting genes that have
been spotted only thanks to the ranking model.

Thus, our performance model is based on a two-step process, whereby the expert
first provides an initial list of positive examples, which is used to plot a ROC curve
where all the non-selected genes are assumed to be negatives. This is a pessimistic esti-
mate, because each non-selected gene in the top ranks counts as a false positive. Then,
the expert identifies additional positives from the list. These count as true positives if
they lie above the threshold, and as false negatives otherwise. Although non-selected
genes are again considered negatives, the new curve obtained from this list is more
realistic.

Concerning the choice of threshold t used to compute the gene SNP density, we ob-
serve that the model only assigns a handful of scores from the available [0,1] interval,
namely 0, .25. .5, .67, and 1, effectively creating a discrete classification. This is due to
the very small size (2) of the strain groups selected by the analyst for the comparison9,
which limits the possible overlaps among the alleles. By observing the frequency of oc-
currence of each score over all SNPs, we may select a suitable threshold that captures
the majority of them – this is typically score = 1 for Perlegen, and score > 0 for En-
sembl. With this assumption, we compute interesting SNP density as the ratio of SNPs
that are above the threshold, to the total SNPs for the gene.

The resulting curves for each of the three experiments and for the two data sources
are shown in Figure 4. In this type of chart, good results are represented by curves
that rapidly reach the upper left corner, representing a region of many true positives
and few false positives. Although not conclusive, our preliminary results are promising.
The first chart shows the improvement of the additional expert selection (indicated as
”second round”). This effect seems to be reverted in the last chart; this may be due to
the relatively large number of false negatives, i.e., interesting genes with low ranking.
The initial, subjective reaction from our users is that this level of accuracy may already
be sufficient to significantly accelerate the search for candidate genes.

We are now experimenting with further score models that exploit some of the addi-
tional information associated to the SNPs, notably whether the SNP occurs in a coding
region of the gene, and whether the base substitution actually causes a change in the
corresponding amino acid. This additional knowledge can be used to improve upon our
models, for example by adding weight factors to SNPs. Most of the required informa-
tion for this study is already captured in our schema.

6 Conclusions

The problem of correlating phenotype with genotype information is important to deter-
mine the genetic cause of diseases. SNPs play an important role in current methodology,
but their high volume limits the potential for their exploitation.

In this paper we have described an approach to partially automate SNP analysis,
based on a data integration architecture that makes it easy to implement ranking models

9 This could be due to the complexity involved in manual analysis when larger groups are cho-
sen, and we expect that automated support will encourage the biologists to investigate analyses
involving more strains.



on large collections of SNPs, using multiple data sources. In our loose integration ap-
proach, we begin by capturing the essential attributes of SNPs as views on the primary
sources, and then materialize the views into our new SNPit database.

We have shown encouraging experimental results for the initial SNP ranking mod-
els implemented using the database. We are now experimenting with more elaborate
models, that take into account the relative importance of individual SNPs, e.g. based on
their location in the genome, as well as provenance information to assess their trustwor-
thiness.
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Fig. 4. ROC curves for gene-level scores


