
Simple overloading for type theories

Peter Aczel
Departments of Mathematics and Computer Science

Manchester University

June 23, L994

In this note I describe a simple disciplined scheme for overloading of functions in the

type theories like those implemented in Alf, Coq or Lego. This form of overloading is
intended to be useful in the formalisation of mathematics in these computer systems. To

be specific I will focus on the Lego system.

Direct Overloading
Before describing the disciplined approach that I will caII oaerloading by inheritance I
will start by describing a direct version of overloading that is my understanding of an

idea explained to me by Chet Murthy. Recall that in Lego a context may have a function
definition of the form

flx : Al: s

where / must be an identifier that is new to the context of the definition and cannot be

redefi.ned in the context. The idea for direct ouerloading is to allow a context to have

several oaerload definitions for the same identifi.er /:-

overload flr: Al : €1

i

overload flx : A") : en

In a context with such overload definitions an occurrence of / should always be in an

application
fa

and the overloading of ,f irr that application should be resolved by choosing the most

recent overload definition of /
overload flx : A;l: s,

such that a: A;.
. Aoy development that has been checked in an extension of Lego with direct overload-

ing can be transformed into a development that will be checked in the unextended Lego

by replacing each overload definition

overload flx : A;l: 6,



by an ordinary definition
filx : A;l: 

",,
where each f; must be a neu/ identifier, and also by replacing each application occurrence

f a of. f by ï;o, where /, is the new identifier used to resolve the overloading of / for that
particular application occurrence. In this l\ray we see that the extension of Lego with
direct overloading is conservative over the unextended Lego.

Overloading by Inheritance
We now consider the more sophisticated and disciplined form of overloading that I am
calling overloading by inheritance. The idea is to extend Lego by allowing class and
method definitions to appear in contexts. Each method will be associated with a partic-
ular class but can be inherited by subclasses. Each class C will have an associated type
nC of the instances of C, and each method m on C will be given in terms of a function
on nC. There will be a subclass relation on the fi,nitely many classes defined in a context
and for each subclass C' of a class C there will be a coercion function 

nC' 
- ^C, so that

any function defined on ^C will induce a function defined on. ^C'. So each method on C
will induce a function on the type ^C' of instances of any subclass C' of. C.

We will see that each method definition on a class C of the overloading by inheritance
extension of Lego will be translated into the direct overloading extension of Lego as a
number of overload definitions of the identifier rn, one for each definition of a subclass of
C.

The classes defined in a context will form a class forest; i.e. a finite set of finite trees
whose nodes are labelled with the classes. Associated with each class definition will be

an implicit type definition nC:T

where ? is a type expression in the context of the class definition.
There are two forms of class definition depending on whether a root of a new tree of

the class forest is being created or a new leaf of an already existing tree is being created.
A root class defi,nition has the form

C : rootclass T

and creates the root of a new tree of the class forest that is labelled with C and has the
implicit type definition 

^/1 _.7

A child class definition has the form

C : childclass Colx : Tlb

and creates a new leaf, labelled with C , of. the tree immediately above the node labelied
with the previously defined class Co and also has the implicit type definition

nC:T.

The function [o : ?]ô is the coercion function nC 
- 

nCo.



If, in a tree of the class forest of a context, the class C' appears at or above the class
C (where we take trees to grow upwards), then C' is a subclass of C and the coercion
function ^C' - ^C is obtained by composing the coercion functions between each child
class and its parent on the path from C' to C.

A rnethod. definition for a class C has the form

rn:method P:^Cle

where, for c : nC, e is a term, and rn is a new identifier. In a context where such a
method definition occurs rn should be allowed in an application

ma

provided that o can be determined to be an instance a : ^C'of some subclass C' of C, and
should be treated as defined to be e[a'f x], where o/ is the result of applying the coercion
nC' 

- ^C to a.
I now describe how to translate a development in the extension of Lego with over-

loading by inheritance to the previous extension of Lego with direct overloading. Each
class definition 

c': ...7...

should be replaced by the type definition

C :7,
with all occurrences of ^C replaced by C. At the sarne time each method definition

rn : method [a : "C]e

should be replaced by an overload defiiition

overload mfx : C]: 
"

and whenever a subclass C' of. C was defined there should be an additional overload
definition

. overload mlx: C'): elcalrl
where c is the coercion function ^Ct -- ^C.


