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Introduction

In order to conveniently formalise mathematics in a type theory it would be useful to
have incorporated into the type theory a good theory of classes in something like the
sense of class that there is in object oriented programming. To start with we will restrict
attention to classes with non-multiple inheritance. But we would eventually also like to
deal with multiple inheritance as well.

We want classes to form the nodes of a tree, with a class Triv at the root and every
other class having a unique parent that it has been constructed from. Given a class C,
it and its descendents in the tree are the subclasses of C. We write C ′ ≤ C if C ′ is a
subclass of C.

With each class C should be associated the type C.ob of the objects of C. If C ′ ≤ C

then there should be a function1

downC′

C : C ′.ob → C.ob.

Given a class C and a C-family2 F of types, if3 p : {a : C.ob}F a then we want to associate
with p an F -method for C. We will write p∗ for this method, leaving its dependance on
C and F implicit. We want a type (Method C F ) for such methods.

The key idea is that if q is any F -method and a : C ′.ob, where C ′ ≤ C, then (q a)
should be a well-formed term of type F (downC′

C
a). Moreover if q is p∗ then we want

(q a) to convert to p (downC′

C
a). What we have here is that the notion of a method

involves an implicit polymorphism. When applying a method for a class C to an object
of a subclass, the subclass does not need to be mentioned explicitly.

Classes in Algebra

Here is an example from algebra to illustrate the intended application of a theory of
classes to the formalisation of mathematics.

1As trees grow upwards, down is directed downwards towards the root
2i.e. F a is a type for each a : C.ob
3We use Lego syntax for type theory
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It is natural to use something like +A for the group operation on any abelian group
A. It is also natural to still use the same expression when A is a ring, field, vector space,
etc... But when we routinely formalise these notions in a type theory we find that we
get, say, an operation plus A for each abelian group A, but if R is a ring then the plus
operation on R must be written plus (RingToAbgroup R), where RingToAbgroup is
an operation that applies to any ring and obtains from it the underlying abelian group
structure. This makes the syntax too heavy! It would be better to form the class of
abelian groups and the subclasses of rings, fields, vector space, etc... and obtain plus as
a method. In this way we can keep to the informal style.

Note that in informal algebra there is a further level of polymorphism that is very
convenient, but should not be confused with that concerning the above use of classes.
Suppose that we have a ring R and elements x, y of R. Then we would prefer to write
just x + y rather than x +R y when there is no confusion. There might be confusion
because there might be another ring R′ with the same type of elements, but where +R

and +R′ are different operations. This kind of implicit polymorphism can be dealt with
in the Lego system. For example the polymorphic addition operation on the type of rings
should be given the type

{R|Ring}R.el → R.el → R.el

where Ring is the type of rings and if R is a ring then R.el is the type of elements of
R. Here the implicitness of the polymorphism is indicated by using R|Ring rather than
R : Ring. Now if x, y : R.el, where R is a ring and plus has the above type then we can
write plus x y and hope that the Lego system will be able to recover the ring R.

It has seemed to us that a suitable notion of class, as we have indicated above might be
simulated in Lego by exploiting the implicit polymorphism lartethat is already available.
But, so far, we are not sure that we have got a satisfactory simulation. We have in mind
a notion of class where a method will always apply in a predictable way to any object
of any subclass of the original class of the method. But unfortunately we have not seen
how to predict the behaviour of the algorithm that Lego uses to type check expressions
involving implicit polymorphism, so that our attempted simulations have inherited the
same unpredictability.

Constructing Classes

So far our notion of class is incompletely specified, as we have not stipulated how classes
are to be constructed, apart from the trivial class Triv at the root of the tree of classes.
We take Triv.ob to be the unit type with a single element triv : Triv.ob. So this class,
Triv has just one object, containing no information.

Given a class C and a C-family of types P we want to have a new class

C ′ = (newclass C P )

that is an immediate subclass of C; i.e. a child of C in the tree of classes. We want the
objects of C ′ to have the form

(a, b)′,

where a : C.ob and b : (P a). Here (a, b)′ is some kind of ordered pair that we may want
to include some additional information not explicitly indicated. So C ′.ob is something
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like the sigma type < a : C.ob > (P a). The previously mentioned operation downC′

C
is,

in this case of an immediate subclass, given by

downC′

C (a, b)′ = a.

In general the down operations can be obtained by iterated projections on the first coor-
dinate.
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