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Part I

Rudimentary CST
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The Axiom Systems CZF, BCST and RCST

• CZF is formulated in the first order language L∈ for
intuitionistic logic with equality, having ∈ as only non-logical
symbol. It has the axioms of Extensionality, Emptyset,
Pairing, Union and Infinity and the axiom schemes of
∆0-Separation, Strong Collection, Subset Collection and
Set Induction. (CZF+ classical logic)≡ ZF.
• BCST (Basic CST) is a weak subsystem of CZF. It uses
Replacement instead of Strong Collection and otherwise
only uses the axioms of Extensionality, Emptyset, Pairing,
Union and Binary Intersection (x ∩ y is a set for sets x, y).
• RCST (Rudimentary CST) is like BCST except that it uses
the Replacement Rule (RR) instead of the Replacement
Scheme.

• ∆0-Separation can be derived in RCST and so in BCST.
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The Replacement Rule
• Recall the Replacement Scheme:

∀x∀x{(∀z ∈ x)∃!yφ[x, z, y] → ∃a∀y(y ∈ a ↔ (∃z ∈ x)φ[x, z, y])}

for each formula φ[x, z, y], where x is a list x1, . . . , xn of
distinct variables.
Replacement Rule (RR):

∀x∀z∃!yφ[x, z, y]

∀x∀x∃a∀y(y ∈ a ↔ (∃z ∈ x)φ[x, z, y])

Rudimentary CST (RCST):

Extensionality, Emptyset, Pairing, Union, Binary Intersection

and RR
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The Rudimentary Functions (à la Jensen)

Definition: [Ronald Jensen (1972)] A function f : V n → V is
Rudimentary if it is generated using the following schemata:

(a) f(x) = xi

(b) f(x) = xi−xj

(c) f(x) = {xi, xj}

(d) f(x) = h(g(x))

(e) f(x) = ∪z∈yg(z, x)

where h : V m → V , g = g1, . . . , gm : V n → V and g : V n+1 → V

are rudimentary and 1 ≤ i, j ≤ n.
Note that f(x) = ∅ = xi−xi is rudimentary; and so is
f(x) = xi ∩ xj = xi−(xi−xj) using classical logic.
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The Rudimentary Functions (à la CST)

Definition: A function f : V n → V is (CST)-Rudimentary if it is
generated using the following schemata:

(a) f(x) = xi

(b) f(x) = ∅

(c) f(x) = f1(x) ∩ f2(x)

(d) f(x) = {f1(x), f2(x)}

(e) f(x) = ∪z∈f1(x)f2(z, x)

Proposition: The CST rudimentary functions are closed under
composition (f(x) = h(g(x))).

Proposition: Using classical logic, the CST rudimentary functions

coincide with Jensen’s rudimentary functions.
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The Rudimentary Relations
Define 0 = ∅, 1 = {0}, 2 = {0, 1}, etc. and let Ω be the class
of all subsets of 1.
Definition: A relation R ⊆ V n is a rudimentary relation if its
characteristic function cR : V n → Ω, where

cR(x) = {z ∈ 1 | R(x)},

is a rudimentary function.
Proposition: A relation is rudimentary iff it can be defined, in RCST,
by a ∆0 formula.

Proposition: If R ⊆ V n+1 and g : V n → V are rudimentary then
so are f : V n → V and S ⊆ V n, where

f(x) = {z ∈ g(x) | R(z, x)}
and

S(x) ↔ R(g(x), x).
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The axiom systemRCST ∗, 1
• The language L∗

∈
is obtained from L∈ by allowing

individual terms t generated using the following syntax
equation:

t ::= z | ∅ | {t1, t2} | t1 ∩ t2 | ∪z∈t1t2[z]

Free occurences of z in t2[z] become bound in ∪z∈t1t2[z].
RCST ∗ has the Extensionality axiom and the following
comprehension axioms for the forms of term of L∗

∈
:

A1) x ∈ ∅ ↔ ⊥

A2) x ∈ t1 ∩ t2 ↔ (x ∈ t1 ∧ x ∈ t2)

A3) x ∈ {t1, t2} ↔ (x = t1 ∨ x = t2)

A4) x ∈ ∪z∈t1t2[z] ↔ (∃z ∈ t1) (x ∈ t2[z])
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The axiom systemRCST ∗, 2
Theorem: For each term t and each ∆0-formula φ[z] of L∗

∈
there is

a term t′ of L∗

∈
such that RCST ∗ ⊢ (z ∈ t′ ↔ z ∈ t ∧ φ[z]). We

write {z ∈ t | φ[z]} for this term t′.
Some Definitions: Note: (x, y) ∈ t→ x, y ∈ ∪∪t.

{t} ≡ {t, t}, (t1, t2) ≡ {{t1}, {t1, t2}}

∪t ≡ ∪z∈tz, t1 ∪ t2 ≡ ∪{t1, t2}

{t2[z] | z ∈ t1} ≡ ∪z∈t1{t2[z]}

t1 × t2 ≡ ∪x1∈t1 ∪x2∈t2 {(t1, t2)}

dom(t) ≡ {x ∈ ∪∪t | ∃y ∈ ∪∪t (x, y) ∈ t}

ran(t) ≡ {y ∈ ∪∪t | ∃x ∈ ∪∪t (x, y) ∈ t}

t1
′t2 ≡ ∪{y ∈ ran(t1) | (t2, y) ∈ t1}, t1

′′t2 ≡ {t′1x | x ∈ t2}

Note: f ′x = f(x) and f ′′y = {f(x) | x ∈ y} if f : a→ b and
x ∈ a, y ⊆ a.
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The axiom systemRCST ∗, 3
Each term t whose free variables are taken from
x = x1, . . . , xn defines in an obvious way a function
Ft : V n → V .
Proposition: A function f : V n → V is rudimentary iff f = Ft for
some term t of L∗

∈
.

Proposition: We can associate with each term t of L∗

∈
a formula

ψt[y] of L∈ such that RCST ∗ ⊢ (y = t ↔ ψt[y]) and
RCST ⊢ ∃!yψt[y].
Definition: RCST0 is the axiom system in the language L∈ with the
Extensionality axiom and the axioms ∃yψt[y] for terms t of L∗

∈
.

Proposition: Every theorem of RCST0 is a theorem of RCST and

RCST ∗ is a conservative extension of RCST0.
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The axiom systemRCST ∗, 4
We simultaneously define formulae φt[x] such that
RCST ∗ ⊢ (x ∈ t ↔ φt[x]) and ψt[y] such that
RCST ∗ ⊢ (y = t ↔ ψt[y]) by structural recursion on terms t
of L∗

∈
:

ψt[y] ≡ ∀x(x ∈ y ↔ φt[x])

t φt[x]

z x ∈ z

∅ ⊥

{t1, t2} ψt1[x] ∨ ψt2[x]

t1 ∩ t2 φt1 [x] ∧ φt2 [x]

∪z∈t1t2[z] ∃z(φt1[z] ∧ φt2[z][x])
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The axiom systemRCST ∗, 5

If φ is a formula of L∗

∈
let φ♯ be the formula of L∈ obtained

from φ by replacing each atomic formula t1 = t2 by
∃y(ψt1[y] ∧ ψt2 [y]) and each atomic formula t1 ∈ t2 by
∃y(ψt1[y] ∧ φt2 [y]).
Proposition: For each formula φ of L∗

∈

1. RCST ∗ ⊢ (φ ↔ φ♯),

2. ⊢ (φ ↔ φ♯) if φ is a formula of L∈,

3. RCST ∗ ⊢ φ implies RCST0 ⊢ φ♯.

Theorem: [The Term Existence Property] If RCST0 ⊢ ∃yφ[y, x]
then RCST ∗ ⊢ φ[t[x], x] for some term t[x] of L∗

∈
.

Proof Idea: Use Friedman Realizability, as in Myhill (1973).
Corollary: The Replacement Rule is admissible for RCST ∗ and
hence RCST ⊢ φ implies RCST ∗ ⊢ φ.
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The axiom systemRCST ∗, 6
Corollary: RCST has the same theorems as RCST0.
Corollary: RCST ∗ is a conservative extension of RCST .
Proposition: RCST0 is finitely axiomatizable.

The proof uses a constructive version of the result of Jensen

that the rudimentary functions can be finitely generated us-

ing function composition.
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Part II

Arithmetical CST
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The class of natural numbers
We use class notation, as is usual in set theory. So if
A = {x | φ[x]} then

x ∈ A ↔ φ[x].

Let 0 = ∅ and t+ = t ∪ {t}. A class X is inductive if

0 ∈ X ∧ (∀z ∈ X) z+ ∈ X,

or equivalently, if ΓX ⊆ X where ΓX ≡ {0} ∪ {z+ | z ∈ X}.
Definition: Nat ≡ {x | ∀y ∈ x+(Trans(y) ∧ y ∈ Γy)} where
Trans(y) ≡ ∀z ∈ y z ⊆ y.

Note that Nat is inductive.

Some Weak Axiom Systems for CST – p.15/19



The Mathematical Induction Scheme

The Scheme: ΓX ⊆ X → Nat ⊆ X for each class X; i.e.
Nat is the smallest inductive class.

Proposition: Each instance of Mathematical Induction can be
derived assuming RCST ∗+Set Induction.

If Trans(y) is left out of the definition of Nat this does not
seem possible.

We focus on the axiom system, Arithmetical CST (ACST ),
where ACST ≡ RCST ∗+Mathematical Induction.

This axiom system has the same proof theoretic strength as

Peano Arithmetic and is probably conservative over HA.
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Two Theorems ofACST
Theorem: [The Finite AC Theorem] For classes B,R, if A is a finite set

such that (∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R] then there is a set function
f : A→ B, such that (∀x ∈ A)[(x, f(x)) ∈ R].
Proof: Use mathematical induction on the size of A.

Theorem: [The Finitary Strong Collection Theorem] For classes B,R, if
A is a finitely enumerable set such that (∀x ∈ A)(∃y ∈ B)[(x, y) ∈ R]
there is a finitely enumerable set B0 ⊆ B such that

(∀x ∈ A)(∃y ∈ B0)[(x, y) ∈ R] & (∀y ∈ B0)(∃x ∈ A)[(x, y) ∈ R]

Proof: Let g : n → A be a surjection, where n ∈ Nat,

so that (∀k ∈ n)(∃y ∈ B)[(g(k), y) ∈ R]. By the finite AC

theorem there is a function f : n→ B such that, for all m ∈ n,

(g(m), f(m)) ∈ R. The desired finitely enumerable set B0 is
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Inductive Definitions
Any class Φ can be viewed as an inductive definition,
having as its (inference) steps all the ordered pairs
(X, a) ∈ Φ.

A step will usually be written X/a, with the elements of
X the premisses of the step and a the conclusion of the
step.

A class Y is Φ-closed if, for each step X/a of Φ,

X ⊆ Y ⇒ a ∈ Y.

Φ is generating if there is a smallest Φ-closed class; i.e.
a class Y such that (i) Y is a Φ-closed class, and
(ii) Y ⊆ Y ′ for each Φ-closed class Y ′.

Any smallest Φ-closed class is unique and is written
I(Φ) and called the class inductively defined by Φ
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Finitary Inductive Definitions
A set X is finite/finitely enumerable if there is a
bijection/surjection n→ X for some n ∈ Nat.

Note: A set is finite iff it is finitely enumerable and
discrete (equality on the set is decidable).

An inductive definition Φ is finitary if X is finitely
enumerable for every step X/a of Φ.

Theorem: [ACST ] Each finitary inductive definition is generating.

Example: The finitary inductive definition, having the steps
X/X for all finitely enumerable sets X, generates the class
HF of hereditarily finitely enumerable sets.
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The Primitive Recursion Theorem
Theorem: Let G0 : B → A and F : Nat×B × A→ A be
class functions, where A,B are classes. Then there is a
unique class function G : Nat×B → A such that, for all
b ∈ B and n ∈ Nat,

(∗)

{

G(0, b) = G0(b),

G(n+, b) = F (n, b,G(n, b)),

Proof: : Let G = I(Φ), where Φ is the inductive
definition with steps ∅/((0, b), G0(b)), for b ∈ B, and
{((n, b), x)}/(n+, F (n, b, x)) for (n, b, x) ∈ Nat×B × A.

It is routine to show that G is the unique required class
function.
�
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HA ≤ (ACST )

Theorem: There are unique binary class functions
Add,Mult : Nat×Nat→ Nat such that, for n,m ∈ Nat,
1. Plus(n, 0) = n,
2. Plus(n,m+) = Plus(n,m)+,
3. Mult(n, 0) = 0,
4. Mult(n,m+) = Plus(Mult(n,m), n).

Proof: Apply the Primitive Recursion theorem with
A = B = Nat, first with F (n,m, k) = k+ to obtain Plus
and then with F (n,m, k) = Plus(k, n) to obtain Mult.
�

Using this result it is clear that there is an obvious
standard interpretation of Heyting Arithmetic in
BCST− +MathInd.
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