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Type setups and logic enriched typetheories

e Dependent type theories often use a fixed interpretation
of the logical notions; e.g. props-as-types or some variant.
e Logic enriched type theories leave logic uninterpreted.

Plan of Talk

Some dependent type theories and their logics
Some category notions for type dependency
Type setups

Logic over a type setup

The disjunction and existence properties
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Propositions as types
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Some dependent typetheories and ther logics, 1

e Basic Martin-Lof type theory, with the forms of type
(Ix : A)B(x), (Xx : A)B(x), Ai+A2, Np(k =0,1,...),I(A, a1,a2)

with Ay — Ao =def (H_ : Al)AQ, A1 x Ao —def (Z_ : Al)AQ.

Propositions-as-Types (a la Curry-Howard )
Proposition = Type

Prop| L | T | At DAy | AfNAg | A1V As
Type | No | N1 | A1 — Ag | Ay X Ay | A1 + Ao

Prop | (Vo : A)B(x) | (3x: A)B(x) | (a1 =4 a2)
Type | (Ilz : A)B(x) | (Xx: A)B(z) | I(A, a1, az)
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Some dependent typetheories and their logics, 2

e Martin-Lof type theory In a logical framework

This has a predicative type universe of sets/propositions:
Proposition = Set = Datatype

(Vx : A)B(x) : Prop can only be formed if A : Set.

e Coq type theory (a calculus of inductive constructions)

This has a predicative type universe Set of datatypes and

an impredicative type Prop where (Ilx : A)B(x) : Prop can

be formed even when we do not have A : Set.

e The impredicative Russell-Prawitz representation of logic

In Prop 1S used; This representation can be given in terms

of the Russell-Prawitz modality, J, where J asigns to each

type A the type JA : Prop, where

JA = (Ilp: Prop)((A — p) — p).
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Some dependent typetheories and ther logics, 3

Propositions-as-Types (a la Russell-Prawitz)
Proposition = type in Prop

Prop

L T

AlDAQ

A1 N Ao

A1V Ay

T'ype

JNg | J N1

A1—>A2

J(Al X AQ) J(Al + AQ)

Prop

(Vx: A)B(z) | (dz: A)B(x)

(a1 =4 a2)

T'ype

(Ix : A)B(x) | J(Xz : A)B(x)

JI(A, a1,a2)

JA = (Ilp: Prop)((A — p) — p).

JA : Prop
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Some dependent typetheories and their logics, 4

e So the propositions-as-types- a-la-Russell-Prawitz
representation of intuitionistic logic is the result of applying
the propositions-as-types-a-la-Curry-Howard representation
of intuitionistic logic followed by the j-translation of
Intuitionistic logic into itself.

e The j-translation generalises the ——-translation for any
unary connective j satisfying the laws

¢ Do and (¢ 2 j¥) D (j¢ D jy).
e Note: For types A, B,
j1:A—-JA and j2:(A— JB)— (JA— JB)

jl= Az : A;p: Prop,y: A — p)y(r)

where :
2=M:A— JB,y: JA) y(JB)(x)
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L ogic enriched typetheories

These are obtained from type theories by simply adding a
logic ‘on top’, using the types of a type theory as the
possible ranges of the free and bound variables.

e Dependently Sorted Logic is obtained as a logic
enrichment of an elementary type theory whose types and
typed terms are just the sorts and sorted terms built up
using sort and term constructors that may be dependent.

e Each sort has the form F(ty,...,t,), where F'Is a sort
constructor and ¢4, . . ., t,, are terms whose types match the
argument types of F.

e Makkail’s FOLDS is dependently sorted logic without func-

tion symbols.
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Category notions for the semantics of type dependency

o Category with attributes Cartmell 1978, Moggi 1991,
Type category Pitts 1997

e

Contextual category Cartmell 1978, Streicher 1991

e

Category with families Dybjer 1996, Hoffman 1997

# Category with display maps (less general) Taylor 1986,
Lamarche 1987, Hyland and Pitts 1989

Comprehension category (more general) Jacobs 1991

e

# other relevant notions: locally cartesian closed
categories, fibrations, indexed categories

#® Type setups (for syntax) new notion
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Category with families (CwF)

# a category Ctxt of contexts I and substitutions
o : A — T', with a distinguished terminal object ( ),

# afunctor T : Ctxt? — Fam mapping
['—{Term(l'; A)} aerype(r)
and, if o : A — I" then
A € Type(T) — Ao € Type(A)
a € Term(I',A) + aoc € Term(A, Ao)

# an assignment, to each context I' and each
A € Type(I'), of a comprehension (I'.A, p4,v4) such that

pa:IA—=Tandvy € Term(I".A, Apa);

l.e. a terminal object in the category of (I, 6, a) such
that 60:1" —T anda € Term(I”, Af).
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Thelarge CwF of sets

°

Ctxt = Set and, for each set I,

Type(I) Is the class of families of sets
A= {Ai}ie] c Setl,

Term(l,A) =]l,e;Aiand, ifo : J — IIn Set,
Ao ={Asj}jer;

ao ={agj}jes, IOr a = {ai}ier.

[.A = Zie] Ay,

pa(i,x) =1 for (i,x) € I.A,

e

© o o o o o

VA = {I}(i,x)el.A-
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Type Setups, 1

The notion of a type setup abstracts away from the details
of how terms and types are formed, but keeps the following
notions.

9
K

contexts I,

substitutions o : A — I, between contexts, the contexts
and substitutions forming a category C'tzt,

ir:I'—=TIstheidentityonT"and co7: A — I'Is the
compositionofc: A - T"and 7 : A — A.

For each context I', there Is the set T'ype(I") of ['-types A
and the set Term(I', A) of ['-terms a of type A, for each
['-type A.

Substitutions must ‘act’ on types and terms to give a
functor T : C'txt®? — Fam, where Fam IS the category of
set-indexed families of sets.

Predicate logic over a type setup — p.11/3



Type Setups, 2

e For each context I

T(F) — {Term(F, A)}AEType(F)
e For each substitutiono : A =T ,T(o) : T(I') = T(A)
maps
A € Type(T) — Ao € Type(A)
a € Term(I',A) +— aoc € Term(A, Ao)

e such that
Air = Aand atr = a

and if also 7 : A — A then

A(coT) = (Ao)r and a(c o 7) = (ao)T.
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Type Setups, 3

e Each context I' is a finite sequence
x1: A1, ..o x, Ay

of typed variable declarations.

e The empty sequence ( ) Is a context.

olfI'=u21:A1,...,2,: A, then

IM=T,2:A = z1:A1,...,2,: A,z : A IS a context iff
# ['Is a context,

# zisavariable, notin {z,...,z,} and

® A e Type(l).
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Type Setups, 4

o If I', A are contexts, with

I'=x1:A1,...,2p 1 Ay,

the each substitution A — I" has the form

r1:=a1,..., Ty = AplAa_T.
oIfIV=u21:A1,...,2,: A,z : A IS a context then
o' =lo,x:=ala_p = [r1 = a1,..., 2, = an, T = a|a_I

IS a substitution A — I iff

o=|r1:=ai,...,xy = ap|a_r IS @ SUbstitution, and
a € Term(A, Ao).
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Type Setups, 5

olf'=a1:Ay,...,2,: A, 1Sacontextthen, fori=1,..., n,
A; € Type(T') and x; € Term(T', A;).

o lfo =[x1:=ai,...,xy = an]a_r IS @ sSubstitution then it is

the unigue substitution A — I" such that, for: =1,... n,

X0 — Uy.
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Type Setups, 6

o If I', A are contexts such that I' C A (i.e. every declaration
In I Is also a declaration in A) then

Type(I') C Type(A) and Term(I', A) C Term(A, A)
for each A € Type(T).

e Also,ifI'=ux1: A1,..., 2, : A, then

IALT = |1 :=T1,...,%n = Tp|A_T

IS an Inclusion substitution; I.e. for A € T'ype(I') and
a € Term([', A),

Aunr = Aand aea_r = a.

o IfI"=T,2: Athen (I, .,pv_, x) IS @ comprehension.
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L ogic over atype setup

e We assume given a type setup with a predicate signature
consisting of a set of predicate symbols, each assigned a
context as its arity. We define the formulae and inference
rules of a formal system of dependently sorted intuitionistic
predicate logic with equality, whose sorts are the types of
the type setup and whose individual terms are the terms of
the setup.
e We use the predicate signature to define the atomic
['-formulae to have the form

P(by,...,by)
where P Is a predicate symbol of arity
A=y :B1,...,9m : Bn)
and by, ..., b, are the terms of a substitution
Y1 :=0b1,. .., Ym = bn|r_A.
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Thel-Formulae

e The formulae are inductively generated using the
following rules.

o Every atomic I'-formula P(b4,...,b,) Is a I'-formula.

® If a;,ao are I'-terms of a I'-type A then (a; =4 a2) IS a
['-formula.

1 and T are I'-formulae.

°

® |If 41,49 are I'-formulae then so is (1 0%s), where
O e {A,V,D}.

® Ifygisa (I',z: A)-formula then (Vx : A)yg is a
I'-formulae where V € {V,3}.
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Substitution

We can define substitution into formulae in more or less the
usual way by structural recursion on the formula. So, for
each I'-formula ¢, we associate with each substitution

7: A — I a A-formula ¢7 using the following equations.

If = P(by,...,by) then ¢ = P(by7,...,b;n7).
If ¢ = (a1 =4 a2) then ¢7 = (a17 =4, ao7).
If = L or T then ¢ = L or T respectively.

If = (¢1092), where O € {A,V, D}, then
o1 = (Y170¢9T).

If = (Vz: Ao, where V € {V, 3}, then
o1 = (Vo : At)por’, where 7' = [7, 2 := 2](A z:Ar)— (T 2:A) -

© o o @

°
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Therulesof Inference, 1

e These are essentially the standard sequent formulation of
the natural deduction rules for intuitionistic predicate logic
with equality, using sequents of the form (I') ® — ¢ where I'
IS a context, @ Is a finite sequence of I'-formulae and ¢ is a
['-formula.

e €.g. here are the quantifier rules:

(Cyz: A) & = 1y (') & = (Vx: A)yyg
v (T) @ = (Va : A)ghy ) (22 4) & = vola/z]
o Mossiy D=
(F) b = (E|$ : A)wO (EIE) (F) o = qb

o Here a € Term(I', A) and [a/x] = [ip, @ := alp_ (1 4. 4-
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Therulesof Inference, 2

e And here are the equality rules:

(=1)

(M® = (a=Aa) (=F) E

where a, a1, as are I'-terms of type A.




Thedigunction and existence properties, 1

Let & be a finite sequence of A-formulae.
e ® has the disjunction property If, for all A-formulae v, 1o,

- (A) & = (Y1 Vi) Implies - (A) & = ¢; for some ¢ € {1,2}.

e ¢ has the existence property Iif, for all A-types A and
every (A, z : A)-formula vy,

F(A) P = (dz: A)yyg implies + (A) & = yyla/x]
for some a € Term(A, A).

e O Is saturated If it has both properties.

e When Is & saturated?
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Thedigunction and existence properties, 2

Define (A) ¢y if ¢ € X, for A-formulae ), is determined
recursively using the following, where

Xo = | F(A) Q=i

® If ¢ Is atomic, an equality or L or T then ¢ € & Iff
Y € AXp.

(Y1 Aipg) € Xiff ¢ € X and ¢ € X

(1 Vo) € X iff iy € X oropy € X

(11 D 1p9) € X iff ¢y € X implies ¢, € X and ¢ € Ay,

(Vx : A)pg € X iff ygla/x] € X for all a € Term(A, A) and
Y € Ap.

(Jx : A)pg € X Iff gla/x] € X for some a € Term(A, A).

© o o o

°
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Thedigunction and existence properties, 3

Theorem: The following are equivalent:
1. ¢ is saturated.
2. (A) ®|¢ forall p € .
3. For every A-formula v
F(A) D=1y <= (A) Dy

e €.9. () is saturated

Lemma 1:
1. (A) ®|yp implies - (A)® = 1,

2. If - (A)D = dthen  [(A)D, bl iff (A)D|y].

Proof: By structural induction on .
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Thedigunction and existence properties, 4

Lemma 2: If (A,VD)®|¢ for all ¢ € @ then
- (A, T)® = ¢ iImplies (A, VI')®|.
Definition: (A, VD)®|y iff
(A, I)® = ¢ and (A)®7|yr for all 7 € Subst(A,T),

where Subst(A,T) Is the set of all substitutions 7: A — A, T’
such that yr = y for all y € var(A).

Corollary: If (A)®|¢ for all p € ® then
- (A)® = ¢ Implies (A)®|q.
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Types as propositions

e Think of a type A as a proposition which is true if there Is
a term of type A.

olf Ay,... A,, Aare A-types and z1,...,x, are distinct
variables not declared in A so that
A= (Ax1:Aq,...,2,: Ay) IS @ context we write

(A) Ay,..., Ay = A

If there is a A’-term of type A.
e Also, for each A-type A let!A be the A-formula (3_: A)T.
Theorem: The following are equivalent:

1 F(A) 1A, ... 1A, = 1A,
2. F (A) = 1A
3. (A)Ay,... A, => A
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[I-types, 1

e We say that a type setup has II-types if the standard
formation, introduction, elimination and computation rules

for II-types are correct for the type setup; i.e. ifI"=T,z: A
IS a context then there are the following assignments:

B € Type(I") — (Ilx : A)B € Type(T),

be Term(I’, B) — (Az)b € Term(T', (Ilz : A)B),
A

i:g:zggm " } — app(f,a) € Term(I', Bla/x])

such that if f = (Ax)b then app(f,a) = bla/x].
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[1-types, 2

e These must commute with substitution: i1.e. for each

o: A\ —T,
(lx : A)B)o = (Ilx : Ao)Bo’,
(Ax)b)o = (Az)bo’,
app(f,a)o = app(fo,ac),

where o' = [0,z := z]a_ : A = TV,
e Also, If y & var(I") then
(IMx : A)B = (Ily : A)Bly/z] and (Ax)b = (\y)bly/x].

e The requirement that the type setup has other forms of
type can be explained in a similar way.
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Propositions astypes, 1

e We assume given a type setup with predicate signature
that has the forms of type (I1z : A)B, (X« : A)B, with the
defined forms A — B and A x B, the forms of type

A1+ A, N.(k =0,1,...) and also has associated with each
predicate symbol P of arity the context A a A-type Pr(P).
e Then the propositions-as-types interpretation recursively
associates with each I'-formula ¢ a I'-type Pr(¢) using the
following rules.

® If ¢ Is the atomic I'-formula P(by, ..., b, ) then Pr(¢) Is
the I'-type Pr(P)c where

o= [y1:=b1,...,Ym = bpJr—a.

® Ifopis (a1 =4 a2) then Pr(¢) is the I'-type I(A, a1, a2).
® Ifpis L or T then Pr(¢)Is Ny or N; respectively.
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Propositions astypes, 2

® If ¢is (v10O2), where O is one of A, Vv, D then Pr(¢) IS
(Pr(y1)0"Pr(vys)) where O’ is the corresponding one of
X+, —.

® lfois (Vx: A)py where V is one of V, 3 then Pr(¢) IS
(V'z : A)Pr(y9) where V' is the corresponding one of
11, 3.

Proposition: The interpretation is sound; i.e. iIf - (A) & = ¢
then (A)® =>p, ¢, Where, If & = ¢1,..., ¢ then

(A)D =>p, & iff (A) Pr(61),..., Pridy) = Pr(s).

e But the Interpretation is not complete as the type theoretic

axiom of choice holds: i.e.
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Propositions astypes, 3

Proposition: For any context I' and any distinct variables
z,y, notdeclared inT', if AisaTI'-type, Bisa (I',z : A)-type
anddisa (I',x: A,y : B)-formula then
(I') (Vz: A)(Jy : B)#
=>p, (dz: (Ilz : A)B)(Vx : A)flapp(z, x)/y].

e If 3 IS a set of sequents we write X+ (I') & = ¢ If the
sequent (I') & = ¢ can be derived using the rules of
Inference for intuitionistic predicate logic and the sequents
In > as additional axioms.

e Let AC be the set of all sequents

() (Vz: A)Jy : B)8 = (3z: (llx : A)B)(Vx : A)Blapp(z, z)/y]

and let PaT" be the set of all sequents having one of the
forms (I") ¢ = !Pr(¢) or (I') |Pr(¢) = o.
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Propositions astypes, 4

Theorem: The following are equivalent

1. (A) @ =p, 9,

2. PaTt (A) ® = ¢,

3. ACUY F(A) ® = 9,
where X is the set of sequents having one of the forms:
® (A) P=Pr(P),

o (A)!Pr(P)= P,

o (I') = (V_: Ng)L,

o I'N) = \V_:A+B)(lAV!B),

® ') = (V_:1(A a1,a2)) (a1 =4 a2).

Here P is a predicate symbol of arity A, A, B are I'-types and

ai,as are I'-terms of type A.
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