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Type setups and logic enriched typetheories

e Dependent type theories often use a fixed interpretation
of the logical notions; e.g. props-as-types or some variant.
e Logic enriched type theories leave logic uninterpreted.
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Some dependent typetheoriesand their logics, 1

e Basic Martin-Lof type theory, with the forms of type
(Ix : A)B(x), (Xx : A)B(x), Ai+A9, Ni(k =0,1,...),I(A, a1, a2)

with Ay — Ao =def (H_ : Al)AQ, A1 x Ao =def (Z_ : Al)AQ.

Propositions-as-Types (a la Curry-Howard )
Proposition = Type

Prop| L | T | Ai; DAy | AfNAg | A1V As
Type | Nog | N1 | A1 — Ay | Ay X Ay | A1 + Ao

Prop | (Vx: A)B(x) | (3x: A)B(x) | (a1 =4 a2)
Type | (Ilz : A)B(x) | (Xx: A)B(z) | (A, a1, a2)
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Some dependent typetheoriesand ther logics, 2

e Martin-Lof type theory In a logical framework

This has a predicative type universe of sets/propositions:
Proposition = Set = Datatype

(Vx : A)B(x) : Prop can only be formed if A : Set.

e Cog type theory (a calculus of inductive constructions)

This has a predicative type universe Set of datatypes and

an impredicative type Prop where (Ilz : A)B(z) : Prop can

be formed even when we do not have A : Set.

e The impredicative Russell-Prawitz representation of logic

In Prop 1s used; This representation can be given in terms

of the Russell-Prawitz modality, J, where J assigns to each

type A the type JA : Prop, where

JA = (Ilp: Prop)((A — p) — p).
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Some dependent typetheories and their logics, 3

Propositions-as-Types (a la Russell-Prawitz)
Proposition = type in Prop

Prop

L 1l

AlDAQ

A1 N Ay

A1V Ay

T'ype

JNo | JN1

A1—>A2

J(Al X Ag) J(Al + AQ)

Prop

(Vx: A)B(z) | (Jz: A)B(x)

(a1 =4 a2)

T'ype

(Ix : A)B(x) | J(3x : A)B(x)

JI(A, a1,a2)

JA = (Ilp: Prop)((A — p) — p).

JA : Prop
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Some dependent typetheoriesand their logics, 4

e So the propositions-as-types- a-la-Russell-Prawitz
representation of intuitionistic logic is the result of applying
the propositions-as-types-a-la-Curry-Howard representation
of intuitionistic logic followed by the j-translation of
Intuitionistic logic into itself.

e The j-translation generalises the ——-translation for any
unary connective j satisfying the laws

¢ Do and (¢ 2 j¥) D (j¢ D jy).
e Note: For types A, B,
j1:A—-JA and j2:(A— JB)— (JA— JB)

j1=Ax:A,p: Prop,y: A—p)y(x)

where :
j2=M:A— JB,y:JA) y(JB)(x)
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L ogic enriched typetheories

These are obtained from type theories by simply adding a
logic ‘on top’, using the types of a type theory as the
possible ranges of the free and bound variables.

e Dependently Sorted Logic is obtained as a logic
enrichment of an elementary type theory whose types and
typed terms are just the sorts and sorted terms built up
using sort and term constructors that may be dependent.

e Each sort has the form F'(ty,...,t,), where F'Is a sort
constructor and ¢4, . . ., t,, are terms whose types match the
argument types of F.

e Makkai's FOLDS is dependently sorted logic without func-

tion symbols.
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Category notions for the semantics of type dependency

o Category with attributes Cartmell 1978, Moggi 1991,
Type category Pitts 1997

e

Contextual category Cartmell 1978, Streicher 1991
Category with families Dybjer 1996, Hoffman 1997

# Category with display maps (less general) Taylor 1986,
Lamarche 1987, Hyland and Pitts 1989

Comprehension category (more general) Jacobs 1991

e

e

# other relevant notions: locally cartesian closed
categories, fibrations, indexed categories

# Type setups (for syntax) new notion
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Category with families (CwF)

#® a category Ctat of contexts I' and substitutions
o : A — T', with a distinguished terminal object ( ),

# afunctor T : Ctxt? — Fam mapping
[ {Term(l'; A)} aerype(r)
and, if o : A — I" then
A € Type(T) — Ao € Type(A)
a € Term(I',A) +— aoc € Term(A, Ao)

# an assignment, to each context I' and each
A € Type(I'), of a comprehension (I'. A, p4,va) such that

pa:lA—=Tandvy € Term(I".A, Apa);

l.e. a terminal object in the category of (I, 6, a) such
that 60:1" — T anda € Term(I”, Af).
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Type Setups, 1

The metamathematical notion of a type setup Is an
abstraction of the syntactic notion of a dependent type
theory, as is the notion of a CwF'. The notion keeps

# variables, z, types A and terms q,

#® contexts I' as finite sequences of variable declarations ,
x: A,

# substitutions, o : A — T, as finite sequences of variable
assignments z := a,

# forms of judgement

(') A type A € Type(T)
(' A=HB A~r B
(M a:A a € Term(I', A)
Ma=0b:A a~rAb
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Type Setups, 2

But it does not require judgements to be generated using
rules of inference or types and terms to be generated using
rules of expression formation. Like a CwF’, contexts and
substitutions form a category C'txt and there iIs a functor

T : Ctxt°? — Fam such that

® for each context I’
T(F) — {Term(F, A)}AEType(F)

# for each substitutionoc: A -1 ,T(o): T(I') = T(A)
maps

A € Type(T) — Ao € Type(A),
a € Term(I',A) + ao € Term(A, Ao).
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Type Setups, 3

e The relations ~r and ~r 4 are equivalence relations on

Type(I') and Term(I', A) respectively, that are invariant
under substitutions.

e In extensional set-theoretical mathematics they can be
taken to be identity relations on sets, while in Martin-Lof’s
type theory they can be taken to be definitional equalities
on sets.

e If I' and A are contexts such thatI' C A; I.e. every
variable declaration of I' Is a variable declaration of A, then

T) -+ = (A) -

and there is an inclusion substitution map tao_.r : A — T

such that
(') A type = (A) Aiar=A

(M a:Atype = (A)aar=a:A
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Type Setups, 4

e A finite sequence of variable declarations
I'=x1:A1,...,2,: Ap
IS a context Iff, for: =1,..., n,
1. I'c;, =21: Ay, ..., ;-1 : A;—1 1S @ context,
2. A; € Type(I';), and
3. z; Is I';-free.

and then z; € Term(I', A;) fori=1,...,n.
e Also a finite sequence of variable declarations

o=|x1:=ay,...,Tp = Ap|A_T
IS a substitution, A — TI', iff, fori =1,... n,

1. Oci = [5131 = Aal,...,Tj—1 = ai_l]A_)pQ.,, and
2. a; € Term(A, Ajo;).
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Type Setups, 5

e Suppose that I' and A are contexts, with
I'=x1:A1,...,2,: Ap.

If o = [z1 :=a1,...,2, = an]a_r IS @ substitution A — T,
thenfori:=1,.... n,

(A) ;0 = Q4 . AZ'O‘.
e lfalsoo’: A — I'"such that, fori=1,... . n,
(A) xial — a; . Aial

then, for each A € Type(T'), (A) Ac’ = Ao

and, for each a € Term(I', A), (A) ac’ = ao : Ao.
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Type Setups, 6. Some notation

elf '=ux1:Ay,...,xn: Ay iSacontext, A € Type(I') and x IS
['-free then we write
(Ix: A)

for the context x1 : A1,..., 2, : Ap,x 1 A,
o If Aisacontextsuchthat (--- (A, z1: Ay), -, 2, : Ap) IS
also a context then we write this context

(A, T)

WhereFExlel,...,a:n:An.
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Type Setups, 7. Some notation

elfo =[x :=ay,...,x, :=ap]a_r IS a substitution A — T’
and a € Term(A, Ao) then we write

[07 L= a]A—>(F,x:A)

for the substitution [z :==aq,...,xy == ap, T = a]AH(F,x:A).
e More generally, if (I', A) Is a context then we can define a
substitution |0, 7], ) fOr suitable sequences 7 of variable

assignments.
o If (I') a : Athen we write

/]

for the substitution [ir .1, @ := alr_, (1 3.4
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L ogic over atype setup

e We assume given a type setup with a predicate signature
consisting of a set of predicate symbols, each assigned a
context as its arity. We define the formulae and inference
rules of a formal system of dependently sorted intuitionistic
predicate logic with equality, whose sorts are the types of
the type setup and whose individual terms are the terms of
the setup.
e \WWe use the predicate signature to define the atomic
['-formulae to have the form

P(by,...,by)
where P Is a predicate symbol of arity
A=y :B1,...,9m : Bn)
and by, ..., b, are the terms of a substitution
Y1 :=0b1,...,Ym = bn|r_A.
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Thel-Formulae

e The formulae are inductively generated using the
following rules.

o Every atomic I'-formula P(bq,...,b,) Is a I'-formula.

® Ifaj,a € Term(I', A), where A € Type(T'), then
(a1 =4 ag) 1S a I'-formula.

1 and T are I'-formulae.

e

® |If 41,49 are I'-formulae then so is (1 0s), where
O e {A,V,D}.

® Ifygisa (I',z: A)-formula then (Vx : A)yg is a
['-formulae where V € {V, 3}.
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Substitution

We can define substitution into formulae in more or less the
usual way by structural recursion on the formula. So, for
each I'-formula ¢, we associate with each substitution

7 : A — I' a A-formula ¢7 using the following equations.

If ¢ = P(by,...,by) then ¢ = P(by7,...,b;,7).
If ¢ = (a1 =4 a2) then ¢7 = (a17 =4, ao7).
If = L or T then ¢ = L or T respectively.

If o = (¢10192), where O € {A,V, D}, then
o1 = (P170¢0T).

If o = (Vz: Ao, where V € {V, 3}, then
o1 = (Vo : At)por’, where 7' = [7, 2 1= 2](A z:Ar)— (T 2:4)

© o o @

°
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Therulesof Inference, 1

e These are essentially the standard sequent formulation of
the natural deduction rules for intuitionistic predicate logic
with equality, using sequents of the form (I') & — ¢ where I'

IS a context, ¢ Is a finite sequence of I'-formulae and ¢ is a
['-formula.

e €.g. here are the quantifier rules:

(Ix: A) & =y (') & = (Va : A)yyg
e = e " T A) 0= wnlajs
o Doss Drscen

(F) b = (Elx : A)¢O (EIE) (F) o = qb

o Here a € Term(I', A) and [a/x] = [tr—r, 7 = a]p_ (1 2. 4)-
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Therulesof Inference, 2

e And here are the equality rules:

(F)(I) — (CL1 = A CLQ)
[® = Yglay/x]

(=1)

(P = (a =4 a) (= E) Er)q) = g |ag/x]

where A € Type(I') and a, a1, as € Term(I', A).




Thedigunction and existence properties, 1

Let ® be a finite sequence of A-formulae.
e (A, ®) has the disjunction property if, for all A-formulae

¢17¢21
F (A) & = (Y1 Vo) Implies = (A) & = ¢; for some ¢ € {1,2}.

e (A, ®) has the existence property If, for all A € Type(A)
and every (A, z : A)-formula 1y,

F(A) ® = (dx: A)yg implies F (A) & = yygla/x]
for some a € Term(A, A).

e (A, ®) Is saturated if it has both properties.
e When is (A, ¢) saturated?
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Thedigunction and existence properties, 2

Given a finite sequence ¢ of A-formulae let

Xo={v | F(A) ®=¢}. Wedefine (A) ¢|y iff p € X,
where ¢ € X' Is defined by the following structural recursion
on the number of logical symbols in the A-formula .

Y € X Iff one of the following hold.

# IS atomic, an equality or L or T and ¢ € Ayj.
® Y= (11 Ao)and [y € X and i € X].
® = (Y1 V) and [y € X oryy € X).
® = (11 Do) € Xy and [y € X implies ¢ € X].
® = Vo: A € Xy and [yyla/z] € X for all

a € Term(A, A)].
® = (dx: Ay and [yygla/x| € X for some

a € Term(A, A).
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The saturation theorem, 1

Theorem: The following are equivalent:
1. (A, ®) Is saturated.

2. (A) @|¢ for all ¢ In .

3. For every A-formula ¢

F(A)P =19 <= (A) D
Corollary: (A, Q) is saturated

Proof of Theorem:

3 = 1&2 : Trivial.
1=3: By Lemma 1.
2= 3: By Lemma 2.
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The saturation theorem, 2

Lemma 1:

1. (A) @|y implies - (A)® = ),

2. F(A)® = ¢y implies (A) &y, If (A, P) Is saturated.
Proof: By structural induction on 1.

o If (A,T") Is a context let 7 € Subst(A;T") If 7 IS a substitution
A — (A,T) of the form [ta— A, pla—(AT)-

Lemma 2: If - (A, T) & = « then, for all 7 € Subst(A; '),

(A) &7|pr for all ¢ In & iImplies (A) &7|yT.

Proof: By induction following the derivation of (A, ') & = .
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Types as propositions

e Think of a type A as a proposition which is true if there Is
a term of type A.

e For each A € Type(A), where A Is a context, let A be the
A-formula (4_: A)T.

Theorem: If Ay,... Ay, A€ Type(A) and xq, ..., z, are
distinct variables, so that (A, z1 : Ay,..., 2, : Ay) IS @
context, then the following are equivalent:

1. F(A) Ay, ... 1A, = 1A,
2. F(Ayxy: Ay, ..o o, s Ay) = A,
3. thereisatermin Term((A,xy : Ay, ..., xn : Ap), A).

Proof: 3 =2 < 1listrivial. 2 = 3 uses Saturation.
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[I-types, 1

e We say that a type setup has II-types if the standard
formation, introduction, elimination and computation rules
for 11-types are correct for the type setup; I.e. if

I"=(I',x : A) is a context then there are the following
assignments:

B € Type(I") — (Ilx : A)B € Type(T),

b e Term(I’, B) — (Az)b € Term(I', (Ilz : A)B),
r A

Ly } — app(f,a) € Term(T’, Bla/])

such that if f ~1,.4)p (Ax)b then app(f,a) ~pja/a) bla/x].
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[1-types, 2

e These must commute with substitution; 1.e. for each
o: A\ —T,

(Ilx : A)B)o ~a (Ilx : Ao)Bo’,
(Ax)b)o ~A (Az)bo’,
app(f,a)o ~na app(fo,ao),

where o' = [0,z := z]a_1 : A = TV,

e Also, If y Is I'-free then
(Hz : A)B ~r (Ly : A)Bly/x] and (Az)b ~r (Ay)bly/x].

e The requirement that the type setup has other forms of
type can be explained in a similar way.
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Propositions astypes, 1

e WWe assume given a type setup with predicate signature
that has the forms of type (Ilx : A)B, (3Xz : A)B, with the
defined forms A — B and A x B, the forms of type

A1+ Ao, N.(k=0,1,...),I(A,a1,a2) and also has
associated with each predicate symbol P, of arity the
context A, a type P € Type(A).

e Then the propositions-as-types interpretation recursively
associates with each I'-formula ¢ a type Pr(¢) € Type(I)
using the following rules.

® If ¢ Is the atomic I'-formula P(by, ..., b, ) then Pr(¢) Is
the type Py :=b1,...,Ym = bn]r—a € Type(T).

® If IS (a; =4 ao) then Pr(¢) Is the type
I(A, a1, a2) € Type(T).

® Ifpis L or T then Pr(¢)Is Ny or N; respectively.
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Propositions astypes, 2

® If ¢is (v10O2), where O is one of A, Vv, D then Pr(¢) IS
(Pr(y1)0"Pr(vys)) where O’ is the corresponding one of
X+, —.

® lfois (Vx: A)ypg where V is one of vV, 3 then Pr(¢) Is
(V'z : A)Pr(y9) where V' is the corresponding one of
11, 3.

Proposition: The interpretation is sound; i.e. If
- (A) ¢1,...,01r = ¢ then there is a term In

T@Tm(<A7x1 : PT(¢1), ey Lk Pr<¢/€))7 PT(¢))7
where z4, ..., z; are distinct A-free variables.
e But the interpretation is not complete as the type theoretic

axiom of choice holds: I.e.
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Propositions astypes, 3

If I' IS a context, x, y are distinct I'-free variables,

A € Type(l'), B € Type((I';x : A)) and 4 Is a

(I'x : A,y : B)-formula then let ac(I',z : A,y : B, 60) be the
sequent

(I') (Vo : A)(Jy : B)f = (Fz: (Ilx : A)B)(Vx : A)Blapp(z,x)/y],

and let AC be the set of all such sequents.
Proposition: If - ac(l',z: A,y : B,0) then there is a term in

Term((I', _: Pr((Vx: A)(Jy : B)#)),
Pr((3z: (llx : A)B)(Vx : A)Blapp(z,2)/y])).
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Propositions astypes, 4

e If X Is a set of sequents we write X - (I') & = ¢ If the
sequent (I') & = ¢ can be derived using the rules of

Inference for intuitionistic predicate logic and the sequents
In 3 as additional axioms.

e Let PaTl be the set of all sequents having one of the forms

(') ¢ = Pr(¢) or (I')!Pr(¢) = ¢.

e Let Pal,:0mi- De the set of all those sequents in Pa’l’ where
¢ 1S an atomic formula P(by, ..., by).
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Propositions astypes, 5

Theorem: The following are equivalent
1. Thereisatermin

Term((A,z1: Pr(¢1), ..., x5 0 Pr(éw)), Pr(9)),

2. PaTF (A) ¢1,...,0, = ¢,
3. ACU PaTyiomic US F (A) ¢1,..., ¢ = &,

where X is the set of sequents having one of the forms:

® (I') = (V_: No)lL,

o I') =(V_:A+B)(lAV!B),

® (I') = (V_:I(A a1,a2)) (a1 =4 az).

Here A, B € Type(I') and ay,as € Term(I', A).

Predicate logic over a

type setu
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