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Part |

Rudimentary CST




The Axiom Systems CZF, BCST and RCST

e CZF is formulated in the first order language Lc for
Intuitionistic logic with equality, having € as only non-logical
symbol. It has the axioms of Extensionality, Emptyset,
Pairing, Union and Infinity and the axiom schemes of
Ag-Separation, Strong Collection, Subset Collection and
Set Induction. (CZF+ classical logic)= ZF.

e BCST (Basic CST) is a weak subsystem of CZF. It uses
Replacement instead of Strong Collection and otherwise
only uses the axioms of Extensionality, Emptyset, Pairing,
Union and Binary Intersection (z Ny IS a set for sets x, y).

e RCST (Rudimentary CST) is like BCST except that it uses
the Global Replacement Rule (GRR) instead of the
Replacement Scheme.

e Ap-Separation can be derived in RCST and so in BCST.
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The Global Replacement Rule

e The Replacement Scheme: For each formula ¢[z, z, y],
where z, z,yisalist zy1, ..., z,, z,y of distinct variables:

VaVa{(Vz € x)Jyo|x, z,y| — JaVy(y € a «— (Iz € x)p|z, 2,y])}
e The Global Replacement Scheme:
VaVzAlydlz, z,y] — VaVrIaVy(y € a « (32 € 2)9[z, 2,Y])

e The Global Replacement Rule (GRR):

VaVz3lyolx, z, y]
VaVrIaVy(y € a « (3z € 2)¢[x, 2,9))

e Rudimentary CST (RCST): Extensionality, Emptyset,

Pairing, Union, Binary Intersection and GRR
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The Rudimentary Functions (a la Jensen)

Definition: [Ronald Jensen (1972)] A function [ : V™ — V'is
Rudimentary if it is generated using the following schemata:

(@) f(z)=x;

(b) f(z) =zi—x;

(©) f(z) = {mi, x5}
(d) f(z) = h(g(z))

(@) f(z) =U.eyg(z, z)

where h : V™ =V, g=¢q1,...,0m : V" —=Vandg: V" -V
are rudimentary and 1 < 1,7 < n.

Note that f(z) = () = z; —z; is rudimentary; and so is

flz) =x; Nx; = x;—(x;—x4) using classical logic.
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The Rudimentary Functions (a la CST)

Definition: A function f : V™ — V is (CST)-Rudimentary if it is
generated using the following schemata:

@ f(z) ==

(b) f(z)=10

) f(z) = fi(z) N fa(z)
d) f(z) ={f1(z), f2(2)}
(&) f(z) =U.ep(a)f2(2,2)

Proposition: The CST rudimentary functions are closed under
composition (f(z) = h(g(z))).

Proposition:  Using classical logic, the CST rudimentary functions

coincide with Jensen’s rudimentary functions.
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The axiom systemRCST™, 1

e The language L7 Is obtained from L< by allowing
iIndividual terms ¢ generated using the following syntax
equation:

t =2 ‘ 0 ‘ {tl,tg} ‘ t1 Mo ‘ Uzgtltz[z}

Free occurences of z In t3[z] become bound in U, ¢, t2|z].
RCST™ has the Extensionality axiom and the following
comprehension axioms for the forms of term of £Z:

Al) z €l — 1

AQ) T €11 MNiy <—>($€t1/\$€t2)
A3) IE{tl,tQ} — (x:tl\/x:tg)
Ad) x € Uy tolz] «— (dz € ty) (x € to]2])
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The axiom systemRC'ST™, 2

Some Definitions:

{t}y = {t,t}, {talz] | z €1} = User, {t2]2]}
{toty, = {to | z €11} Ut = U,z
2 €t | 22l = User {2}, t1 Ute = U{t1, 12}

<ti=to>= {Dlppnpy <t Ct>= <tiNta=t >

Theorem: There is an assignment of a term < 6 > of L to each
Ap-formula 0 of LZ such that

ROST*F [z €< 0>] « [(z=0)Ad].

Corollary: For each term ¢ and each Ag-formula 6|z] of LZ, if
{ret|flz]} =[x et|<bx] >]then

RCST*Fze{xet|lx|} « zetNbz].
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The definition of < 6 >

The assignment of a term < ¢ > for each Agp-formula 6 of L
IS by structural recursion on ¢ using the following table.

t1 € 19 <{t1}gt2>
1 )
01 N 0o <O >N<by>
01V 6o <O >U<b >
01 — 6o << 0 >C< by >>
(dx € t)0|x] Uzet < Ox] >
(Vret)flz] | <t C{xet|fzx]} >

We have shown that each instance of Ayj-Separation Is a
theorem of RC'ST™.
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The axiom systemRC ST™, 3

Each term ¢ whose free variables are taken from
r=ux,...,T, defines in an obvious way a function

Ft V-V,

Proposition: A function f : V™ — V is rudimentary iff f = F} for
some term ¢ of L¢.

Proposition: We can associate with each term ¢ of L% a formula
Yily] of Le suchthat RCST* F (y =t <« y|y]) and

RCST F Ay ly].

Definition: RCSTy is the axiom system in the language L with the
Extensionality axiom and the axioms 3y |y| for terms ¢ of LE.

Proposition:  Every theorem of RC'STj is a theorem of RC'ST and

RCST™ is a conservative extension of RC'S1y.
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The definition of the [y

We simultaneously define formulae of L.

e ¢:|x| suchthat RCST* F (x €t «— ¢x]) and
e Uy|y| such that RCST* F (y =t <« ly])

by structural recursion on terms ¢ of LE:

Vily] =Ve(z €y < ¢¢lx))

t Ot | 7]
Z Tr ez
0 1
{t1,t2} Uty (] V P, 2]
t1 Nto O, | ] N Pty 7]
Uzenitolz] | 32(0n [2] A by, [7])




The axiom systemRCST™, 4

If ¢ is a formula of L% let ¢* be the formula of £ obtained

from ¢ by replacing each atomic formula ¢; = ¢ by
Jy (v, |y] A Y, |y]) and each atomic formula ¢, € to by

3y(¢t1 [y] A ¢t2 [y])

Proposition: For each formula ¢ of L
1. RCST*F (¢ — ¢F),
2. F (¢ «— @) ifpisaformulaof Le,
3. RCST* - ¢ implies RC STy F ¢t

Theorem: [The Term Existence Property] If RC'STy = Jyoly, ]
then RCST™* & ¢[t|z|, x| for some term ¢|x] of L.

Proof Idea: Use Friedman Realizability, as in Myhill (1973).
Corollary: The Replacement Rule is admissible for RC'ST™ and
hence RC'ST = ¢ implies RC'ST™ F ¢.

RudimentaryConstructive Set Theory — p.12/33



The axiom systemRC ST, 5

Corollary: RCST has the same theorems as RC STj.
Corollary: RCST* is a conservative extension of RC'ST.
Proposition: RC STy is finitely axiomatizable.

The proof uses a constructive version of the result of Jensen
that the rudimentary functions can be finitely generated us-

Ing function composition.
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The Rudimentary Relations

Define 0 =0,1 ={0},2={0,1}, etc. and let 2 be the class

of all subsets of 1.
Definition: Arelation R C V" is a rudimentary relation if its
characteristic function cp : V' — €2, where

cr(z) ={z € 1| R(z)},

IS a rudimentary function.

Proposition: A relation is rudimentary iff it can be defined, in RCST,
by a /g formula.

Proposition: 1f R C V"™l and g : V" — V are rudimentary then
soare f : V" — Vand S C V", where

flz) ={z€g(z) | R(z,2)}

S(z) < Rlg(z) z).

and
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Part I

Arithmetical CST




The class of natural numbers

We use class notation, as is usual in set theory. So If
A={z|¢lx]}thenx € A — o|x].
A class X is inductive, written Ind(X), If

0cXA(VzeX)zm €X,

where 0 =) and ¢+ =t U {¢}.
Definition:

Nat = {z | Yy € a7 (Trans(y) A (y = 0V Succ(y)))}
where

Trans(y) =Vz € y z C yand Succ(y) = (3z € y)(y = 7).

Note that Nat IS iInductive.
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The Mathematical Induction Scheme

The Scheme: Ind(X) — Nat C X for each class X i.e.
Nat I1s the smallest inductive class.

Proposition: Each instance of Mathematical Induction can be
derived assuming RC ST’ +Set Induction.

e We focus on the axiom system, Arithmetical CST (ACST),
where AC'ST = RCST*+Mathematical Induction.

e This axiom system has the same proof theoretic strength
as Peano Arithmetic and Is probably conservative over HA.

# A set X is finite/finitely enumerable if there is a
bijection/surjection n — X for some n € Nat.

#® Note: A setis finite iff it is finitely enumerable and
discrete (equality on the set is decidable).
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Two Theorems of AC'ST

Theorem: [The Finite AC Theorem] For classes B, R, if A is a finite set
such that (Vx € A)(Jy € B)|(x,y) € R] then there is a set function
f:A— B,suchthat (Vz € A)|(z, f(x)) € R].

Proof: Use mathematical induction on the size of A.

Theorem: [The Finitary Strong Collection Theorem] For classes B, R, if
A is a finitely enumerable set such that (Vo € A)(Jy € B)|(z,y) € R]
then there is a finitely enumerable set By C B such that

(Vz € A)(3y € Bo)|(x,y) € R| & (Vy € Bo)(3z € A)[(x,y) € R
Proof: Let g : n — A be a surjection, where n € Nat,
so that (Vk € n)(dy € B)|(g9(k),y) € R]. By the finite AC
theorem there is a function f : n — B such that, for all m € n,

(g(m), f(m)) € R. The desired finitely enumerable set By is
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Inductive Definitions

# Any class ¢ can be viewed as an inductive definition,
having as its (inference) steps all the ordered pairs
(X,a) € .

o A step will usually be written X /a, with the elements of
X the premisses of the step and « the conclusion of the
step.

® AclassY is ¢-closed If, for each step X/a of o,
XCY = acY.

#® & Is generating If there Is a smallest ®-closed class; I.e.
a class Y such that (i) Y is a ®-closed class, and
(i) Y C Y’ for each ®-closed class Y.

# Any smallest ¢-closed class is unique and is written
I(®) and called the class inductively defined by ®
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Finitary Inductive Definitions

# An inductive definition @ is finitary if X Is finitely
enumerable for every step X/a of ®.

Theorem: [AC'STT Each finitary inductive definition is generating.

Example: The finitary inductive definition, having the steps
X/ X for all finitely enumerable sets X, generates the class
HF of hereditarily finitely enumerable sets.
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The Primitive Recursion Theorem

® Theorem: LetGyg: B — Aand F': Nat x B x A — A be
class functions, where A, B are classes. Then there is a
unique class function G : Nat x B — A such that, for all
be B andn e Nat,

G(0,b) = Go(b),
(*) G(n*,b) = F(n,b,G(n,b)),

® Proof: : Let G = I(®), where @ is the inductive
definition with steps 0/((0,b), Go(b)), for b € B, and
{((n,b),z)}/(n", F(n,b,z)) for (n,b,x) € Nat x B x A.

# |tis routine to show that & is the unique required class
function.
H
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HA < (ACST)

#® Theorem: There are unique binary class functions
Add, Mult : Nat x Nat — Nat such that, for n,m € Nat,

1. Plus(n,0) = n,
2. Plus(n,m™) = Plus(n,m)™,
3. Mult(n,0) =0,
4. Mult(n,m™) = Plus(Mult(n,m),n).
# Proof: Apply the Primitive Recursion theorem with
A = B = Nat, first with F'(n,m, k) = k™ to obtain Plus
and then with F'(n,m, k) = Plus(k,n) to obtain Mult.
|

# Using this result it is clear that there Is an obvious
standard interpretation of Heyting Arithmetic in
BCST_ + Mathind.
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The Finite AC Theorem, 1

Theorem[ACST]. For each class B and each class R, If A
IS a finite set such that

(Vo € A)(Jy € B)|(z,y) € R
then there is a set, that is a function f : A — B, such that
(Vo € A)[(z, f(z)) € R].

We present results and proofs informally using standard
set and class notation and terminology.
Proof: Letg:n ~ A be a bijection, where n € Nat, so that

(Vk € n)(3y € B)[(g(k),y) € R].
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The Finite AC Theorem, 2

Proof: Letg:n ~ A be a bijection, where n € Nat, so that
(VE € n)(3y € B)[(9(k),y) € R].
® Ifment call h:m— Bm-good if
(VE € m)|(g(k), h(k)) € R].

® Let X be the class of m € Nat such that if m € n™ then
there is an m-good h : m — B.

Claim: X is inductive and hence Nat C X.

o o

By the claim, as n € n* there is an n-good function #.

#® Then {(g(k),h(k)) | kK € n}isafunction f : A — B such
that (Vz € A)|(z, f(z)) € R].
|
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Finitary Strong Collection

Theorem[Finitary Strong Collection]: For each class B and
each class R, If A is a finitely enumerable set such that

(Vo € A)(Jy € B)[(z,y) € Rl
then there is a set By C B such that
(Ve € A)(Jy € Bo)|(z,y) € R & (Vy € Bo)(Jz € A)|(z,y) € R
Proof: Letg:n — A be a surjection, where n € Nat, so that
(VE € n)(3y € B)l(g9(k),y) € R].

By the finite AC theorem there is a function f : n — B such
that, for all m € n, (9(m), f(m)) € R. The desired finitely
enumerable set By is {f(m) | m € n}. O
Note: Bp={yeUuUf|(HxeUUFS) (z,y) € f}.
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The finitary inductive definition theorem

Theorem: Each finitary inductive definition is generating.
Proof: Let ® be a finitary inductive definition. For each
class X let

I'X ={y | (FY € Pow(X)) [Y/y Is a step in ®|}.

e For G a subclass of Nat x V and n € Nat let

G" ={y| (n,y) € G} and G=" = U G™.

men

e Call such a class G good if G™ C I'G<" for all n € Nat,
and let J = |J{G | Gisagoodset} and I =, cnqu /™

Claim 1: (1) Ji1s agood class and (ii) iIf X is a ®-closed class
then I C X.
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Proof of Claim 1

(1) J Is a good class.

Proof: Lety € J", with n € Nat.

Then y € G C I'G<" for some good set G.

As I' is monotone y € I'J<". Thus J* C I"'J<".

() if X Is a ¢-closed class then I C X.

Proof: Assume that X Is ®-closed; i.e. 'X C X.
Then, by (1), using MathiInd, J* C X for all n € Nat.

Hence | C X.
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Proof that [ i1s ®-closed, 1

Proof: LetY/a be a ®-step for some Y C I; i.e.
(Vy € Y)(3G)|G 1sa good set and (In € Nat) y € G"|.

By Finitary Strong Collection, as Y is finitely enumerable
there Is a finitely enumerable set ) of good sets such that

Vy € Y)( 3G € YV)(In € Nat) y € G".

Hence (Vy € Y)(3dn € Nat)(3AG € V) y € G™.

So, by Finitary Strong Collection again there is a finitely
enumerable subset P of Nat such that

My € Y)(dn e P)(IG € Y) y € G".
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Proof that [ i1s ®-closed, 2

#® P C Nat s finitely enumerable such that
VMyeY)(dne PY(AG e ))y e G"

where ) Is a class of good sets.

#® As P C Nat s finitely enumerable, P C m for some
m € Nat.

® LetGyp=JYisgood, asitis a union of good sets.

® ASPCm,Y CGS™.

® AsY/ais a ®-step, a € I'GS™.

#® Hence G = GyU{(m,a)} Is good, so that

aeGMTCJ"CI. O
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Hereditarily Finite sets

#® The class HF of hereditarily finitely enumerable sets Is
the smallest class such that every finitely enumerable
subset of the class is In the class; I.e.

HF =1({X/X | X is afinitely enumerable set }).
Theorem:
1. HF =1({X/X | X Is afinite set }).

2. HF is the smallest class Y such that ) € Y and if
a,be Y thenaU{b} €Y.

RudimentaryConstructive Set Theory — p.31/33



Transitive Closure

® AclassY istransitive if (Vz € Y)x CY.

® Theorem: For each class A there is a smallest
transitive class T'C'(A) that includes A.

® Proof: TC(A) = I(®) where & Is the inductive definition
with steps )/« for x € A and {y}/x for sets x, y such that
T €Y.
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Adding an Infinity axiom

# Infinity AxXiom: Nat IS a set

# Using the Infinity axiom | have been unable to derive
the following assertion.

# If ® is a finitary inductive definition such that
{y| X/y € &} Is a set for each set X then I(®) Is a set.

® | believe that | can derive it if | also assume the
following scheme.

® For each class A and each class function /' : A — A, if
ag € Athen {g(n) | n € Nat} IS a set, where ¢(0) = ag
and g(n*) = F(g(n)) for n € Nat.
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