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Motivation: Multi-label Learning

Multi-label: Each datapoint can be associated to > 1 labels

Applications
I Bioinformatics: 1 gene/protein, many functions
I Text Mining: 1 webpage/document, many categories
I Image Retrieval: 1 image, many semantic concepts

Male, Person, Female, Person, Male, Person Rabbit, Animal
Motorbike, Vehicle Building Car, Vehicle

Building

Common characteristic of these domains: Large number of features
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Feature Selection

Feature Selection: Find minimal subset of features with maximal
useful information

Filters: Functions that assign a “utility” score to each feature

In this work we discuss information-theoretic filters

Filter Assumption: model and feature selection are independent
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Feature Selection via Likelihood Maximization

Brown et al. (JMLR 2012) unified many heuristic
information-theoretic filter criteria for feature selection

Conditional Likelihood Maximization under model
X

Y τ , θ

Negative log-likelihood asymptotically decomposes into 3 terms:
lim

N→∞
−` = model term + feature selection term + Bayes error

feature selection is mutual info I (Xθ; Y )
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Single-label Feature Selection Criteria

Feature space independence assumptions:
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Extending Framework to Multi-label Setting

Next, extend to multi-label where Y is q-dimensional

Man, Hat,
Person

What independence assumptions can we make in label space?

In this work we examined:
I Binary Relevance (BR) vs Label Powerset (LP)
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Multi-label Extension: LP Transformation

Label Powerset (LP): No independence among labels

Binary q-label problem ⇒ 1 single-label, 2q-class problem

...

Animal Building Vehicle

1 0 1

0 1 1

...
...

...

⇒

⇒

⇒

⇒

1 0 1

0 1 1

...

y

Pros: dependencies among labels are accounted for

Cons: probability estimates unreliable (curse of dimensionality)
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Multi-label Extension: BR Transformation

Binary Relevance (BR): Full Independence among labels

Binary q-label problem ⇒ q independent single-label, binary problems

...

Animal Building Vehicle

1 0 1

0 1 1

...
...

...

⇒

⇒

⇒

⇒

1 0 1

0 1 1

y1 y2 y3
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...

Pros: more reliable probability estimates

Cons: dependencies among labels are not accounted for
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Existing and New Criteria under our Framework

Summarizing, the criteria based on feature space X and label space Y
independence assumptions:

Feature space independence assumptions

Label space
CMI (none) JMI (partial) MIM (full)

independence
Label Powerset (none) JY:none

X:none JY:none
X:partial JY:none

X:full

assumptions
Binary Relevance (full) JY:full

X:none JY:full
X:partial JY:full

X:full

Information theoretic feature selection in multi-label data through composite likelihood 11 / 19



Existing and New Criteria under our Framework

Summarizing, the criteria based on feature space X and label space Y
independence assumptions:

Feature space independence assumptions

Label space
CMI (none) JMI (partial) MIM (full)

Doquire &

independence
Label Powerset (none) Verleysen JY:none

X:partial JY:none
X:full

(2013)

assumptions
Binary Relevance (full) JY:full

X:none JY:full
X:partial JY:full

X:full

Information theoretic feature selection in multi-label data through composite likelihood 11 / 19



Existing and New Criteria under our Framework

Summarizing, the criteria based on feature space X and label space Y
independence assumptions:

Feature space independence assumptions

Label space
CMI (none) JMI (partial) MIM (full)

Doquire & Spolaôr
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Experiments

Compare

I effect of label space assumptions
I effect of feature space assumptions
I our best criterion vs. state-of-the-art

Procedure: Select M top features under each criterion, classify,
evaluate; vary M

Datasets: scene and yeast

Classification: ML-kNN, k = 7

Evaluation: Hamming Loss (shown here) and Ranking Loss (similar)
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Effect of Label Space Assumptions

Hamming loss
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JY:full
X:partial vs. State-of-the-art (1)
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JY:full
X:partial vs. State-of-the-art (2)

Ranking loss
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Empirical Observations

Caution: Only 2 datasets! But based on them it appears that...

...independence assumptions in label space matter less than in feature
space

I Agrees with Gharroudi et al. (2014) for multilabel-label wrappers

...in feature space, JMI gives best results
I Examining pairwise interactions seems a good compromise between

capturing interdependencies vs obtaining reliable estimates...
I Agrees with Brown et al. (JMLR 2012) findings in single-label filters
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Future Work: Incorporating Domain Knowledge

Probabilistic framework allows explicit incorporation of domain
knowledge...

...as informative priors P(X ) or P(Y )

...as to how the distribution P(Y |X ) is factored

Thus constructing more problem specific filters
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Future Work: The Bigger Picture

A typical machine learning pipeline

Data

Feature
Selection
(Filter)

Classification
(Model)

Evaluation
(Loss Function)

x x′ y

Assumptions in every step, often conflicting...

...should investigate interplay between model, filter & loss function
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Thank you!

Thank you!
Kiitos!
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