Information theoretic feature selection in multi-label data through composite likelihood

Konstantinos Sechidis, Nikolaos Nikolaou, and Gavin Brown

School of Computer Science University of Manchester

The University of Manchester

Information theoretic feature selection in multi-label data through composite likelihood

 $\bullet\,$ Multi-label: Each datapoint can be associated to >1 labels

- $\bullet\,$ Multi-label: Each datapoint can be associated to >1 labels
- Applications

- $\bullet\,$ Multi-label: Each datapoint can be associated to >1 labels
- Applications
 - Bioinformatics: 1 gene/protein, many functions

- Multi-label: Each datapoint can be associated to > 1 labels
- Applications
 - Bioinformatics: 1 gene/protein, many functions
 - Text Mining: 1 webpage/document, many categories

- Multi-label: Each datapoint can be associated to > 1 labels
- Applications
 - Bioinformatics: 1 gene/protein, many functions
 - Text Mining: 1 webpage/document, many categories
 - Image Retrieval: 1 image, many semantic concepts

Male, Person, Motorbike, Vehicle Building

Female, Person, Building

Male, Person

Rabbit, Animal Car, Vehicle

- Multi-label: Each datapoint can be associated to > 1 labels
- Applications
 - Bioinformatics: 1 gene/protein, many functions
 - Text Mining: 1 webpage/document, many categories
 - Image Retrieval: 1 image, many semantic concepts

Male, Person, Motorbike, Vehicle Building

Female, Person, Building

Male, Person

Rabbit, Animal Car, Vehicle

• Common characteristic of these domains: Large number of features

Feature Selection

• Feature Selection: Find minimal subset of features with maximal useful information

Feature Selection

- Feature Selection: Find minimal subset of features with maximal useful information
- Filters: Functions that assign a "utility" score to each feature

- Feature Selection: Find minimal subset of features with maximal useful information
- Filters: Functions that assign a "utility" score to each feature
- In this work we discuss information-theoretic filters

- Feature Selection: Find minimal subset of features with maximal useful information
- Filters: Functions that assign a "utility" score to each feature
- In this work we discuss information-theoretic filters
- Filter Assumption: model and feature selection are independent

Feature Selection via Likelihood Maximization

 Brown et al. (JMLR 2012) unified many heuristic information-theoretic filter criteria for feature selection

Conditional Likelihood Maximization under model

Feature Selection via Likelihood Maximization

• Brown et al. (JMLR 2012) unified many heuristic information-theoretic filter criteria for feature selection

Conditional Likelihood Maximization under model

• Negative log-likelihood asymptotically decomposes into 3 terms: $\lim_{N \to \infty} -\ell = \text{ model term} + \text{ feature selection term} + \text{ Bayes error}$

feature selection is mutual info $I(X_{\theta}; Y)$

 $J_{MIM}(X_k) = I(X_k; Y)$

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

(i.e. pairwise dependencies):

None:

Feature space independence assumptions: Full: | Partial

(i.e. pairwise dependencies):

None:

Feature space independence assumptions: Full: Partial

(i.e. pairwise dependencies):

None:

Extending Framework to Multi-label Setting

• Next, extend to multi-label where Y is q-dimensional

Man, Hat, Person

Extending Framework to Multi-label Setting

• Next, extend to multi-label where Y is q-dimensional

Man, Hat, Person

• What independence assumptions can we make in label space?

Extending Framework to Multi-label Setting

• Next, extend to multi-label where Y is q-dimensional

Man, Hat, Person

- What independence assumptions can we make in label space?
- In this work we examined:
 - Binary Relevance (BR) vs Label Powerset (LP)

• Label Powerset (LP): No independence among labels

- Label Powerset (LP): No independence among labels
- Binary q-label problem $\Rightarrow 1$ single-label, 2^q-class problem

- Label Powerset (LP): No independence among labels
- Binary q-label problem $\Rightarrow 1$ single-label, 2^q-class problem

	Animal	Building	Vehicle		у
	1	0	1	\Rightarrow	101
Ī <u>I</u>	0	1	1	⇒	011
÷	÷	÷	÷		÷

- Label Powerset (LP): No independence among labels
- Binary q-label problem $\Rightarrow 1$ single-label, 2^q-class problem

	Animal	Building	Vehicle		у
	1	0	1	\Rightarrow	101
	0	1	1	\Rightarrow	011
÷	÷	÷	÷		:

• Pros: dependencies among labels are accounted for

- Label Powerset (LP): No independence among labels
- Binary q-label problem $\Rightarrow 1$ single-label, 2^q-class problem

	Animal	Building	Vehicle		у
	1	0	1	\Rightarrow	101
	0	1	1	\Rightarrow	011
÷	÷	÷	÷		:

- Pros: dependencies among labels are accounted for
- Cons: probability estimates unreliable (curse of dimensionality)

 $J_{MIM}^{LP}(X_k) = I(X_k; Y_{1:q})$

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: Partial

(i.e. pairwise dependencies): Features Labels Features Labels X_1 X_1 Y_1 Y_1 X_{2} X_{2} Y_2 Y_2 X_3 X_3 : Y_q

Feature space independence assumptions: Full: Partial

(i.e. pairwise dependencies): Features Labels Features Labels X_1 X_1 Y_1 Y_1 X_{2} X_{2} Y_2 Y_2 X_3 X_3 :

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions:

Full: Partial None: (i.e. pairwise dependencies): Features Labels Features Labels Features Labels X_1 X_1 X_1 Y_1 Y_1 Y_1 X_{2} X_{2} X_{2} Y_2 Y_2 Y_2 X_3 X_3 X_3 : Y_q Y_q Y_q X_{d} X_d X_d $J_{MIM}^{LP}(X_k) = I(X_k; Y_{1:q}) \quad \int_{J_{MI}}^{LP}(X_k) = \sum_{i=1}^{|X_{\theta}|} I(X_k X_{\theta_i}; Y_{1:q})$

Feature space independence assumptions:

Full: Partial None: (i.e. pairwise dependencies): Features Labels Features Labels Features Labels X_1 X_1 X_1 Y_1 Y_1 Y_1 X_{2} X_{2} X_{2} Y_2 Y_2 Y_2 X_3 X_3 X_3 Y_q Y_q Y_q X_{d} X_d X_{d} $J_{MIM}^{LP}(X_k) = I(X_k; Y_{1:q}) \quad \int_{J_{MI}}^{LP}(X_k) = \sum_{i=1}^{|X_{\theta}|} I(X_k X_{\theta_j}; Y_{1:q})$ $J_{CMI}^{LP}(X_k) = I(X_k; Y_{1;q}|X_{\theta})$

• Binary Relevance (BR): Full Independence among labels

- Binary Relevance (BR): Full Independence among labels
- Binary q-label problem \Rightarrow q independent single-label, binary problems

- Binary Relevance (BR): Full Independence among labels
- Binary q-label problem \Rightarrow q independent single-label, binary problems

	Animal	Building	Vehicle		<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	
	1	0	1	\Rightarrow	1	0	1	
İ.	0	1	1	\Rightarrow	0	1	1	
÷	÷	÷	÷		:	:	÷	

- Binary Relevance (BR): Full Independence among labels
- Binary q-label problem \Rightarrow q independent single-label, binary problems

	Animal	Building	Vehicle		<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	
	1	0	1 ⇒	>	1	0	1	
	0	1	1 ⇒	>	0	1	1	
÷	÷	÷	÷		:	÷	÷	

• Pros: more reliable probability estimates

- Binary Relevance (BR): Full Independence among labels
- Binary q-label problem \Rightarrow q independent single-label, binary problems

	Animal	Building	Vehicle	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	
	1	0	$1 \Rightarrow$	1	0	1	
İ <u>İ</u>	0	1	$1 \Rightarrow$	0	1	1	
÷	÷	÷	:	:	:	÷	

- Pros: more reliable probability estimates
- Cons: dependencies among labels are not accounted for

$$J_{MIM}^{BR}(X_k) = \sum_{l=1}^q I(X_k; Y_l)$$

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions: Full: | Partial

Feature space independence assumptions:

Information theoretic feature selection in multi-label data through composite likelihood

• Summarizing, the criteria based on feature space X and label space Y independence assumptions:

		reature space independence assumptions			
Label space		CMI (none)	JMI (partial)	MIM (full)	
independence	Label Powerset (none)	$J_{ m X:none}^{ m Y:none}$	$J_{ m X:partial}^{ m Y:none}$	$J_{ m X:full}^{ m Y:none}$	
assumptions	Binary Relevance (full)	$J_{ m X:none}^{ m Y:full}$	$J_{ m X:partial}^{ m Y:full}$	$J_{ m X:full}^{ m Y:full}$	

• Summarizing, the criteria based on feature space X and label space Y independence assumptions:

		reature space independence assumptions		
Label space		CMI (none)	JMI (partial)	MIM (full)
Laber space		Doquire &		
independence	Label Powerset (none)	Verleysen	A:partiai	$J_{ m X:full}^{ m Y:none}$
independence		(2013)		
assumptions	Binary Relevance (full)	$J_{ m X:none}^{ m Y:full}$	$J_{ m X:partial}^{ m Y:full}$	$J_{ m X:full}^{ m Y:full}$

• Summarizing, the criteria based on feature space X and label space Y independence assumptions:

		reature space macpendence assumptions		
Label space		CMI (none)	JMI (partial)	MIM (full)
Laber space		Doquire &		Spolaôr
independence	Label Powerset (none)	Verleysen	$J_{\rm X:partial}^{\rm Y:none}$	et al.
independence		(2013)	1	(2013)
assumptions	Binary Relevance (full)	$J_{ m X:none}^{ m Y:full}$	$J_{ m X:partial}^{ m Y:full}$	$\mathcal{J}_{\mathrm{X:full}}^{\mathrm{Y:full}}$

• Summarizing, the criteria based on feature space X and label space Yindependence assumptions:

Feature and a independence accurations

		Feature space independence assumptions		
Label space		CMI (none)	JMI (partial)	MIM (full)
Laber space		Doquire &		Spolaôr
independence	Label Powerset (none)Verleysen $J_{X:partial}^{Y:none}$ (2013)	Verleysen	$J_{\rm X:partial}^{\rm Y:none}$	et al.
independence		I to the	(2013)	
				Young & Pedersen
assumptions	Binary Relevance (full)	$J_{ m X:none}^{ m Y:full}$	$J_{\rm X:partial}^{\rm Y:full}$	(1997), Trohidis
assumptions			-	et al. (2008),
assumptions	Dinary Relevance (Iuli)	vance (full) $J_{X:none}^{Addit}$ $J_{X:p}^{Addit}$		

• Compare

- Compare
 - effect of label space assumptions

- effect of label space assumptions
- effect of feature space assumptions

- effect of label space assumptions
- effect of feature space assumptions
- our best criterion vs. state-of-the-art

- effect of label space assumptions
- effect of feature space assumptions
- our best criterion vs. state-of-the-art
- Procedure: Select *M* top features under each criterion, classify, evaluate; vary *M*

- effect of label space assumptions
- effect of feature space assumptions
- our best criterion vs. state-of-the-art
- Procedure: Select *M* top features under each criterion, classify, evaluate; vary *M*
- Datasets: scene and yeast

- effect of label space assumptions
- effect of feature space assumptions
- our best criterion vs. state-of-the-art
- Procedure: Select *M* top features under each criterion, classify, evaluate; vary *M*
- Datasets: scene and yeast
- Classification: ML-kNN, k = 7

- effect of label space assumptions
- effect of feature space assumptions
- our best criterion vs. state-of-the-art
- Procedure: Select *M* top features under each criterion, classify, evaluate; vary *M*
- Datasets: scene and yeast
- Classification: ML-kNN, k = 7
- Evaluation: Hamming Loss (shown here) and Ranking Loss (similar)

Effect of Label Space Assumptions

Hamming loss

Information theoretic feature selection in multi-label data through composite likelihood

Effect of Feature Space Assumptions

Hamming loss

• Doquire & Verleysen (2013) : $J_{X:none}^{Y:none}$ with pruning of rare cases

- Doquire & Verleysen (2013) : $J_{X:none}^{Y:none}$ with pruning of rare cases
- Lee & Kim (2013) : Multivariate Mutual Information

- Doquire & Verleysen (2013) : $J_{X:none}^{Y:none}$ with pruning of rare cases
- Lee & Kim (2013) : Multivariate Mutual Information
- $J_{X:partial}^{Y:full}$ tends to outperform state-of-the-art criteria

Ranking loss

- Doquire & Verleysen (2013) : $J_{X:none}^{Y:none}$ with pruning of rare cases
- Lee & Kim (2013) : Multivariate Mutual Information

Ranking loss

- Doquire & Verleysen (2013) : $J_{X:none}^{Y:none}$ with pruning of rare cases
- Lee & Kim (2013) : Multivariate Mutual Information
- $J_{X:partial}^{Y:full}$ dominates state-of-the-art criteria

• Caution: Only 2 datasets! But based on them it appears that...

- Caution: Only 2 datasets! But based on them it appears that...
- ...independence assumptions in label space matter less than in feature space

- Caution: Only 2 datasets! But based on them it appears that...
- ...independence assumptions in label space matter less than in feature space
 - Agrees with Gharroudi et al. (2014) for multilabel-label wrappers

- Caution: Only 2 datasets! But based on them it appears that...
- ...independence assumptions in label space matter less than in feature space
 - Agrees with Gharroudi et al. (2014) for multilabel-label wrappers
- ...in feature space, JMI gives best results

- Caution: Only 2 datasets! But based on them it appears that...
- ...independence assumptions in label space matter less than in feature space
 - Agrees with Gharroudi et al. (2014) for multilabel-label wrappers
- ...in feature space, JMI gives best results
 - Examining pairwise interactions seems a good compromise between capturing interdependencies vs obtaining reliable estimates...

- Caution: Only 2 datasets! But based on them it appears that...
- ...independence assumptions in label space matter less than in feature space
 - Agrees with Gharroudi et al. (2014) for multilabel-label wrappers
- ...in feature space, JMI gives best results
 - Examining pairwise interactions seems a good compromise between capturing interdependencies vs obtaining reliable estimates...
 - ► Agrees with Brown et al. (JMLR 2012) findings in single-label filters

• Probabilistic framework allows explicit incorporation of domain knowledge...

- Probabilistic framework allows explicit incorporation of domain knowledge...
- ...as informative priors P(X) or P(Y)

- Probabilistic framework allows explicit incorporation of domain knowledge...
- ...as informative priors P(X) or P(Y)
- ...as to how the distribution P(Y|X) is factored

- Probabilistic framework allows explicit incorporation of domain knowledge...
- ...as informative priors P(X) or P(Y)
- ...as to how the distribution P(Y|X) is factored
- Thus constructing more problem specific filters

Future Work: The Bigger Picture

• A typical machine learning pipeline

$$Data \xrightarrow{\mathbf{x}} \begin{array}{c} Feature \\ Selection \\ (Filter) \end{array} \xrightarrow{\mathbf{x}'} \begin{array}{c} Classification \\ (Model) \end{array} \xrightarrow{\mathbf{y}} \begin{array}{c} Evaluation \\ (Loss \ Function) \end{array}$$

Future Work: The Bigger Picture

• A typical machine learning pipeline

$$\begin{array}{c|c} \mathsf{Feature} \\ \mathsf{Data} \xrightarrow{\mathbf{x}} & \mathsf{Feature} \\ \mathsf{Selection} \\ (Filter) & \mathsf{x'} & \mathsf{Classification} \\ (Model) & \mathsf{y} & \mathsf{Evaluation} \\ (Loss \ Function) \\ \end{array}$$

• Assumptions in every step, often conflicting...

Future Work: The Bigger Picture

• A typical machine learning pipeline

Data
$$\xrightarrow{\mathbf{x}}$$
 Feature
Selection
(Filter) $\mathbf{x'}$ Classification \mathbf{y} Evaluation
(Model) (Loss Function)

- Assumptions in every step, often conflicting...
- ...should investigate interplay between model, filter & loss function

Thank you! Kiitos!