
Cost-sensitive boosting algorithms:

Do we really need them?

Supplementary Material

Nikolaos Nikolaou1, Narayanan Edakunni1, Meelis Kull2, Peter Flach2, and
Gavin Brown1

1 School of Computer Science, University of Manchester,
Kilburn Building, Oxford Road, Manchester, M13 9PL, UK.

[nikolaos.nikolaou,gavin.brown]@manchester.ac.uk,narayanan.unny@gmail.com
2 Department of Computer Science, University of Bristol,

The Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.
[meelis.kull,peter.flach]@bristol.ac.uk

Proofs & Proof Sketches

Proof of Theorem 1

Theorem 1: The generalised formulation of AdaMEC,

HAdaMEC(x) = sign [p̂(y = 1|x)− c] , (1)

reduces to

HAdaMEC(x) = sign

 ∑
y∈{−1,1}

c(y)
∑

τ :hτ (x)=y

ατhτ (x)

 ,
where

c(y) =

{
cFN , if y = 1

cFP , if y = −1
,

when probability estimates are raw scores of the form p̂(y = 1|x) =
∑
τ:hτ (x)=1 ατ∑t

τ=1 ατ
.

Proof. Our generalized formulation of AdaMEC's prediction rule is

HAdaMEC(x) = sign [p̂(y = 1|x)− c] ,

where p̂(y = 1|x) denotes the probability estimate the AdaBoost ensemble Ft
assigns to example x belonging to the positive class, regardless of how it is
estimated.

Suppose we opt to use as probability estimates raw scores of the form

p̂(y = 1|x) = s(x) =

∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
.

2 N. Nikolaou et al.

Then Eq. (1) becomes

HAdaMEC(x) = sign [(1− c)p̂(y = 1|x)− c(1− p̂(y = 1|x))]

= sign

[
cFN

cFP + cFN

∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
− cFP
cFP + cFN

(1−
∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
)

]
.

Since cFP + cFN is bounded, constant and non-negative, this is equivalent to

HAdaMEC(x) = sign

[
cFN

∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
− cFP (1−

∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
)

]

= sign

[
cFN

∑
τ :hτ (x)=1 ατ∑t

τ=1 ατ
− cFP

∑
τ :hτ (x)=−1 ατ∑t

τ=1 ατ

]
.

As
∑t
τ=1 ατ is bounded, constant and non-negative, we get the equivalent rule

HAdaMEC(x) = sign

cFN ∑
τ :hτ (x)=1

ατ − cFP
∑

τ :hτ (x)=−1

ατ

 . (2)

Rearranging gives us

HAdaMEC(x) = sign

 ∑
y∈{−1,1}

c(y)
∑

τ :hτ (x)=y

ατhτ (x)

 ,
where

c(y) =

{
cFN , if y = 1

cFP , if y = −1.

ut

Proof sketch: Checking for FGD-Consistency

De�nition: FGD-consistent A boosting method is functional gradient descent
(FGD)-consistent if it uses a distribution update rule and voting weights αt that
are both consequences of greedily optimising the same, monotonically decreasing,
loss function of the margin. Otherwise the method is FGD-inconsistent.

We now present a general scheme for checking a given boosting variant for
FGD-consistency. We assume that the weight update rule Dt+1

i and the form of
the voting weights αt are given in the description of the algorithm.

Mason et al. [1] noted that the weight update rule Dt+1
i and the monoton-

ically decreasing loss function L(yiFt(xi)) of the margin yiFt(xi) are related
via

Dt+1
i =

∂
∂yiFt(xi)

L(yiFt(xi))∑N
j=1

∂
∂yjFt(xj)

L(yjFt(xj))
. (3)

Cost-sensitive boosting algorithms: Do we really need them? 3

Under Eq. (3), a given form of weight updates Dt+1
i implies a speci�c family

of equivalent loss functions via

Dt+1
i ∝ − ∂

∂yiFt(xi)
L(yiFt(xi)) =⇒ L(yiFt(xi)) ∝

∫
−Dt+1

i d(yiFt(xi)). (4)

If theRHS of Eq. (4) is not a monotonically decreasing function of the margin
yiFt(xi), then neither is the loss L(yiFt(xi)) and the method is FGD-inconsistent
under our de�nition. This is the case for some of the methods examined here,
namely CSB0, CSB1, AdaCost & AdaCost(β2).

For all other methods examined here, by recursively applying the weight
update given it can be shown that Dt+1

i can be written as a monotonically
decreasing function of the margin. In all methods it is of the general form:

Dt+1
i ∝ K1(i)e

−K2(i)yiFt(xi) (5)

where K1(i) and K2(i) are non-decreasing functions of c(yi), the cost of the i-th
example (e.g. K1(i) = 1 or K2(i) = 1 are also admissible).

Combining Eq. (4) and Eq. (5), we obtain

L(yiFt(xi)) ∝
∫
−K1(i)e

−K2(i)yiFt(xi)d(yiFt(xi))

=
K1(i)

K2(i)
e−K2(i)yiFt(xi) +K,

(6)

where K is constant w.r.t. the margin yiFt(xi).
Setting K = 0 and ignoring the scaling factor, we can limit ourselves for

simplicity to a single member of the family of functions L(yiFt(xi)) and use

L(yiFt(xi)) =
K1(i)

K2(i)
e−K2(i)yiFt(xi). (7)

The loss functions of this form are the ones we present in Table 3 of the main
paper. This is of course an optional step, as any loss of the form of Eq. (6) is
equivalent for optimization purposes, i.e. it is minimized by the same Ft(xi).

If the given form of the voting weight of the t-th base learner minimizes the
empirical risk under L(yiFt(xi)) on the training set, i.e.

α∗t = argmin
αt

[1
N

N∑
i=1

L(yi(Ft−1(xi) + αtht(xi)))
]
. (8)

then the method is by our de�nition FGD consistent. Otherwise it is FGD-
inconsistent.

4 N. Nikolaou et al.

Proof sketch: Checking for Cost-Consistency

De�nition: Cost-Consistent A method is cost-consistent, if the prediction rule
it constructs is equivalent to

p̂(y = 1|x) > cFP
cFP + cFN

, (9)

for any given cost matrix of the form

C =

[
cTP = 0 cFN
cFP cTN = 0

]
with cFP , cFN > 0. Otherwise the method is cost-inconsistent.

We now present a general scheme for checking a given boosting variant for
cost-consistency. We assume that we know the loss function L(yFt(x)) that the
algorithm minimizes in stages3.

For most methods examined here, the minimizer F ∗ of their expected loss
L(yFt(x)) can be written as a function Φ of the true conditional class probability
p(y = 1|x) and the cost setup, i.e.

F ∗(x) = argmin
F

Exy

{
L(yFt(x))

}
= Φ(p(y = 1|x), cFN , cFP). (10)

In Table 1 we summarize the population minimizer F ∗ under the loss function
minimized by each method.

Boosting methods greedily approximate the true minimizer F ∗ by an additive
model Ft(x) =

∑t
τ=1 ατhτ (x) estimated on a �nite training set. So we can

replace true probabilities with estimates4 regardless of how they are estimated:

F ∗(x) = Φ(p(y = 1|x), cFN , cFP) ≈ Ft(x) = Φ(p̂(y = 1|x), cFN , cFP). (11)

Once the �nal ensemble Ft(x) is constructed, all boosting methods make
predictions using the rule

H(x) = sign[Ft(x)] = sign[Φ(p̂(y = 1|x), cFN , cFP)]. (12)

Simplifying Eq. (12), we derive the decision rules given in Table 3 of the main
paper. If a method implements a decision rule equivalent to that of Eq. (9) under
any cost matrix C it is cost-consistent. Otherwise it is not.

Finally, if L(yFt(x)) cannot be expressed as a monotonically decreasing func-
tion of the margin yFt(x), where Ft(x) =

∑t
τ=1 ατhτ (x) is the actual ensemble

3 Given only the weight update rule of a method, we saw how to derive L(yFt(x)) in
the previous proof sketch.

4 To examine a method for cost-consistency it would have su�ced to inspect the deci-
sion rule under the optimal model F ∗ shown in Table 1, i.e. a decision rule involving
true probabilities rather than estimates. We chose to use estimates for notational
consistency. It should be clear though that cost-consistency is ultimately only due
to the loss function L rather than the speci�c way probabilities are estimated.

Cost-sensitive boosting algorithms: Do we really need them? 5

Table 1. The population minimizer of the loss function of each method. This is directly
derived from the loss function of Table 3 of the main paper and results to the decision
rule shown on the same table (after replacing true probabilities with estimates as is the
case in practice). In the case of AdaMEC -included here for completeness- the decision
rule is de�ned this way, motivated by decision theory, as explained in the main paper.

Method Population Minimizer F ∗(x) of Loss L(F)

Adaboost 1
2 log

p(y=1|x)
p(y=−1|x)

AdaMEC 1
2 log

p(y=1|x)
p(y=−1|x) +

1
2 log

cFN
cFP

CGAda ”

AsymAda ”

CSAda 1
cFN+cFP

log p(y=1|x)
p(y=−1|x) +

1
cFN+cFP

log cFN
cFP

AdaDB ”

AdaC1 ”

CSB2
1
2 log

p(y=1|x)
p(y=−1|x) +

q−1
2 log cFN

cFP
,

where q models have misclassi�ed x.

AdaC2
1
2 log

p(y=1|x)
p(y=−1|x) +

t
2 log

cFN
cFP

,
where t is the number of boosting rounds.

AdaC3
1

cFN+cFP
log p(y=1|x)

p(y=−1|x) +
t

cFN+cFP
log cFN

cFP
,

where t is the number of boosting rounds.

CSB0 Cannot express
CSB1 population minimizer
AdaCost(β2) as a function of cFP ,
AdaCost cFN & p(y = 1|x)

6 N. Nikolaou et al.

constructed, then we cannot derive a decision rule as a function of p̂(y = 1|x),
cFN & cFP . This is the case for some of the methods examined here, namely
CSB0, CSB1, AdaCost & AdaCost(β2)

5. As there can be no guarantee that they
satisfy Eq. (9), the methods are classi�ed as cost-inconsistent.

Proof sketch: Checking for Asymmetry-Preservation

De�nition: Asymmetry-preserving A method is asymmetry-preserving if the
ratio rL(m) of the loss on an example of the important class over the loss on an
example of the unimportant one � given equal m = yFt(x)� remains greater or
equal to 1 during training. Otherwise the method is asymmetry-swapping.

We now present a general scheme for checking a given boosting variant for
asymmetry-preservation. We assume that we know the loss function L(yFt(x), c(y))
that the algorithm minimizes in stages6. Here we make explicit the fact that L
also depends on the cost of each example, unlike the rest of the paper where we
simpli�ed notation for clarity.

Based on the above de�nition, a method is asymmetry preserving if for
any two examples (xi, yi) and (xj , yj) such that c(yi) > c(yj) and yiFt(xi) =
yjFt(xj) = m, its loss function L satis�es the following property:

rL(m) =
L(yiFt(xi), c(yi))

L(yjFt(xj), c(yj))
=
L(m, c(yi))

L(m, c(yj))
≥ 1,∀m (13)

Variants that minimize a loss of the form K1(i)e
−yiFt(xi), where K1(i) is a

non-decreasing function of c(yi) are asymmetry preserving, as it is always the

case that rL(m) = K1(i)
K1(j)

≥ 1.

On the other hand, variants that minimize a loss of the formK1(i)e
−K2(i)yiFt(xi),

where K1(i) and K2(i) are a non-decreasing and an increasing function of c(yi),
respectively, have

rL(m) =
K1(i)e

−K2(i)yiFt(xi)

K1(j)e−K2(j)yjFt(xj)
=
K1(i)

K1(j)
em(K2(j)−K2(i)). (14)

It can be shown that ∃m : rL < 1. More speci�cally when

m >
1

K2(i)−K2(j)
log
(K1(i)

K1(j)

)
, (15)

5 More speci�cally, CSB0 uses the loss L(y,x) = 1
N
c(y)q−1, where q ≥ 0 is the number

of models that misclassi�ed example x, which is not a function of Ft(x). CSB1 uses

the loss L(y,x) = 1
N
c(y)q−1e−y

∑t
τ=1 hτ (x), which does not depend on the weighted

model Ft(x), but rather on its unweighted counterpart and AdaCost & AdaCost(β2)

use the loss L(y,x) = 1
N
e−y

∑t
τ=1 βτ (x)ατhτ (x), where the additional βτ (x) factors

break the direct dependence of the loss w.r.t. Ft(x).
6 Given only the weight update rule of a method, we saw how to derive L(yFt(x), c(y))
in the FGD-consistency proof sketch.

Cost-sensitive boosting algorithms: Do we really need them? 7

the importance of the two classes is �ipped. Hence such methods are asymmetry-
swapping.

Of the methods whose loss function cannot be expressed in terms of yiFt(xi),
CSB0 & CSB1 are asymmetry-preserving as their weight updates can only in-
crease the relative importance of the important class over the unimportant one.
On the other hand AdaCost & AdaCost(β2) do not o�er such a guarantee, hence
are classi�ed as asymmetry-swapping.

Proof of Theorem 2

Theorem 2: The probability estimate assigned to class y = 1 by an AdaBoost
ensemble Ft on an example x constitutes a product of experts

p̂(y = 1|x) =

∏t
τ=1 p̂τ (y = 1|x)∏t

τ=1 p̂τ (y = 1|x) +
∏t
τ=1 p̂τ (y = −1|x)

,

with experts of the form

p̂τ (y = 1|x) =

{
ετ , if hτ (x) = −1
1− ετ , if hτ (x) = 1,

p̂τ (y = −1|x) =

{
1− ετ , if hτ (x) = −1
ετ , if hτ (x) = 1,

where ετ is the weighted error of the τ -th weak learner and hτ (x) ∈ {−1, 1} its
prediction on example x.

Proof. Assume an unknown distribution p(x, y). De�ne F ∗(x) as the population
minimiser of an exponential loss function:

F ∗(x) = argmin
F

Exy

{
e−yF (x)

}
(16)

To �nd F ∗(x), it is su�cient to minimize Ey|x

{
e−yF (x)

}
, for any x. Therefore,

∂Ey|x

{
e−yF (x)

}
∂F (x)

= 0 =⇒ ∂(p(y = 1|x)e−F (x) + p(y = −1|x)eF (x))

∂F (x)
= 0 =⇒

− p(y = 1|x)e−F
∗(x) + p(y = −1|x)eF

∗(x) = 0 =⇒
eF
∗(x)

e−F∗(x)
=

p(y = 1|x)
1− p(y = 1|x)

=⇒ F ∗(x) =
1

2
log

p(y = 1|x)
1− p(y = 1|x)

(17)

which also implies that

p(y = 1|x) =
1

1 + e−2F∗(x)
(18)

8 N. Nikolaou et al.

Now assume F ∗(x) is approximated by an additive model:

F ∗(x) ≈ Ft(x) =
t∑

τ=1

ατhτ (x) (19)

where ∀τ , we have ατ ∈ R and hτ (x) ∈ {−1,+1}, then we have,

p(y = 1|x) ≈ p̂(y = 1|x) =
1

1 + e−2
∑t
τ=1 ατhτ (x)

(20)

Adaboost minimises Exy

{
e−yF (x)

}
via a greedy stage-wise addition of terms

to the model FM (x), using an empirical risk approximation:

Exy

{
e−yF (x)

}
≈ 1

N

N∑
i=1

e−yi
∑t
τ=1 ατhτ (xi) = JAda

Under the greedy optimization scheme, the optimal value for ατ is

∂JAda(ατ)

∂ατ
= 0 =⇒ ατ =

1

2
log

1− ετ
ετ

, (21)

where ετ =
∑
i:hτ (xi)6=yi

Dτi∑N
i=1D

τ
i

is the weighted error of the weak learner added on

round τ .

Substituting ατ from Eq. (21) into Eq. (20) gives us that the probability estimate
assigned to class y = 1 by an AdaBoost ensemble on an example x is

p̂(y = 1|x) = 1

1 + e−2
∑t
τ=1

1
2 log 1−ετ

ετ
hτ (x)

which can be rearranged to

p̂(y = 1|x) =
1

1 +
∏t
τ=1(

ετ
1−ετ)

hτ (x)

=

∏t
τ=1(1− ετ)hτ (x)∏t

τ=1(1− ετ)hτ (x) +
∏t
τ=1(ετ)

hτ (x)
.

So the probability estimates of AdaBoost have the form for a product of (un-
normalized) experts

p̂(y = 1|x) =

∏t
τ=1 φτ (y = 1|x)∏t

τ=1 φτ (y = 1|x) +
∏t
τ=1 φτ (y = −1|x)

φτ (y = 1|x) = (1− ετ)hτ (x) (22)

φτ (y = −1|x) = εhτ (x)τ , (23)

Cost-sensitive boosting algorithms: Do we really need them? 9

which can be normalised to give:

p̂τ (y = 1|x) =
(1− ετ)hτ (x)

(1− ετ)hτ (x) + ε
hτ (x)
τ

=

{
ετ , if hτ (x) = −1
1− ετ , if hτ (x) = 1,

p̂τ (y = −1|x) =
ε
hτ (x)
τ

(1− ετ)hτ (x) + ε
hτ (x)
τ

=

{
1− ετ , if hτ (x) = −1
ετ , if hτ (x) = 1.

ut

10 N. Nikolaou et al.

Datasets Used

Table 2. Characteristics of the datasets used in our experiments; number of instances
used, number of features and number of classes. The class chosen as `positive' was
the minority class in the original �le was chosen. In multiclass datasets, we followed
a 1-vs-all approach, where the negative class consisted of uniformly sampled examples
from the remaining classes.

Dataset
#

Instances Features Classes

parkinsons 96 22 2

survival 162 3 2

sonar 194 60 2

heart 240 13 2

ionosphere 252 34 2

liver 290 6 2

semeion 322 256 10

congress 336 16 2

wdbc 424 31 2

pima 576 8 2

credit 600 24 2

landsat 1252 36 6

splice 1524 60 3

musk2 2034 166 2

krvskp 3054 36 2

waveform 3306 40 3

spambase 3626 57 2

mushroom 7832 21 2

Cost-sensitive boosting algorithms: Do we really need them? 11

Additional Experimental Results

Tables of Brier Scores

Table 3. Average area under the Brier curves produced by each of the 15 methods
examined for all 18 datasets. The area is equal to the average Brier score, so lower values
are desirable. The lowest value per dataset is marked in bold. AsymAda, AdaMEC
& CGAda outperform the other approaches and are in turn outperformed by their
calibrated versions. The best performing method overall is calibrated AsymAda.

Dataset CSB0 CSB1 CSB2 AdaC1 AdaC2 AdaC3 AdaCost AdaCost(β2)

survival 0.2335 0.2537 0.2326 0.3277 0.2342 0.2341 0.3773 0.3248
ionosphere 0.2292 0.2251 0.2215 0.2830 0.2159 0.2213 0.4272 0.2974
congress 0.1981 0.2131 0.1883 0.0349 0.2036 0.2044 0.2151 0.2222
liver 0.2481 0.2493 0.2448 0.2719 0.2407 0.2446 0.4696 0.3276
pima 0.2396 0.2512 0.2369 0.3129 0.2363 0.2370 0.4241 0.3034

parkinsons 0.2012 0.2332 0.2162 0.2359 0.2199 0.2207 0.4099 0.2799
landsat 0.2132 0.2472 0.2225 0.2131 0.2178 0.2357 0.3619 0.3079
krvskp 0.2265 0.2431 0.2036 0.1838 0.2060 0.2117 0.4175 0.2632
heart 0.2294 0.2435 0.2160 0.2887 0.2180 0.2177 0.3831 0.2836
wdbc 0.2012 0.2117 0.2002 0.1128 0.1993 0.2065 0.2696 0.2482
credit 0.2384 0.2529 0.2370 0.2766 0.2316 0.2321 0.4555 0.3064
sonar 0.2274 0.2290 0.2232 0.2944 0.2216 0.2215 0.4173 0.2953

semeion 0.2111 0.2131 0.1944 0.1431 0.2077 0.2133 0.3581 0.2442
splice 0.2078 0.2325 0.2017 0.1234 0.2073 0.2096 0.3217 0.2495

spambase 0.2279 0.2413 0.2145 0.2343 0.2090 0.2242 0.4109 0.2834
waveform 0.1786 0.2465 0.2103 0.1910 0.2116 0.2108 0.3984 0.2683
musk2 0.2322 0.2394 0.2237 0.2641 0.2186 0.2206 0.4504 0.3126

mushroom 0.2306 0.2350 0.2037 0.1743 0.1965 0.2123 0.4851 0.3205

Dataset CSAda AdaMEC AsymAda CGAda
Calibrated Calibrated Calibrated
AdaMEC AsymAda CGAda

survival 0.3593 0.2623 0.2337 0.2260 0.2302 0.2334 0.2287
ionosphere 0.3157 0.2043 0.2016 0.2090 0.1642 0.1333 0.1814
congress 0.0665 0.0840 0.1040 0.0906 0.0336 0.0348 0.0336
liver 0.3024 0.2729 0.2378 0.2454 0.2485 0.2391 0.2491
pima 0.3383 0.2243 0.2261 0.2297 0.2234 0.2127 0.2263

parkinsons 0.2693 0.1727 0.1833 0.1725 0.1388 0.1378 0.1327
landsat 0.2452 0.3474 0.1656 0.2065 0.2150 0.1242 0.2004
krvskp 0.2143 0.1846 0.1727 0.1859 0.1009 0.0448 0.1062
heart 0.3177 0.1643 0.1858 0.1802 0.1471 0.1450 0.1532
wdbc 0.1418 0.1230 0.1409 0.1243 0.0537 0.0505 0.0579
credit 0.3083 0.2239 0.2202 0.2223 0.2131 0.2009 0.2157
sonar 0.3304 0.1969 0.2029 0.2005 0.1826 0.1823 0.1839

semeion 0.1788 0.1626 0.1413 0.1600 0.0890 0.0447 0.0895
splice 0.1556 0.1286 0.1546 0.1400 0.0683 0.0500 0.0622

spambase 0.2663 0.2218 0.1785 0.1981 0.1461 0.0682 0.1537
waveform 0.2171 0.1317 0.1380 0.1340 0.0695 0.0686 0.0696
musk2 0.2943 0.1963 0.2031 0.1970 0.1432 0.1225 0.1344

mushroom 0.2066 0.1686 0.0374 0.1039 0.1071 0.0353 0.1118

12 N. Nikolaou et al.

Table 4. Average area under the Brier curves produced by the calibrated versions of
AsymAda, AdaMEC & CGAda ensembles of equal ensemble size, for all 18 datasets.
The area is equal to the average Brier score, so lower values are desirable. The lowest
value per dataset is marked in bold. By constraining AsymAda to use as many weak
learners as AdaMEC & CGAda, it loses its advantage over the other two methods. In
the main paper we provide evidence that the three methods do not signi�cantly di�er
in performance.

Dataset
Calibrated Calibrated Calibrated
AdaMEC AsymAda CGAda

survival 0.2337 0.2343 0.2328
ionosphere 0.1711 0.1994 0.1931
congress 0.0330 0.0358 0.0328
liver 0.2494 0.2622 0.2491
pima 0.2268 0.2338 0.2330

parkinsons 0.1431 0.1534 0.1474
landsat 0.2182 0.2421 0.2137
krvskp 0.0991 0.1405 0.1178
heart 0.1491 0.1522 0.1524
wdbc 0.0557 0.0626 0.0620
credit 0.2156 0.2260 0.2200
sonar 0.1828 0.1846 0.1829

semeion 0.0898 0.1341 0.1120
splice 0.0668 0.1049 0.0729

spambase 0.1421 0.2060 0.1699
waveform 0.0699 0.0688 0.0702
musk2 0.1397 0.1367 0.1408

mushroom 0.1051 0.1817 0.1281

Cost-sensitive boosting algorithms: Do we really need them? 13

Brier Curves

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

parkinsons

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

survival

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

sonar

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)
pima

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

semeion

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

landsat

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

liver

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

musk2

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

Fig. 1. Loss Q under various degrees of skew z for the datasets included in the study,
omitted from the main paper. Lower values indicate better cost-sensitive classi�cation
performance. Calibrated AdaMEC consistently attains the lowest �or tied for lowest�
loss.

14 N. Nikolaou et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

ionosphere

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

credit

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

waveform

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

heart

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

congress

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Skew z

Lo
ss

 Q
(z

)

spambase

CSB2
AdaC1
AdaMEC
Cal. AdaMEC

Fig. 2. Loss Q under various degrees of skew z for the datasets included in the study,
omitted from the main paper. Lower values indicate better cost-sensitive classi�cation
performance. Calibrated AdaMEC consistently attains the lowest �or tied for lowest�
loss.

Cost-sensitive boosting algorithms: Do we really need them? 15

Pseudocode for calibrated AdaMEC

In the paper, we chose a 50% / 50% split for Step 1. Step 3.3 was performed
using the matlab command nlin�t with a tolerance of 10−10 and a maximum
number of 600 iterations.

Algorithm 1 Platt-Calibrated AdaMEC

Input: Number of weak learners M , data {(xi, yi)|i = 1, . . . , N},
where yi ∈ {−1, 1}, cost of false negatives cFN , cost of false positives cFP

Training Phase:

1. Split data into training Dtr & calibration set Dcal

2. On Dtr:
2.1. Train AdaBoost ensemble F (x) =

∑M
t=1 αtht(x)

3. On Dcal:

3.1. Calculate scores s(xi) =
∑
τ:hτ (xi)=1 αt∑t

τ=1 αt
∈ [0, 1],∀xi ∈ Dcal

3.2. Calculate the number of positives N+ and negatives N− in Dcal

3.3. Find A,B s. t.
∑
i∈Dcal(p̂(y = 1|xi)− y′i)2 is minimized,

where p̂(y = 1|x) = 1
1+eAs(x)+B and y′i =

{
N++1
N++2 , if yi = 1

1
N−+2 , if yi = −1

Prediction Phase:

4. On new example x:

4.1. Calculate score s(x) =
∑
τ:hτ (x)=1 αt∑t

τ=1 αt
∈ [0, 1]

4.2. Obtain probability estimate p̂(y = 1|x) = 1
1+eAs(x)+B

4.3. Predict class H(x) = sign
[
p̂(y = 1|x) > cFP

cFP+cFN

]

References

1. L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent. In NIPS 12, pages 512�518, 2000.

