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Abstract. Asymmetric classification problems are characterized by class
imbalance or unequal costs for different types of misclassifications. One of
the main cited weaknesses of AdaBoost is its perceived inability to handle
asymmetric problems. As a result, a multitude of asymmetric versions of
AdaBoost have been proposed, mainly as heuristic modifications to the
original algorithm. In this paper we challenge this approach and propose
instead handling asymmetric tasks by properly calibrating the scores of
the original AdaBoost so that they correspond to probability estimates.
We then account for the asymmetry using classic decision theoretic ap-
proaches. Empirical comparisons of this approach against the most repre-
sentative asymmetric Adaboost variants show that it compares favorably.
Moreover, it retains the theoretical guarantees of the original AdaBoost
and it can easily be adjusted to account for changes in class imbalance
or costs without need for retraining.

Keywords: Boosting; Cost-sensitive; Class imbalance; Classifier cali-
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1 Introduction

Most real world classification problems are asymmetric. This asymmetry means
that either the classes have different prior probabilities or the costs of different
types of misclassifications are unequal, or both. A doctor testing a patient for a
life-threatening disease, is faced with a cost-sensitive decision: a false positive will
lead to further tests which will eventually reveal the misdiagnosis, while a false
negative can be lethal. An astrophysicist predicting whether a telescope image
contains a supernova or not faces an imbalanced class problem, as supernovae
are rare.

AdaBoost [4] is a powerful, popular and recognized meta-learning technique.
However it is often regarded as skew-insensitive [15,17], meaning it is unable to
handle asymmetric tasks. There exist many skew-sensitive AdaBoost variants,
including AdaCost [2, 17], CSB0, CSB1, CSB2 [17], Asymmetric-Adaboost [18],
RareBoost [6], AdaC1, AdaC2, AdaC3 [16], CS-AdaBoost [9,10]. However, most
of them are heuristic and as a result they lack the theoretical guarantees of the
original AdaBoost [7].

It is also unclear if we really need to modify AdaBoost, or if asymmetric
problems are better tackled by calibrating the scores of the original AdaBoost.
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Calibrated scores can be treated as probability estimates and can thus be used to
handle the asymmetric nature of the task following decision theoretic approaches,
similar to the classical work by Elkan [1]. For one, this approach can easily be
adjusted to different class and cost imbalance setups, without the need to retrain
the ensemble. Another benefit is that all favorable theoretical properties of the
original AdaBoost will be preserved. The goal of this work is thus to investigate
whether we can achieve comparable results to the asymmetric AdaBoost variants
by calibrating the scores produced by the original AdaBoost and then choosing
an appropriate classification threshold.

2 Background

2.1 Asymmetric Learning

In this paper we will be examining binary classification asymmetric problems,
where an example can be either positive, denoted by a label y = 1 or negative,
denoted by y = −1. The class imbalance can be captured by the different priors,
p(y = −1) and p(y = 1), while the cost imbalance can be modeled with a cost
matrix of the form

C =

[
0 c
1 0

]
, (1)

where 1 is the cost of a false positive and c the cost of a false negative1. The
above matrix assigns a zero cost to all correct classifications, as is commonly the
case [1].

Although skewed class and skewed cost problems are different [8], they can
be formulated and treated in a similar way, by using a skew ratio c, that captures
the relative importance of positives w.r.t. negatives to adjust for either [3]. We
commonly assume w.l.o.g. that the important class (the ‘rare’ one in an imbal-
anced class scenario, or the ‘expensive to misclassify’ in a cost-sensitive scenario)
is the positive one, y = 1. One difference is the evaluation measures used in each
type of asymmetric problem. When facing a skewed cost task, the main goal is
to minimize the total cost. When faced with a skewed class problem, the goal
could instead be to achieve good performance on all classes.

Our analysis will focus on cost-sensitive tasks under a cost matrix of the form
C, with skew ratio c = cFN/cFP ≥ 1. This means that the cost of misclassifying
the i-th example is

c(yi) =

{
c, if yi = 1

1, if yi = −1
,

1 A more intuitive equivalent form is

[
0 cFN

cFP 0

]
. Scaling the cost matrix has no effect

on the decision problem, so we can divide its entries with cFP , thus assigning a cost
of 1 to false positives and a cost of c = cFN/cFP to false negatives.
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where yi is the label of the instance. The primary evaluation measure we will
use in this paper is the average cost incurred on the test set

LAvg(x
′
i, yi;H, c) =

1

Ntest

Ntest∑

i=1

I[H(x′i) 6= yi]c(yi),

where H(x′i) is the prediction of the ensemble on the test example x′i and I[·] is
the indicator function which outputs ‘1’ iff its argument is true. We will also use
precision, i.e. the fraction of positive predictions that are correct and recall, the
fraction of positives correctly classified, to shed light on the different behaviors
of the methods we examine. Precision and recall are given by

Prec =
TP

TP + FP
, Rec =

TP

TP + FN
,

where TP , FP and FN are the numbers of true positives, false positives and
false negatives on the test set, respectively. Both quantities need to be high for
prediction to be reliable. The harmonic mean of precision and recall,

F −measure =
2 ·Rec · Prec
Rec+ Prec

,

can be used to capture both precision and recall at once. A high F-measure is
desirable, as it implies that the values of both precision and recall are high.

2.2 AdaBoost

AdaBoost [4] is an ensemble learning technique which constructs a strong clas-
sifier H sequentially by combining multiple weak classifiers ht, t = 1, . . . ,M .
A weak classifier is one that is marginally more accurate than random guessing
and a strong classifier is one that achieves arbitrarily high accuracy. AdaBoost
achieves this by training each subsequent model ht on a new dataset in which the
examples misclassified by the previous model are assigned more weight and the
ones that were correctly classified are assigned less weight. This can be achieved
either by reweighing or by resampling the dataset on each round. This work
uses the reweighing approach and focuses on AdaBoost with confidence rated
predictions [14], where each base learner ht is assigned a confidence score αt.

The algorithm is given as input a set of training examples of the form (xi, yi),
i = 1, . . . , N where xi is the feature vector of the i-th example and yi is its
class label. On the first round of AdaBoost, all training examples are assigned
equal weights D1

i = 1
N . On each round t = 1, . . . ,M , the weak learner ht that

minimizes the misclassification error εt =
∑
i:ht(xi) 6=yi D

t
i , where ht(xi) is the

predicted class of the i-th example by the t-th weak learner, is added to the
ensemble. The confidence of weak learner ht is computed as

αt =
1

2
log
(1− εt

εt

)
. (2)



4 N. Nikolaou and G. Brown

The weight of each example i = 1, . . . , N is then updated to

Dt+1
i = e−yiht(xi)αtDt

i (3)

and renormalized by Dt+1
i ← Dt+1

i∑N
i=1D

t+1
i

so that
∑N
i=1D

t+1
i = 1. These will be

the weights of each example on the next round. The algorithm terminates when
the maximum number M of weak learners have been added to the ensemble or
when a base learner ht with εt < 1/2 cannot be found2. The final prediction on
a test datapoint x′ is given by the sign of the weighted sum of the weak learner
predictions ht(x

′) weighted by their corresponding confidence scores

H(x′) = sign

[
M∑

t=1

αtht(x
′)

]
. (4)

2.3 Classifier Calibration

Many classifiers can have their output normalized to return a score s(x′) ∈ [0, 1]
for each test example x′ indicating ‘how positive’ it is. In the case of AdaBoost,

this score is the quantity s(x′) =
∑M

t=1 αt
ht(x

′)+1
2∑M

t=1 αt
. However, when a cost-sensitive

decision needs to be made on the instance x′, the score s(x′) is of little use.
Instead, we need to estimate the probability of x′ belonging to the positive
class p̂(y = 1|x′). This will allow us to assign x′ to the class that minimizes
the expected cost. In other words, in binary classification, x′ is assigned to the
positive class only if

p̂(y = 1|x′)c > p̂(y = −1|x′) ⇐⇒ p̂(y = 1|x′) > 1

1 + c
,

under the cost matrix of Eq. (1), making use of p̂(y = −1|x′) = 1− p̂(y = 1|x′).
Otherwise, x′ is assigned to the negative class.

The procedure of converting classifier scores to actual probability estimates
is called calibration. A classifier is calibrated if p̂(y = 1|x′)→ s(x′), as N →∞,
for any x′ [21]. However, it has been previously noted [11] that as the number of
boosting rounds increases, the scores s(x′) get more pushed away from 0 or 1, ex-
hibiting an increasing “sigmoid distortion”. In other words, the scores produced
by AdaBoost are a sigmoid transformation of actual probability estimates. A
theoretical justification for this effect is based on the statistical interpretation of
AdaBoost by Friedman et al. [5], under which AdaBoost is a stagewise procedure
of constructing an additive logistic regression model which finds the weak learn-
ers ht and their corresponding confidence scores αt that minimize the average
exponential loss across all training examples.

The results of Niculescu-Mizil and Caruana [11] showed empirically that once
properly calibrated, AdaBoost produced better probability estimates than any
other model examined. The authors corrected for the “sigmoid distortion” of

2 Note that in the binary classification case, a hypothesis ht with error εt > 1/2 can
be turned into one with εt < 1/2 simply by flipping its predictions.
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the AdaBoost scores using three different approaches. The first approach was
to directly apply a logistic correction implied by the framework of Friedman et
al. [5]. The second calibration method was Platt scaling [12], originally used to
map SVM outputs3 to posterior probabilities. Platt scaling consists of finding the
parameters A and B for a sigmoid mapping p̂(y = 1|x′) = 1

1+eAs(x′)+B , such that

the likelihood of the data is maximized. Fitting the parameters A and B requires
the use of a separate validation set. Finally, they also performed calibration using
isotonic regression [13]. The latter is non-parametric and more general as it can
be used to calibrate scores which exhibit any form of monotonic distortion [20].
Platt scaling produced the most reliable probability estimates on small sample
sizes among the three methods, closely followed by isotonic regression. In this
paper we will therefore be calibrating the scores of AdaBoost using Platt scaling.
The Calibrated AdaBoost algorithm is given in Figure 1.

3 Asymmetric boosting algorithms

On training set:

• Train AdaBoost ensemble HM [See Sect. 2.2]

On validation set:

• Calculate score s(x) =

∑M

t=1
αt

ht(x)+1
2∑M

t=1
αt

∈ [0, 1]

of each example x under ensemble HM

• Find A, B s. t. the likelihood of the data under
model p̂(y = 1|x) = 1

1+eAs(x)+B is maximized

On test set:

• Calculate score s(x), ∀ example x under HM

• Apply transformation p̂(y = 1|x) = 1
1+eAs(x)+B

to the scores s(x) to get probability estimates

• Predict class HM (x) = sign[p̂(y = 1|x)− 1
1+c ]

Fig. 1. Calibrated AdaBoost

In the introduction we mentioned a
number of AdaBoost variants pro-
posed to handle asymmetric learning
tasks. Most of these methods are pro-
posed heuristically, i.e. by introduc-
ing ad-hoc changes to steps of the
AdaBoost algorithm, rather than by
starting from a cost-sensitive prob-
lem formulation, e.g. by defining a dif-
ferent loss function in place of Ad-
aBoost’s exponential loss. Asymmet-
ric boosting methods can broadly be
classified into two groups: those that
modify the prediction rule Eq. (4) of
AdaBoost and those that introduce
modifications in the training phase,
either by modifying the weight update
rule of Eq. (3), or the calculation of
the αt coefficients of Eq. (2).

3.1 Methods that modify the prediction rule

A straightforward way to make AdaBoost skew-sensitive is to substitute the
weighted majority vote prediction rule of Eq. (4) with the minimum expected
cost (MEC) prediction rule

HM (x′) = sign


 ∑

y∈{−1,1}

c(y)

M∑

t=1

αtht(x
′)


 , (5)

3 The mapping of outputs of SVMs to posterior probability estimates exhibits a similar
sigmoid distortion to that observed in AdaBoost.
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which reduces to Eq. (4) for c = 1, i.e. when the costs of false positives and
false negatives are equal. This method trains a standard AdaBoost ensemble
and only changes the decision rule used for the final prediction. The idea is to
assign x′ to the class that minimizes the expected cost. This approach has been
mentioned in [17] without being given a specific name. In this paper we refer to
it as AdaMEC.

3.2 Methods that modify the training algorithm

CSB2 [17], changes the weight update rule of the original AdaBoost, given in
Eq. (3), to

Dt+1
i = e−yiht(xi)αtCδ(i)D

t
i , where Cδ(i) =

{
1, if ht(xi) = yi

c(yi), if ht(xi) 6= yi
. (6)

The form of the update rule of CSB2 is the same as that of the original AdaBoost
only for correctly classified examples, hence true positives and true negatives
are not treated differently. On the other hand, misclassified examples have their
weight updates adjusted by an multiplicative cost factor c(yi), thus false positives
and false negatives are treated differently. CSB2 reduces to AdaBoost for c = 1.

AdaC2 [16] substitutes the weight update rule of the original AdaBoost, given
in Eq. (3), by

Dt+1
i = e−yiht(xi)αtc(yi)D

t
i , (7)

which also treats true positives and true negatives differently, unlike Eq. (6).
The method also modifies the calculation of the αt coefficients of Eq. (2) to

αt =
1

2
log

∑
i:ht(xi)=yi

Dt
ic(yi)∑

i:ht(xi)6=yi D
t
ic(yi)

. (8)

It is worth noting that AdaC2 can be justified theoretically [15] as a stage-
wise minimization of a cost-weighted version of the exponential loss, which for a
classifier ht, on an example (xi, yi) has the form L(ht(xi), yi) = c(yi)e

−yiht(xi).
Under this definition, the αt calculated by Eq. (8) is optimal. Like the other two
variants we described, when c = 1, AdaC2 reduces to AdaBoost.

4 Empirical evaluation

4.1 Experimental setup

In our experiments we compare the performance of AdaMEC, CSB2 and AdaC2
to that of the original AdaBoost calibrated with Platt scaling under various de-
grees of cost skew, namely c ∈ {1, 1.5, 2, 2.5, 5, 10}. As a primary measure of
performance we use the average cost attained on the test set. We also provide
precision, recall and F-measure results to better demonstrate the different be-
havior of each method. As a base learner, we used univariate logistic regression
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trained with batch gradient descent. The maximum number of base learners M
was set to 100.

We used 7 datasets from the UCI repository. Any entries with missing val-
ues were discarded. Our goal is to investigate the performance of each approach
under various degrees of cost skew c. The datasets are originally imbalanced, so
we selected an equal number of positive and negative examples, to suppress the
additional effects of class imbalance. This was achieved by uniformly undersam-
pling the majority class rather than by oversampling the minority class, as it
avoids overfitting due to occurrences of identical examples in training, testing
and validation sets. A summary of the datasets is given in Table 1.

We use a random 25% of the data for testing. The remaining 75% was used
for training. In the case of calibration using Platt scaling, we needed to also
reserve a separate validation set to fit the parameters of the sigmoid without
overfitting. A third of the training data was used to this end. After training the
models and –where applicable– calibrating on the validation set, we evaluated
them on the test set. The entire procedure is repeated 30 times. For each method
and evaluation measure, we report average values across all 30 runs as well as
95% confidence intervals.

Table 1. Characteristics of the datasets used in this study. The table indicates the
number of instances used, the number of features, and the class we chose to be ‘positive’
according to the naming convention in the original file. For example, in semeion, class
‘1’ was chosen as ‘positive’ and the rest grouped under the ‘negative’ label.

Dataset
# Positive Negative #

Instances Class Class Features

survival 162 2 1 3

liver 290 1 2 6

pima 576 1 0 8

heart 240 1 0 13

wdbc 424 1 0 31

sonar 194 0 2 60

semeion 322 1 {2, ..., 10} 256

4.2 Analysis of experimental results

Average Cost: In terms of average cost, we observe different trends on the
lower-dimensional datasets survival, liver and pima and on the higher-dimensional
datasets, wdbc, heart, semeion and sonar. Results for liver, pima and sonar are
omitted due to lack of space. When the problem is cost-insensitive (c = 1), all
methods exhibit more or less the same performance. The performance of most
methods also tends to be equivalent when the cost ratio is very high (c = 10),
since for such high degrees of imbalance all examples tend to be assigned to the
positive class. Our results are summarized in Figure 2.

On low-dimensional datasets, the performance of calibrated AdaBoost is on
par with that of CSB2 and AdaC2 and all three methods clearly outperform
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AdaMEC, which exhibits a high variance as c increases. This can partly be ex-
plained by the fact that AdaMEC used on average a much smaller number of
weak learners than CSB2 and AdaC2. On the other hand, calibrated AdaBoost
tended to slightly fewer weak learners than AdaMEC. So its improved perfor-
mance over AdaMEC can only be attributed to the calculation of more reliable
probability estimates.
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Fig. 2. Average cost results under various degrees of cost imbalance c. The cost at-
tained by calibrated AdaBoost is lower than that of AdaMEC, CSB2 and AdaC2 on
higher dimensional datasets like heart, wdbc and semeion and comparable on lower
dimensional datasets like survival.

On higher-dimensional datasets, the performance of calibrated AdaBoost is
even more impressive, as it clearly outperforms all other methods. AdaMEC
exhibits the second-best performance at low degrees of skew c. CSB2 and AdaC2
produce the highest average cost with the former producing marginally lower
average cost than the latter for low values of c.

Precision and Recall: The precision and recall curves reveal more details
about the different behaviour of each method. Calibrated AdaBoost has the
overall highest precision scores, even for high degrees of cost skew c. AdaMEC
achieves the second-best overall precision. CSB2 typically gives poor precision
values, but on semeion, heart and marginally on wdbc, it still outperforms AdaC2
for low values of c. We can again notice the two different trends regarding the cal-
ibrated AdaBoost. It does not outperform its competitors on the low-dimensional
datasets survival, pima and liver, but its performance is comparable to theirs.
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Fig. 3. F-measure results under various degrees of cost imbalance c. Calibrated Ad-
aBoost produces higher F-measure scores than its competitors on the higher dimen-
sional datasets heart, wdbc and semeion and comparable on the lower dimensional
datasets like survival. It also shows a remarkable robustness to changes in c.

In terms of recall, all methods exhibit very high scores, close to the maximal
value of 1. This is indicative of the cost-sensitive methods’ eagerness to assign test
instances to the positive class. AdaC2 and CSB2 have the overall highest recall,
reaching the value of 1 even for small values of c. AdaMEC has the second-highest
overall scores and calibrated AdaBoost exhibits the lowest recall values among
the compared methods. This does not mean that calibrated AdaBoost behaves
poorly in terms of recall, just that it is less aggressive than its competitors.

These results indicate that AdaC2 is the most aggressive among the com-
pared methods, as it tends to assign all test examples to the positive class even
for relatively low values of c. This leads to zero false negatives, hence maxi-
mal recall, but also to many false positives, hence low precision. This behaviour
of AdaC2 is largely mimicked by CSB2. The next most aggressive method is
AdaMEC and the least aggressive is calibrated AdaBoost. The results are sum-
marized in Figure 3.

F-measure: On the F-measure curves of Figure 3, we can again observe that
on the low-dimensional datasets survival, pima and liver all methods exhibit
comparable performance. This is not surprising, as problems with small numbers
of features are generally easier than high-dimensional ones. Where the calibrated
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Fig. 4. Precision and recall results under various degrees of cost imbalance c. Calibrated
AdaBoost achieves higher precision and lower recall than its competitors, especially on
the higher dimensional datasets heart, wdbc and semeion.
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AdaBoost shines is on the higher dimensional datasets wdbc, heart, semeion
and sonar. On these datasets it attains F-measure values far higher than the
asymmetric AdaBoost variants, exhibiting an admirably small sensitivity to the
cost ratio c. The F-measure values of AdaMEC are the second highest overall,
with CSB2 and AdaC2 having low scores. Of these two, CSB2 has a slightly
higher F-measure overall.

5 Discussion and conclusion
Calibration, the act of adjusting the scores of classifiers so that they correspond
to reliable probability estimates, is an often overlooked aspect of classification.
We can use it to improve classification performance, especially in asymmetric
situations. In the case of boosting, the results we obtained clearly show that
calibrated AdaBoost can be used as a viable alternative to asymmetric versions
of AdaBoost. In our experiments, we found that calibrated AdaBoost outperforms
the asymmetric AdaBoost variants on datasets with large numbers of features
while it performs comparably on datasets with few features. Furthermore, the
theoretical properties of the original AdaBoost are preserved. Finally, we can
also easily adjust our predictions without the need to retrain the model. This is
also true for AdaBoost variants that modify only the prediction rule (AdaMEC ),
but not for those that modify the training phase (CSB2, AdaC2 ).

This study was limited to comparing AdaMEC, CSB2 and AdaC2 to cali-
brated AdaBoost, by virtue of being the most successful representatives of their
families. As for the other variants, they are all methods that modify the training
algorithm. CSB0 and CSB1 [17] do not use confidence rated predictions and
based on the results of comparative studies [9, 10, 15], the two variants are typ-
ically dominated by CSB2. Asymmetric-Adaboost [18] was excluded from said
studies as being similar to CSB2. AdaCost [2,17] is also outperformed by AdaC2
and CSB2 and so is AdaC3 [16]. CS-AdaBoost [9, 10], despite being the only
method other than AdaC2 with a solid theoretical basis, has been characterized
as ‘time-consuming and imprecise’ [19], as it lacks a closed form solution for αt
and the optimization of its parameters is therefore computationally intensive.

To our knowledge, the only previous attempt at directly comparing asym-
metric AdaBoost variants to calibrated AdaBoost was by Masnadi-Shirazi and
Vasconselos [10]. The comparison was performed on imbalanced data, it included
AdaC2 and CSB2 and the performance of calibrated AdaBoost was found to be
slightly inferior to theirs. However the authors were solving a quite different
problem from the one we do in the present paper. They fixed the desired preci-
sion of their ensembles and based on that they chose the appropriate cost setup
for each method (i.e the cost ratio c differed from one method to the other) so
as to minimize the total number of errors on the test set.

On the other hand, we solve a cost-sensitive problem. We therefore use a
fixed cost ratio c, taken directly from the cost matrix of the problem and our
goal is to minimize the average cost of misclassifications. Our findings and those
of Masnadi-Shirazi and Vasconselos are complementary, not contradictory. We
observed that AdaC2 and CSB2 favor more aggressively the positive class com-
pared to calibrated AdaBoost. Masnadi-Shirazi and Vasconselos, by fixing the
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precision to a high value, allow the ensemble to commit only a small number of
false positives. AdaC2 and CSB2 are thus forced to select c values that limit
their aggressiveness. Under this light, asymmetric AdaBoost variants can out-
perform calibrated AdaBoost on imbalanced data, if costs are allowed to vary,
but with fixed costs, calibrated AdaBoost produces lower average costs.
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