
Server-side Exception Handling by Composite Web

Services

Kung-Kiu Lau and Cuong Tran

School of Computer Science, the University of Manchester

Manchester M13 9PL, United Kingdom

kung-kiu,ctran@cs.man.ac.uk

Abstract. Currently exception handling for web service orchestrations is per-

formed on the client side. We have defined composite web services [11] that

are not single orchestrations but complete web services that contain all possible

orchestrations of their sub-services. Our composite web services can therefore

define and perform exception handling just once for all such orchestrations, on

the server side. In this paper we explain and discuss our approach to server-side

exception handling by composite services.

1 Introduction

Currently in web services, client applications are orchestrations of web services pro-

vided by various web servers, and exception handling for these applications is defined

and performed on the client side (Fig. 1). To be more precise, exception handling is

server 1

ws1
orc(

client

ws1.opX,
ws2.opY)

workflow
engine

exception handling

. . .ws2

server 2

Fig. 1. Client-side exception handling for an orchestration.

performed by the workflow engine on the client side during its execution of an orches-

tration of web services, e.g. orc(ws1.opX,ws2.opY) in Fig. 1.

In [11] we defined composite web services that are not orchestrations. An orches-

tration defines just one workflow for invoking a fixed set of operations, e.g. opX in ws1

and opY in ws2 in orc(ws1.opX,ws2.opY) in Fig. 1. In contrast, our composite service

is a web service offering operations that can invoke all the operations in all its sub-

services. In other words, our composite service contains all possible orchestrations of

its sub-services.

It follows that our composite service should be able to define exception handling

just once for all possible orchestrations of its sub-services. This is clearly an advan-

tage, compared to defining exception handling for one possible orchestration at a time

(e.g. orc(ws1.opX,ws2.opY) in Fig. 1). Moreover, since our composite service is imple-

mented on a server, its exception handling is now performed on the server side (Fig. 2).

The benefit of server-side exception handling is that client applications using any or-

WEWST-2008

30

server 1

ws1 . . .ws2

server 2

comp(ws1,ws2)

server J composition
API

exception handling

Fig. 2. Server-side exception handling by a composite service.

chestrations contained in the composite service (e.g. comp(ws1,ws2) in Fig. 2) need

not define and perform the exception handling that the composite is already providing.

Moreover, it is possible to include recovery actions in a composite service’s exception

handling, and by so doing, we can make the composite service more stable and reliable

from the point of view of all its clients.

In this paper, we show how we define and perform exception handling in composite

services on the server side. It is worth noting that our work does not mean to handling

all sorts of exception as we shall say clearly in the following sections but to propose a

distinct and significant approach to handle exceptions.

There are many exceptions that can be found in web service composition [14]. In

our work, we focus on the infrastructure exception Unavailability, the process-defined

exception Timeout, the application exception Fault, and suitable recovery actions for

these exceptions. There are no obvious, sensible recovery actions for the other excep-

tions. If the workflow management system fails, there is nothing much we can do about

the resulting Failure exception. Similarly it is not clear what recovery action is appro-

priate when the Delay or QoS exception occurs.

2 Composite Web Services

In our previous work [11], we have defined composite web services. In this section,

we give only a brief account of these services. For more details of our composite web

services, we would like to advise readers to refer to [11].

We define composite services as distinct from orchestrations. A composite web ser-

vice comp(ws1,ws2,. . .) is a composition of web services (not just their operations, as in

orchestrations), where comp is a function with the type comp : ws×ws× · · · ×ws →

ws, where ws is the type of web services. The composite comp(ws1,ws2, . . .) is thus a

whole web service.

This kind of composition is different from an orchestration orc(ws1.opX,ws2.opY,

. . .), which defines a workflow for invoking operations in web services. The function

orc has the type orc : op× op · · ·× op → wf , where op is the type of operations in web

services, and wf is the type of workflows for invoking a set of such operations.

Our composite service thus composes whole services into another whole service. It

does so by using composition operators defined in our component model [12, 10].

In our model, components have the distinguishing features of encapsulation and

compositionality. Components are constructed from two kinds of basic entities: (i) com-

putation units, and (ii) connectors (Fig. 3). A computation unit CU encapsulates com-

putation. It provides a set of methods (or operations). Encapsulation means that CU’s

methods do not call methods in other computation units; rather, when invoked, all their

computation occurs in CU. Thus CU could be thought of as a web service.

WEWST-2008

31

connector
Computation

unit

Invocation

cu

ic

cu2

connector

cu1

cc

(a) Atomic component

Composition

(b) Composite component

ic1 ic2

Fig. 3. Our component model.

There are two kinds of connectors: (i) invocation, and (ii) composition (Fig. 3). An

invocation connector is connected to a computation unit CU so as to provide access to

the methods of CU.

A composition connector encapsulates control. It is used to define and coordinate

the control for a set of components. Composition connectors can be defined for the usual

control structures for sequencing and branching. A sequencer connector that composes

components C1, . . . , Cn can call methods in C1, . . . , Cn in that order. A pipe connector

is similar to a sequencer, but additionally passes the results of calls to methods in Ci to

those in Ci+1. A selector connector that composes components C1, . . . , Cn can select

one component out of C1, . . . , Cn and call methods in that component only. The control

structure for looping is defined as iterators on individual composition connectors (and

invocation connectors, see below).

Clearly composition connectors can define (and encapsulate) workflow for a set of

connected components. They can define workflow control-flow for sequencing, branch-

ing and looping, as described in e.g. [16].

Components are defined in terms of computation units and connectors. There are

two kinds of components: (i) atomic, and (ii) composite (Fig. 3). An atomic component

consists of a computation unit with an invocation connector that provides an interface to

the component. An atomic component encapsulates computation. A composite compo-

nent consists of a set of components (atomic or composite) composed by a composition

connector. The composition connector provides an interface to the composite. A com-

posite component encapsulates computation and control.1

An atomic component can thus be a web service, its invocation connector being the

WSDL interface. A composite component can be a (composite) web service that con-

tains sub-services as well as workflow between the sub-services. Its top-level composi-

tion connector is its interface. However, this interface cannot be described in standard

WSDL since the web service now contains workflow (in the composition connector).

Our components are also compositional, i.e. the composition of two components C1

and C2 yields another component C3. In particular, C3 also has the defining character-

istics of encapsulation and compositionality. Encapsulation and compositionality lead

to self-similarity of composite components, i.e. a composite has the same structure as

any of its sub-components, as can be clearly seen in Fig. 3(b). Self-similarity provides

the basis for a hierarchical way of composing systems from components.

We used our model as a component model for web services. We can use standard

web services as atomic components, composite web services as composite components,

and use the composition connectors as composition operators for web services. This is

1 We do not consider data encapsulation [15] here, for simplicity.

WEWST-2008

32

Composition operator

Web service

WS3

Comp

WS2WS1

Fig. 4. Composite web services.

illustrated in Fig. 4, where two standard web services WS1 and WS2 are composed by a

composition operator Comp into a composite service WS3.

WS3 is a web service, just like WS1 and WS2. However, whereas WS1 and WS2 have

interfaces described in standard WSDL, WS3 has an interface that cannot be described

in standard WSDL, because WS3 contains workflow embodied in the composition op-

erator Comp. For instance, a pipe connector would introduce a workflow structure that

connects a number of services, and sequentially invokes each service and uses the result

as input to the next invocation; a selector connector would provide a branching struc-

ture for choosing a service from a set of services, according to a branching or choice

condition.

Therefore, in order to define WS3 as a web service, we need to extend standard

WSDL so as to incorporate workflow description. Then we need to devise a method

to generate its interface in the extended WSDL from the standard WSDL interfaces

of WS1 and WS2. Accordingly, in [11] we defined an extended form of WSDL that

contains new <portType> elements called <workflow>, <pipe> and <choice> for

defining the workflow in a composite service, in a pipe connector and in a selector

connector respectively. We also implemented a method for generating the interface of

a composite service in extended WSDL from the WSDL interfaces of the composed

standard web services.

Example 1. Consider a bank system with just one ATM that serves two bank consortia

B1 and B2, each with two bank branches, BB1 and BB2, BB3 and BB4 respec-

tively. The ATM reads the customer’s card, performs a security check, identifies the

customer’s bank consortium and passes customer requests together with customer de-

tails to the customer’s bank consortium. The customer’s bank consortium checks cus-

tomer details and identifies the customer’s bank branch, and then passes on the customer

requests and customer details to the customer’s bank branch. The bank branch checks

customer details and provides the usual services of withdrawal, deposit, balance check,

etc.

The bank system can be built as a composite web service composed from standard

web services for ATM, B1, B2, BB1, BB2, BB3 and BB4 (Fig. 5). P1, P2 and P3 are

S3

P3

BB2BB1B1ATM B2 BB3 BB4

C2

C5

C6

C4

C1 C3 S2S1

P1 P2

Fig. 5. The bank composite web service.

WEWST-2008

33

pipe composition connectors; and S1, S2 and S3 are selector composition connectors.

The top-level connector P3 is the interface to the system, and is where control flow

starts.

The composition is hierarchical (composite services are denoted by dotted boxes):

BB1 and BB2 are composed into the composite service C1 by using the selection con-

nector S1; the composite C1 is in turn composed with B1 using the pipe connector P1,

creating the composite C2; similarly BB3 and BB4 are composed into C3 by using the

selection connector S2; the composite C3 is then composed with B2 using the pipe con-

nector P2, creating the composite C4; the composite C2 is in turn composed with C4

by using the selector connector S3 to create the composite C5; the composite C5 is

composed with ATM by using another pipe connector P3, creating the composite C6.

The composite service C6 provides all the operations offered by its sub-services.

The workflow of the composite service C6 is outlined as follows:

<workflow>

<pipe> <set name="ATM">

<operation name="gbc">...</operation> </set>

<choice>

<case condition="1">

<pipe>

<set name="B1"> <operation name="gbr">...</operation> </set>

<choice>

<case condition="1"><set name="BB1">

<operation name="wd">...</operation>

<operation name="dp">...</operation> ...</set> </case>

<case condition="2"><set name="BB2">

<operation name="wd">...</operation>

<operation name="dp">...</operation> ...</set></case>

</choice></pipe></case>

<case condition="2">

<pipe>

<set name="B2"> <operation name="gbr">...</operation> </set>

<choice>

<case condition="1"><set name="BB3">

...

This workflow first invokes the ‘get bank consortium’ (gbc) operation of ATM, and

pipes the result to the branching structure; if the result is 1, then the ‘get bank branch’

(gbr) operation of B1 is invoked, or if the result is 2 then the ‘get bank branch’ operation

of B2 is invoked. The result of B1’s operation is compared with the branching condition;

if the value is 1, then any one of BB1’s operations (‘withdrawal’ (wd) or ‘deposit’ (dp))

can be invoked, or if the value is 2, then any one of BB2’s operations (wd or dp) can be

invoked. Similarly the result of B2’s operations will lead to the invocation of operations

of BB3 and BB4 (not shown here). After that, the workflow ends and the result of the

last invocation is returned.

In [11], we gave a detailed implementation of composite web services, as outlined

in this section. This implementation provides the basis for our work in this paper.

3 Exception Handling by Composite Services

Our definition of composite services makes it possible to add exception handling to

composite services in a hierarchical manner.

WEWST-2008

34

In this section, we describe how we can make a composite web service handle

common exceptions, as well as provide sensible recovery actions, while invoking its

sub-services, which in turn invoke their sub-services, and so on. At each level of sub-

services, we shall deal with the following exceptions: Unavailability, Timeout, Fault

(see [14]); and we shall provide the following recovery actions: Retry and (implicit)

Replace.

Retry will redo the invocation of the sub-service up to n times. If there is a suc-

cessful response within n times, it is passed back to the caller service. Otherwise, an

exception is raised and returned to the caller. The Retry action has a default minimum

and maximum value for n. Without a valid n value given by the caller, this default value

is used.

Replace and retry will invoke an alternative service to replace the service that has

failed. If there is a successful response from the replacement service, it is passed to the

caller service. Otherwise, continue to retry on another alternatives until Retry reaches

the boundary value n. Note that, alternative services are chosen by the composite service

(implicitly) without caller intervention.

To implement exception handling with these recovery actions, we again use our

component model, and integrate the exception handling mechanism into our compo-

nent model semantics. More precisely, composition connectors (i.e. pipe, selector and

sequencer) will intercept all exceptions raised during the invocation of sub-service op-

erations and simply throw them back as normal returns. The whole complex exception

handling mechanism will be defined in two new entities added to our component model:

exception guard and exception facade.

3.1 Exception Guard

An exception guard is a unary connector that is connected to the interface of a (sub)ser-

vice (Fig. 6). It receives invocation requests to provided operations in the service and

Web service

G1

WS1’

WS1

GuardThrown exception

Successful result

Invocation

Caught exception and Retry

(a) Exception guard (b) Service with exception guard

Fig. 6. Exception guard.

intercepts all the results. It captures any exceptions raised by invocations to the ser-

vice. For exceptions that are Unavailability, Timeout and Fault, it performs the Retry

recovery action. For other exceptions, it will simply throw them.

An exception guard thus acts as a filter that provides exception handling together

with recovery actions. Applying a guard to a service results in a new service, e.g. WS1

with guard G1 becomes WS1’ in Fig. 6(b). The new service encapsulates the original

service and exposes its interface through an extended WSDL document, as we shall

see later, to express exception handling semantics. In order to allow the caller a choice

of exception handling options, for every provided operation of the original service, we

WEWST-2008

35

generate two provided operations for the new service: (i) one operation that invokes the

original operation and handles Unavailability and Timeout exceptions with the Retry

recovery action; (ii) one operation that invokes the original operation and simply throws

any exception encountered. The default and valid range of timeout and retry values used

for handling exceptions are preset properties of the exception guard, and are defined in

extended WSDL for the new service.

Thus all the provided operations of the original service are made available through

the interface of the new service, together with additional exception handling semantics

defined by the guard.

For example, in Fig. 6(b), for simplicity, let us assume that WS1 provides just one

operation op1 that takes one input and returns one output, both as strings. Thus its

signature is:

op1 (String param) : String

The new service WS1’ provides two operations with exception handling. Their signa-

tures are as follows:

op1_RT (String param, String timeout, String num_of_retries) : String

op1_O (String param) : String

op1 RT has three inputs: the first one is the input for computation; the second is the

value of timeout, and the third one is the number of retries in case of invocation failure.

op1 O has only one input, which is the input for computation, and whatever exceptions

that result will not be handled but simply thrown back.

3.2 Exception Facade

An exception facade is an n-ary connector that connects a number of services and pro-

duces a new composite service (Fig. 7). The idea behind an exception facade is to unify

WS1 WS1’
Web service

Exception facade

WS1’’
F1

Fig. 7. Exception facade.

two or more services that provide the same operations in order to increase the reliability

of operation invocations. If one service cannot respond to a call to one of its operations,

then an alternative service is used to replace the failed service. The services are priori-

tised according to their rankings as backup services, and there is a preset bound on the

number of Retry actions for the composite service in case of exceptions.

The exception handling behaviour is defined as follows. When there is an invocation

to a provided operation, an exception facade delegates the call to the sub-service with

the highest priority and intercepts any results. In case of success, the facade passes the

result back to the client. In case of exception, the facade recovers by Retry actions,

provided the bound on retries has not been exceeded.

In detail, if the exception is Unavailability or Timeout, the facade retries to delegate

the invocation to the sub-service with the next highest priority. When there is no more

WEWST-2008

36

sub-service with a lower priority, and the number of retries has not reached the bound,

the facade starts from the sub-service with the highest priority again. When the number

of retries approaches the limit and exception persists, the exception is thrown to the

caller. Other exceptions are intercepted but simply thrown back.

As in the case for an exception guard, the default and valid range of timeout and

retry values used for handling exceptions are preset properties of an exception facade.

An exception facade thus unifies sub-services and provides an interface for the new

service. In order to allow the caller a choice of exception handling options, for each

duplicate set of (semantically equivalent) operations provided by the sub-services, two

operations are generated for the new service. The interface of the new service will be

defined in extended WSDL to expose the generated operations and properties.

For example, in Fig. 7, an exception facade F1 is applied to two sub-services, WS1

and WS1’, to produce new service WS1”. In this example, WS1’ can be imagined as a

backup service for the main service WS1, and so their interfaces are identical. WS1’ is

the new service that is reliable and convenient to use, as it provides exception handling

for every provided operation.

Again for simplicity, let us assume that the two sub-services WS1 and WS1’ have

just one operation. The operation accepts one input as a string and return an output also

as a string. Thus its signature is:

op1 (String param) : String

The new service WS1” therefore has two operations that have the following signatures:

op1_RT (String param, String timeout, String num_of_retries) : String

op1_O (String param) : String

op1 RT has three inputs: the first one is the input for computation; the second is the

value of timeout and the third is the number of retries in case of invocation failures.

op1 O has only one input, which is input for computation and whatever exceptions

result will not be handled and simply thrown back.

4 Defining Composite Web Services with Exception Handling

A standard web service has its interface described in a WSDL document. Our composite

web service has an interface in an extended form of WSDL [11]. Now with exception

handling, we are introducing yet more new semantics to composite web services. There-

fore, the interface of a composite web service should be further extended with a new

element to capture such semantics.

We add one new element, namely <exception>, into the conventional <portType>

element. The <exception> element consists of two child elements, <timeout> and

<retry>. Each of these elements has attributes such as defval, minval and maxval to

represent default, minimum and maximum value of timeout and retries. The syntax of

the extended WSDL is as shown in Fig. 8. For example, the service WS1’ in Fig. 6

which is built from applying a guard to the service WS1 will have the extended WSDL

interface shown in Fig. 9. The original service WS1 provides one operation, namely

op1. The new service WS1’ has two operations, op1 O and op1 TR. The op1 O opera-

tion is identical to the op1 operation provided by WS1 while op1 TR has an exception

WEWST-2008

37

<wsdl:portType name="nmtoken">*
<wsdl:documentation />?

<wsdl:output name="nmtoken"? message="qname">?
<wsdl:input name="nmtoken"? message="qname">?

<wsdl:operation name="nmtoken">*

<wsdl:fault name="nmtoken"? message="qname">?
</wsdl:operation>
<exception>?

<timeout defval="nmtoken" minval="nmtoken" maxval="nmtoken">?
<retry defval="nmtoken" minval="nmtoken" maxval="nmtoken">?

</exception>
</wsdl:portType>

<wsdl:documentation />?
<wsdl:documentation />?

<wsdl:documentation />?

<wsdl:documentation />?

</wsdl:input>
</wsdl:output>

</wsdl:fault>

Fig. 8. Extended WSDL for exception handling.

<retry defval="0" minval="0" maxval="5">

<exception>

</exception>
</wsdl:portType>

<timeout defval="−1" minval="100" maxval="30000">

<wsdl:portType name="W1’">*
<wsdl:operation name="op1_O">

<wsdl:input name="param" message="inMessage"> </wsdl:input>
<wsdl:output name="return" message="outMessage"> </wsdl:output>

</wsdl:operation>
<wsdl:operation name="op1_TR">

<wsdl:input name="param" message="inMessageTR"> </wsdl:input>
<wsdl:output name="return" message="outMessageTR"> </wsdl:output>
<wsdl:fault name="exception" message="faultMessageTR"> </wsdl:fault>

</wsdl:operation>

Fig. 9. Extended WSDL interface of WS1’.

handling mechanism. Invoking op1 TR allows us to use exception handling through the

parameters of its invocation.

The extended WSDL interface is connected to a composition connector, e.g. a pipe

or a selector, in any composition to build further composite services. The interface of

such a composite service therefore has a workflow structure (introduced by the pipe and

selector connector) as well as exception handling semantics.

Example 2. Consider the bank system in Example 1, as a composite web service (Fig. 5).

All the sub-services may be located on different networks; that is, the bank system may

be spread over different networks and different platforms. This is where problems arise.

In general the bank system can encounter hardware and software problems such as

server hardware failure, server software failure, network disconnection or congestion,

etc.

For example, if the connection to bank branch service BB1 is broken, then cus-

tomers having accounts in this bank branch cannot use the bank services. These prob-

lems which are normally unexpected can cause the whole system to malfunction or

totally broken down. Thus, this problem must be addressed in order to build a secure

and reliable system.

We can define the bank system as a composite service with exception handling, by

adding exception guards and facades. The result is depicted in Fig. 10. We assume that

all the bank branch services, BB1, BB2, BB3 and BB4 have backup services, BB1’,

BB2’, BB3’ and BB4’ respectively; services B1, B2 and ATM do not have backup

services. To start building the composite bank service, every pair of main service and

backup service is first composed with facades F1, F2, F3 and F4 to achieve four reliable

WEWST-2008

38

P3

S2S1

Atm

C4

B1 BB1’BB1 BB2’BB2 B2 BB3’BB3 BB4’BB4

C1

RBB2RB1 RBB1RAtm

P1C2

S3C5

C6

RB2 RBB4RBB3

C3

P2

F1 F2G1G3 G2 F3 F4

Fig. 10. The bank composite web service with exception handling.

bank branch services RBB1, RBB2, RBB3 and RBB4 respectively. They will then be

composed by two selector connectors S1 and S2 to achieve two composite services C1

and C2. B1 and B2 do not have backup service so we apply two exception guards G1 and

G2 to them to make two reliable bank services RB1 and RB2, which will be composed

with two previously built composite service C1 and C2 respectively, by using two pipe

connectors P1 and P2 to achieve two bigger composite services C3 and C4 respectively.

We then compose C3 and C4 by using selector S3 to get composite C5. The ATM

service also does not have a backup service, so we apply the exception guard G3 to

make reliable service RATM, and then compose it with the composite C5 using the

pipe connector P3, to get the composite C6. C6 represents the composite bank service

with exception handling by providing all services with exception handling.

The interface of the composite C6 is described in extended WSDL, and is outlined

as follows:

<workflow>

<pipe> <set name="RATM"> <operation name="getbank_O">...</operation>

<operation name="getbank_TR">...</operation>

<exception> <timeout defval="-1" minval="100" maxval="30000"/>

<retry defval="0" minval="1" maxval="5"/> </exception> </set>

<choice>

<case condition="1">

<pipe> <set name="RB1"> <operation name="getbranch_O">...</operation>

<operation name="getbranch_TR">...</operation>

<exception> <timeout defval="-1" minval="500" maxval="30000"/>

<retry defval="0" minval="1" maxval="5"/> </exception> </set>

<choice>

<case condition="1"><set name="RBB1">

<operation name="withdraw_O">...</operation>

<operation name="withdraw_TR">...</operation>

<operation name="deposit_O">...</operation>

<operation name="deposit_TR">...</operation> ...

<exception> <timeout defval="-1" minval="500" maxval="10000"/>

<retry defval="0" minval="0" maxval="5"/> </exception> </set> </case>

<case condition="2"><set name="RBB2">

...

<exception>

<timeout defval="-1" minval="1000" maxval="10000"/>

<retry defval="0" minval="2" maxval="10"/> </exception>

</set></case></choice></pipe></case>

<case condition="2">

<pipe>

<set name="RB2">

...

WEWST-2008

39

This workflow first invokes any operation of RATM, and pipes the result to the

branching structure; if the result is 1, then any one of RB1’s operations can be invoked,

or if the result is 2 then any one of RB2’s operations can be invoked; the result of RB1’s

operation is used to compare with the branching condition; if the value is 1, then any

one of RBB1’s operations can be invoked, or if the value is 2, then any one of BB2’s

operations can be invoked. Similarly the result of RB2’s operations is used in checking

the branching condition; if the condition is 1 then any one of RBB3’s operations or

RBB4’s operations will be invoked. After that, the workflow ends and the result of the

last invocation is returned. The integrated exception handling mechanism can be used

in every invocation of any operation provided by any sub-service in this workflow by

selecting the appropriate operation according to its signature, e.g. an operation name

ending in TR.

From the point of view of its clients, C6 appears reliable because it handles ex-

ceptions with recovery actions. Clients need not repeat the exception handling already

performed in C6. They can simply invoke C6 with operations and exception handling

mechanisms as parameters, as specified in its interface.

5 Implementation

To implement composite services with exception handling as defined in the previous

sections, we make use of our existing implementation of composition connectors (i.e

pipe and selector), and extend our existing implementation of composite services by

adding the implementation of the exception guard and exception facade connectors.

Our existing implementation [11] is in Java and the Axis framework [3].

Applying a guard connector to one service or applying a facade connector to two

services results in a (composite) service with an interface in extended WSDL. We need

to generate a Java implementation for such an interface. The implementation will dis-

patch any requests for operations in the interface of the composite to the implementation

of the guard or facade connector, and pass any result from the latter back to the client.

Our implementation of the exception guard and the exception facade connector has

two (overloaded) operations both called invoke. For simplicity, our implementation only

deals with parameters of primitive data types, e.g. string, integer, float, etc. We use

String as intermediate type because other primitive types can be converted to String

and vice versa. In addition, the implementation detects exceptions, e.g. Unavailability,

Timeout and so on, as shown in these signatures:

String invoke (String oper, String[] params)

throws UnavailableException, TimeoutException, Exception

String invoke (String oper, String[] params, int timeout, int retry)

throws UnavailableException, TimeoutException, Exception

Thus the exception guard or the exception facade connector receives an operation, a list

of parameters, together with timeout and retry values optionally depending on which

operation receives the request. If the first invoke operation receives the request, it is

invoked with the given list of parameters, and a successful result or any exception will

be returned as an output message or a fault message respectively by the composite ser-

vice. If the second invoke operation receives the request, it is invoked with the list of

WEWST-2008

40

parameters, and it sets the timeout of this invocation according to the timeout value.

A successful result is returned as a normal result. If there is a Timeout or Unavailabil-

ity exception, the connector will recover by retrying the invocation to the appropriate

service (the same service in the case of a guard; an alternative service in the case of

facade). If the exception still persists, it will be returned as a fault message. If the ex-

ception is of other types, it will also be returned as a fault message by the composite

service.

Although it is expressed in a form of WSDL which is further extended from that

in our previous work, the interface of a composite with a guard or facade connector

has a top-level <workflow> element that is the same as before. As a result, we can use

our existing composition connectors in [11], i.e. pipe and selector, on these composites

to build bigger composite services. These connector will therefore expose operations

provided by sub-services through interfaces to client as already defined in our previous

work [11].

Briefly, the Java class of a pipe or selector connector always has one operation

invoke, that is the operation provided by the composite service to the outside world.

Clients use a composite service via its invoke operation.

Basically, the signature of invoke comprises three main elements, viz. condition, op-

eration names and operation parameters, plus return and exception types. The condition

is used in a branching workflow structure for selecting sub-services. Other elements

have the same meaning as in the exception guard and exception facade connector.

Each operation is provided by a sub-service which could be either a service with

exception handling, or a composite service. If a sub-service is service with exception

handling, the connector identifies the number of parameters for every operation from its

interface so that the connector can call it with the correct parameters extracted from the

parameter list. The result that is either a success or an exception is returned as the output

of the composite. If a sub-service is a composite service, the connector just passes the

whole operation list at that point to the invoke operation of the sub-service.

Finally, in order to demonstrate how our exception handling approach performs in

practice, we created a random test case where we simulate Unavailability and Timeout

exceptions. The data for the test case is shown in Table 1, namely services, response

times and hosting servers. All the reliable sub-services, RAtm, RB1, RB2, RBB1,

Service Response time Location

ATM No delay Server 1

B1, BB1 Delay 0-1sec Server 1

BB2 Service moved Server 1

BB1’, BB2’ Delay 0-2sec Server 2

B2 Delay 0-2sec Server 4

BB3, BB4 Server down Server 3

BB3’ Delay 0-1sec Server 4

BB4’ Delay 0-1.5sec Server 4

RAtm, RB1, RB2, RBB1, RBB2, RBB3 and RBB4 - Reliable server

C1, C2, C3, C4, C5 and C6 - Reliable server

Table 1. Test case data.

RBB2, RBB3, RBB4, and composite services C1, C2, C3, C4, C5, C6 are created and

deployed onto one reliable server, because we do not have more servers available, but

we can easily extend our test case to many such servers.

WEWST-2008

41

Fig. 11 shows the composite bank service handling a balance checking request and

the resulting exceptions step by step. When the composite bank service C6 receives a

Fig. 11. Test case result.

request, it invokes the get bank operation of sub-service RATM. The result is that bank

id is piped to composite service C5. C5 then uses the value to select service C4 which

invokes the get branch operation of service RB2. RB2 encounters a timeout exception,

and retries to call its sub-service again. The second call of RB2 is successful, and the

result is that the branch id is passed to service C3. C3 uses the branch id to select branch

service RBB4 to invoke. Again, another exception is encountered and is handled by

retrying invocation of another service located at different server.

6 Discussion and Related Work

Our approach offers server-side exception handling by composite web services of some

common exceptions. In the literature we have not found an equivalent approach to ours.

The main advantage of our approach is that we define and perform exception han-

dling once, for all the orchestrations contained in a composite service. Existing ap-

proaches do not use composite services, but use individual orchestrations, and as a

result they have to define exception handling for every orchestration.

For example, let us use the bank example to compare our approach with the try-

catch approach supported by BPEL for client-side exception handling approach. Sup-

pose there are two clients who want to build their own orchestrations from given atomic

(standard) services introduced in our example. One orchestration provides the withdraw

service and can handle two exceptions, Unavailability and InvalidWithdraw. The other

orchestration provides the balance checking service and handles one exception, Un-

availability. In BPEL, both composition and exception handling are defined at the level

of operations. The workflow only composes several specific operations and provides

WEWST-2008

42

exception handling for them. Different clients who wish to compose different specific

operations of the same services, need to define different workflows together with ex-

ception handling mechanisms. Thus, to build the above two applications, each client

using client-side exception handling needs to build a workflow with its own exception

handling mechanism.

Another advantage of our approach is that a composite service with exception han-

dling is a reliable service, from the point of view of all its clients, whatever orchestration

(contained in the composite service) they are using.

So far, all the approaches to exception handling we have found are for the client

side. We summarise them here.

[13, 5, 6] present some taxonomies of exceptional situations. [5] also discusses ex-

ception handling in workflow management systems. At the lowest level, BPEL [2] pro-

vides the primitive try-catch construct to specify the exception to be caught, and define

compensation actions as part of workflow specification.

In [8], a processor is built to inject codes (try-catch structures) into a BPEL orches-

tration, so that the resulting BPEL workflow when encountering exceptions will request

for alternative services by invoking an external service.

The approaches in [4] and [13] use the ECA rule for modelling exceptions. The

ECA rule in [4] is stored and used by a processor which interacts with the commercial

FORO workflow engine to handle exception. In [13], the JECA rule is processed and

combined with a CBR (Case-Based Reasoning) mechanism to enhance exception han-

dling. Similarly, ADOME-WFMS [7] also uses ECA to model exception and resolution

which is integrated in the ADOME workflow management system.

In [1], an extension to the YAWL workflow engine is created to allow defining

exception handling rule sets and associated recovery actions (defined by Exlet) which

will be consumed a workflow engine.

In [14, 9], a policy is used to specify what exception can be captured and how excep-

tion can be resolved. The policy is either used to generate exception handling construct

for the target BPEL workflow [14] or processed by a workflow middleware [9].

7 Conclusion

In this paper we propose an approach to server-side exception handling by composite

web services. Currently, our composite services can capture Unavailability and Time-

out exceptions and provide Retry as recovery action, or Throw to propagate exceptions.

Since our composite service contains all possible orchestrations of its sub-services,

clients can use any such orchestration without needing to repeat the exception han-

dling already provided by the composite service. As a result, our composite service is

reliable, from the point of view of all its clients. Thus our approach offers important

benefits to clients for building service oriented applications.

In future work, we intend to investigate sensible resolution for other exceptions

such as Delay and QoS Degradation. This will add even more value to our server-side

exception handling approach.

WEWST-2008

43

References

1. W. M. P. van der Aalst et al. Dynamic and extensible exception handling for workflows: A

service-oriented implementation. Technical report, BPM Center, March 2007.

2. T. Andrews et al. BPEL4WS - version 1.1. Technical report, IBM, 2003.

3. Apache. Axis - web services framework web site. http://ws.apache.org/axis2/.

4. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation of excep-

tions in workflow management systems. In TODS, volume 24, pages 405–451, 1999.

5. F. Casati and G. Cugola. Error handling in process support systems. In A. Romanovsly et al.,

editor, Exception Handling, pages 251–270. Springer-Verlag Berlin Heidelberg, 2001.

6. K.S. May Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea. A fault taxonomy for web

service composition. In Proceedings of WESOA07. Springer LNCS, 2007.

7. D. K. W. Chiu et al. Adome-wfms: Towards cooperative handling of workflow exceptions.

In A. Romanovsky et al., editor, Exception Handling, pages 271–288. Springer, 2001.

8. K. Christos, V. Costas, and G. Panayiotis. Enhancing bpel scenarios with dynamic relevance-

based exception handling. In ICWS, pages 751–758, 2007.

9. A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing web services relia-

bility. In IEEE International Conference on Web Services (ICWS’06), 2006.

10. K.-K. Lau, L. Ling, and Z. Wang. Composing components in design phase using exogenous

connectors. In Proceedings of 32nd ECSEAA, pages 12–19, 2006.

11. K.-K. Lau and C.M. Tran. Composite web services. In In C. Pautasso and T. Gschwind,

editors, Proceedings of 2nd Workshop on Emerging Web Services Technology, 2007.

12. K.-K. Lau et al. Exogenous connectors for software components. In G. Heineman et al.,

editor, Proc. 8th Int. Symp. on CBSE, LNCS 3489. Springer, 2005.

13. Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception handling in workflow systems. In

Applied Intelligence, pages 125–147. Kluwer Academic, 2000.

14. L. Zeng, H. Lei, and Boualem Benatallah. Policy-driven exception-management for com-

posite web services. In Proceedings of CEC05. IEEE, 2005.

15. K.-K. Lau and F. Taweel. Data encapsulation in software components. In In H.W. Schmidt et

al., editor, Proc. 10th Int. Symp. on Component-based Software Engineering, LNCS 4608,

pages 1–16. Springer-Verlag, 2007.

16. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns. In

Distributed and Parallel Databases, pages 5–51, 2003.

WEWST-2008

44

