Composite Web Services

Kung-Kiu Lau and Cuong Tran

Keywords. Web service, composite service, service composition, component model.

Abstract. Currently, composition of web services is done by orchestration. An orches-
tration is a workflow that combines invocations of individual operations of the web
services involved. It is therefore a composition of individual operations, rather than a
composition of entire web services. In this paper we propose a different approach to
web service composition, whereby entire services are composed into composite ser-
vices. The latter are again entire web services, that is, they can be further composed
using our composition, or they can be used in an orchestration. We show how these
composite services can be constructed hierarchically and used in practice.

1. Introduction

In a service-oriented architecture [18], individual services are combined into a single
workflow that reflects the business process in question. Although services can be defined
in a general way, in practice the most widely used services are web services [13, 2].

Currently, composition of web services is carried out by orchestration [14]. An or-
chestration is a workflow that combines invocations of individual operations of the web
services involved. It is therefore a composition of individual operations, rather than a
composition of entire web services.

In this paper, we propose a different approach to web service composition, whereby
entire services are composed into composite services. The latter are again entire web
services, that is they can be further composed using our composition, or they can be used
in an orchestration.

The key difference between our approach and web service orchestration lies in the
nature of a composite web service created by our approach. A composite service has all
its operations available for composition or orchestration. By contrast, in an orchestration,
only the chosen individual operations of the member services are available for invocation.
A composite service is a service, whereas an orchestration is a workflow. By the same
token, a composite service is also different from a choreography [14] (which is defined
on a chosen set of individual operations).

2 Kung-Kiu Lau and Cuong Tran

Another important feature of our approach is that composition is hierarchical. This
means that a composite service can be constructed step by step from sub-services in a
systematic manner.

Our approach is based on our component model [11, 10]. In our model, components
are built from computation units. These units provide operations but do not invoke other
units, and so behave like web services. Our components are composed in a hierarchical
manner by using special connectors, which we call exogenous connectors [11]. It is these
connectors that make the difference between our model and other component models, and
the difference between our approach to web service composition and current practice in
web service composition.

2. Motivation

Currently, web service composition is done by orchestration [6]. A web service orchestra-
tion is a coordination of web service invocations, and can be represented by a workflow.
It can therefore be defined as a function ORC with the following type:

ORC :op x op--- X op — wf (1)

where op is the type of operations in web services, and wf is the type of workflows for
invoking a set of such operations.

An orchestration is defined using workflow languages such as BPEL [3], BPML [4]
and XLANG [17]. A workflow in these languages can be converted into a web service by
giving it a WSDL [13] interface. The resulting web service can then be orchestrated with
other web services.

To motivate composite web services, in this section we use a simple example to
show how composition is different from orchestration.

Consider a bank system with just one ATV that serves two bank consortia BC'1
and BC2, each with two bank branches, B1 and B2, B3 and B4 respectively. The ATM
reads the customer’s card, performs a security check, identifies the customer’s bank con-
sortium and passes customer requests together with customer details to the customer’s
bank consortium. The customer’s bank consortium checks customer details and identifies
the customer’s bank branch, and then passes on the customer requests and customer de-
tails to the customer’s bank branch. The bank branch checks customer details and provides
the usual services of withdrawal, deposit, balance check, etc.

Suppose all the elements of the bank system are available as web services, each
providing appropriate operations. Then we can build a web service for the bank system
by orchestrating all these web services, and converting the resulting workflow into a web
service. For any particular orchestration, operations to be invoked in the web services
have to be chosen, and one specific corresponding workflow is defined. Figure 1 shows
one possible orchestration.

In this workflow, the operation pc (processCard) of the ATM is invoked to identify
the customer’s bank consortium. The operation gb (getBank) of bank consortium BC'1
or BC2 is invoked to get the customer’s bank branch. The operations dp (deposit) or wd

Composite Web Services 3

FIGURE 1. Bank orchestration.

(withdraw) are invoked in the bank branches (B1, B2, B3 or B4). This workflow can be
converted into a bank web service that provides the deposit and withdrawal operations.

Orchestration is not compositional with respect to the operations invoked. That is,
given an orchestration, it is not possible to add to its set of invoked operations and hence
its workflow. For example in Figure 1 it is not possible to add an invocation of security
check to ATM, or a balance check operation to the bank branches. Any such change would
require an entirely new orchestration.

This is true even if the orchestration is defined in a hierarchical workflow language
like YAWL [19]. Figure 2 shows how the bank system workflow in Figure 1 can be defined
in YAWL.

4 > (BLdp)—x
[cll9<> O
e
B2

[d] > —@®
[2I™C &
[(B2wd
[c1] BCL
(ATM.po) —@
[c2] BC2

FIGURE 2. Bank with nested workflows.

To add security checks to ATM, it would be necessary to change the top-level work-
flow. To add balance check to bank branches, it would be necessary to change the sub-
workflows for BCI and BC2.

Of course in an orchestration, it is possible to include all the operations of all the
web services involved. However, such a workflow can potentially be very large, complex

4 Kung-Kiu Lau and Cuong Tran

and cumbersome. Furthermore, it will contain many redundancies and repetitions because
many sub-workflows are duplicated, as can be seen in Figures 1 and 2.

By contrast, we define a composite web service as a web service that is composed
from sub-services. A composite web service is not just one orchestration, but is a web
service that provides all the operations of all the sub-services, i.e. it contains all possi-
ble orchestrations of these operations. For the bank system, the composite service would
have the workflow shown in Figure 3, where # denotes a parameter. This workflow is

FIGURE 3. Bank composite.

parameterised over all the operations of every web service involved.

3. Web Service Composition

So we want to define web service composition differently from web service orchestration.
In particular, we want to define it hierarchically, that is, we want to be able to compose ser-
vices into composite services, which in turn can be composed into even bigger composite
services. This is illustrated by Figure 4

w7
,,,,,,, Y
W5+ W6
f 3

,,,,,,,,,,,,,,,,,,,

FIGURE 4. Web service composition.

where web services W1 and W2 are composed into a composite service W5, and
web services W3 and W4 are composed into a composite service W6. W5 and W6 are in
turn composed into W7.

A composition can be defined as a function COMP with the following type:

COMP : ws X ws X +++ X WS — WS 2)

where ws is the type of web services.
The difference between orchestration and composition can be seen clearly by com-
paring (1) and (2): an orchestration takes named operations (in the web services involved)

Composite Web Services 5

as arguments and returns a workflow (for the invocations of these operations); whereas a
composition takes web services and returns a (composite) web service.

Our definition of web service composition is based on a component model that we
have defined [10], in particular composition in the design phase [9]. This model defines
what components are, as well as composition operators for them, for different phases,
namely design and deployment phases. We will show that our model can serve as a com-
ponent model for web services and their composition.

3.1. A Component Model for Web Services

In our model [10], components have the distinguishing features of encapsulation and
compositionality. Components are constructed from two kinds of basic entities: (i) com-
putation units, and (ii) connectors (Figure 5). A computation unit CU encapsulates com-
putation. It provides a set of methods (or operations). Encapsulation means that CU’s
methods do not call methods in other computation units; rather, when invoked, all their
computation occurs in CU. Thus CU could be thought of as a web service.

There are two kinds of connectors: (i) invocation, and (ii) composition (Figure 5).
An invocation connector is connected to a computation unit CU so as to provide access to
the methods of CU.

A composition connector encapsulates control. It is used to define and coordinate
the control for a set of components (atomic or composite). Composition connectors can
be defined for the usual control structures for sequencing and branching. A sequencer
connector that composes components C', . . ., C,, can call methods in C, ..., C, in that
order. A pipe connector is similar to a sequencer, but additionally passes the results of
calls to methods in C; to those in C; 1. A selector connector that composes components
C1,...,C, can select one component out of C1, . .., C, and call methods in that compo-
nent only. The control structure for looping is defined as iterators on individual composi-
tion connectors (and invocation connectors, see below). Our composition connectors are
thus a Turing complete set [12, 5], for defining control flow.

Clearly composition connectors can define (and encapsulate) workflow for a set of
connected components. They can define workflow control-flow for sequencing, branching
and looping, as described in e.g. [20].

Components are defined in terms of computation units and connectors. There are
two kinds of components: (i) atomic, and (ii) composite (Figure 5). An atomic component

e 1T T - -
. v N Compositio | 9
Invocation (ic) L o)
connector ! 3
connector ! ! - g
Computation | L noa
unit [Bdl ! ! i <3
] i JETIH
L 77777777777777777777 I é
Encapsulation Encapsulation
(computation) (computation and control)
(a) Atomic component (b) Composite component

FIGURE 5. Our component model.

consists of a computation unit with an invocation connector that provides an interface to

6 Kung-Kiu Lau and Cuong Tran

the component. An atomic component encapsulates computation (Figure 5(a)). A com-
posite component consists of a set of components (atomic or composite) composed by a
composition connector. The composition connector provides an interface to the compos-
ite. A composite component encapsulates computation and control (Figure 5(b)).

An atomic component can thus be a web service, its invocation connector being
the WSDL interface. A composite component can be a (composite) web service that con-
tains sub-services as well as workflow between the sub-services. Its top-level composition
connector is its interface. However, this interface cannot be described in standard WSDL
since the web service now contains workflow (in the composition connector).

Our components are also compositional, i.e. the composition of two components C
and C5 yields another component Cj. In particular, C'3 also has the defining characteris-
tics of encapsulation and compositionality. Thus compositionality implies that composi-
tion preserves encapsulation (Figure 5(b)).

Encapsulation and compositionality lead to self-similarity of composite compo-
nents, as can be clearly seen in Figure 5(b). Self-similarity provides the basis for a hi-
erarchical way of composing systems from components.

Encapsulation and compositionality result form the nature of our connectors. They
are in fact exogenous connectors [11], and encapsulate control outside of computation
units in a system. Exogenous composition connectors are defined in a hierarchical way.
For example, a sequencer connector, or a pipe connector, that composes two atomic com-
ponents A; and As is clearly defined in terms of the invocation connectors in A; and
As. In general, exogenous composition connectors form a hierarchy built on top of invo-
cation connectors for atomic components. Connectors at level n for any n > 1 can be
defined in terms of connectors at levels 1 to (n — 1). Indeed, exogenous connectors have
a hierarchical type system [11].

The hierarchical nature of exogenous connectors entails a strictly hierarchical way
of constructing systems by composing components. In such a system, atomic components
form a flat layer, and the entire control structure (of composition connectors) sits on top
of this. The precise choice of connectors, the number of levels of connectors, and the
connection structure, depend on the relationship between the behaviour of the individual
components and the behaviour that the whole system is supposed to achieve. Whatever
the control structure, however, it is strictly hierarchical, which means that there is always
only one connector at the top level. This is the connector that initiates control flow in the
whole system.

As an example, the bank system can be constructed using our component model as
shown in Figure 6. P1, P2 and P3 are pipe composition connectors; S1, .S2 and S3 are
selector composition connectors; and /1 ...I7 are invocation connectors. The top-level
connector P1 is the interface to the system, and is where control flow starts.

4. Composite Web Services

Using our model as a component model for web services, we can use standard web ser-
vices as atomic components, composite web services as composite components, and use

Composite Web Services 7

FIGURE 6. The bank system.

the composition connectors® as composition operators for web services. This is illustrated

(D Composition operator
‘ P wi W‘Z Q ‘ l%|Webservice

FIGURE 7. Composite web services.

in Fig 7, where two services W/ and W2 are composed by a composition operator Comp
into a composite service W3.

W3 is a web service, just like W/ and W2. However, whereas W/ and W2 have
interfaces described in standard WSDL, W3 has an interface that cannot be described in
standard WSDL, because W3 contains workflow embodied in the composition operator
Comp. Therefore, in order to define W3 as a web service, we need to extend standard
WSDL in order to incorporate workflow description. Then we need to devise a method to
generate its interface in the extended WSDL from the standard WSDL interfaces of W1
and W2.

The bank system in Figure 6 can be built as a composite web service composed from
standard web services for ATM, BCI, BC2, Bl, B2, B3 and B4 (Figure 8). The structure
of this composite is of course identical to that of the bank system in Figure 6.

The composition is hierarchical (composite services are denoted by dotted boxes):
B1 and B2 are composed into the composite service CI by using the selection connector
S1; the composite C/ is in turn composed with BCI using the pipe connector P/, creat-
ing the composite C2; similarly B3 and B4 are composed into C3 by using the selection
connector S2; the composite C3 is then composed with BCI using the pipe connector P2,
creating the composite C4; the composite C2 is in turn composed with C4 by using the
selector connector S3 to create the composite C5; the composite C5 is composed with
ATM by using another pipe connector P3, creating the composite C6.

The composite service C6 provides all the operations offered by its sub-services.

'In the design phase.

8 Kung-Kiu Lau and Cuong Tran

FIGURE 8. The bank composite web service.

4.1. Defining Composite Web Services

In order to define composite web services, we need to extend standard WSDL to incorpo-
rate the workflow added by connectors in composition. To this end, we define a new ex-
tensible element for WSDL documents, called workflow. It contains child elements which
describe the details of the workflow structure. The extended WSDL document for a com-
posite service consists of standard elements such as types, messages, portType, binding
and services, together with the additional workflow element, as shown in Figure 9.

<definitions> Root element of WSDL document

<types> Data types
<message> Message structures
<portType> Provided operations and messages
\ <workflow> Workflow structure description and available operations
<binding> Message exchange protocol
<service> Service name and address

FIGURE 9. An extended WSDL document.

Under the workflow tag, there are extensible tags describing workflow structures. We
define such a tag for each of our composition connectors. The behaviour of the connectors
is defined by their implementation on the web server concerned.

The tag for each connector in turn contains child tags specifying the services (and
operations) involved. If a connector provides sequential invocation, e.g. sequencer and
pipe, then the child tags describe the sequence of services involved. If a connector pro-
vides a branching structure, e.g. selector, then the child tags specify the branching condi-
tion and the corresponding services.

The schema for workflow consisting of pipe and selector connectors is depicted in
Figure 10. This workflow element has either a pipe or choice child element. Each contains
anumber of services (and operations). Furthermore, workflow structures (pipe and choice)
may in turn contain one another.

Composite Web Services 9

B attributes

(=15, operation

1

B

: B attributes
==
= u

attributes

B sttrivutes

= {poeraion B)
==

1.2

FIGURE 10. Schema for workflow and available operations.

The pipe tag is used to represent the pipe workflow structure provided by the pipe
connector. The pipe connects a sequence of services specified by set tags, or other work-
flow structures (pipe or choice). The pipe invokes every service, or passes requests to
structures, in the sequence. An invocation result is used as input to the next invocation.

The choice tag represents the branching workflow structure embodied by the se-
lector connector. It contains a number of cases specified by the case tag. A case is a
combination of a matching condition and an operation set (i.e. service) or another work-
flow structure. Different cases have different matching conditions. The choice workflow
invokes a service or a structure if the corresponding matching condition is satisfied.

As an example, the workflow description for the composite bank service in Figure 8
can be described by the following outline:

<workflow>
<pipe> <set name="ATM">
<operation name="procCard">...</operation>
</set>
<choice>
<case condition="1">
<pipe>
<set name="BCl">
<operation name="getBank">...</operation> </set>
<choice>
<case condition="1"><set name="B1">
<operation name="withdraw">...</operation>
<operation name="deposit">...</operation> ...</set> </case>

<case condition="2">

<set name="B2">

<operation name="withdraw">...</operation>

<operation name="deposit">...</operation> ...</set></case>
</choice></pipe></case>

10 Kung-Kiu Lau and Cuong Tran

<case condition="2">

<pipe>
<set name="BC2">
<operation name="getBank">...</operation> </set>

The intended meaning of this workflow is that it first invokes any operation of ATM,
and pipes the result to the branching structure; if the result is 1, then any one of BC1’s
operations can be invoked or if the result is 2 then any one of BC2’s operations can be
invoked; the result of BC1’s operation is used to compare with the branching condition;
if the value is 1, then any one of B1’s operations can be invoked, or if the value is 2, then
any one of B2’s operations can be invoked. Similarly the result of BC2’s operations is
used in comparison with branching condition; if the condition is 1 then any one of B3’s
operations or B4’s operations will be invoked. After that, the workflow ends and the result
of the last invocation is returned.

4.2. Implementing Composite Services

Given the extended WSDL document for a composite service, we need to implement
the service on a web server. This implementation consists of the implementation of the
intended behaviour of the workflow defined in the extended WSDL document, as well as
the implementation of the interface of the composite service, also defined in the extended
WSDL document.

For every composition connector, we need to implement its workflow defining its
intended behaviour. To this end, we implement our connectors as Java classes which are
stored as templates. Every time we use connectors to create composite services, these
templates are used to generate real Java classes.

In general, for a composite service, the Java class for the top-level connector always
has one operation invoke, that is the operation provided by the composite service to the
outside world. Clients use a composite service via its invoke operation. Depending on
the behaviour of each connector, the invoke operation may have different signatures. Ba-
sically, the signature of invoke comprises three main elements, viz. condition, operation
names and operation parameters. The condition is used in a branching workflow struc-
ture for selecting sub-services. Operation names indicate which operations of the selected
sub-services are invoked. Operation parameters are parameters passed to the invoked op-
erations. Also, the signature of invoke includes the results returned by the composite.

The signature of invoke is reflected in the definitions of types, messages and port-
Type of the extended WSDL document for a composite service. We implement message
exchange style as RPC, and transport as SOAP over HTTP, in the popular manner. This
information is contained inside the binding section of the extended WSDL document. The
composite service address is specified at design time and contained in the service section.

The Java classes for connectors after generation are compiled and deployed to a web
service engine, which is Axis [1] in our implementation. We now show our implementa-
tion for the pipe and selector connectors. For simplicity, our implementation only deals
with parameters of primitive data types, e.g. string, integer, float, etc. We use String as
intermediate type because other primitive types can be converted to String and vice versa.

The Pipe class template has one method:

Composite Web Services 11

invoke (String[] methods, String[] params);

The pipe connector receives a list of operations and a list of parameters for these
operations. The invoke method is used to sequentially call every operation in the list.
Each operation is provided by a sub-service.

If a sub-service is standard service, the connector identifies the number of parame-
ters for every operation so that the parameters can be taken out of the parameter list and
passed to the operations invoked. The connector also does type conversion for parameters
if the invoked operations use primitive types different from String. If it is at the beginning
or the middle of the operation list, the result of an invoked operation will be inserted into
the first position of the parameter list for subsequent operation invocations. Otherwise,
the result is returned as the output of the composite. The completed operation and used
parameters are thus removed from the operation and parameter lists.

If a sub-service is a composite service, the connector just passes the whole operation
list at that point to the invoke operation of the sub-service. However, if the (composite)
sub-service has a branching structure, then the connector extracts the first element of the
parameter list before passing a call to the sub-service operation.

The definitions of types, messages and portType of the extended WSDL document

for composite services having a pipe as the top-level connector look like the following:

<wsdl:types>
<schema targetNamespace="urn:cbsd" .../>
<complexType name="ArrayOfString">
<sequence><element name="item" type="xsd:string"/>
</sequence></complexType></schema>...</wsdl:types>

<wsdl:message name="invokeRequest">
<wsdl:part name="operations" type="ArrayOfString"/>
<wsdl:part name="params" type="ArrayOfString"/> </wsdl:message>

<wsdl:message name="invokeResponse">
<wsdl:part name="result" type="xsd:string"/> </wsdl:message>

<wsdl:portType name="...">

<wsdl:operation name="invoke" parameterOrder="operations params">
<wsdl:input message="invokeRequest".. />
<wsdl:output message="invokeResponse".../> </wsdl:operation></wsdl:portType>

ArrayOfString is not a primitive data type, so we need to define it in the extended
WSDL document. The invoke operation has the input message invokeRequest consisting
of two arrays of string containing the operation and parameter lists. The output message
invokeResponse contains the result of the invoke operation.

The Selector class template also has just one method:

invoke (String condition, String[] operations, String[] params);

Like the pipe connector, the selector connector receives a list of operations (provided
by the sub-services) and a list of parameters for these operations. In addition, it also
receives a condition for selecting one of the sub-services. The invoke method is used
to call one operation in the selected sub-service, i.e. one which matches the condition
passed to the method. If the selected sub-service is a standard service, when the selector
selects whichever operation, it will identify the number of parameters and their types for
the selected operation, extract parameters from the parameter list, convert to appropriate
types if needed, and pass the extracted parameters to the selected operation. The result

12 Kung-Kiu Lau and Cuong Tran

of the selected operation is the output of the composite. If the selected sub-service is a
composite service, the connector will extract the first parameter from the parameter list,
and put it together with the operation and parameter lists into a call to the invoke operation
of the selected sub-service.

The definitions of types and output message of the extended WSDL document for
composite services having selector as the top-level connector are similar to those for pipe
connector. However, the invoke operation of selector has a different signature (with the
addition of condition), which affects input message and portType definitions. These defi-
nitions are as follows:

<wsdl:message name="invokeRequest">
<wsdl:part name="condition" type="xsd:string"/>
<wsdl:part name="operations" type="impl:ArrayOfString"/>
<wsdl:part name="params" type="impl:ArrayOfString"/></wsdl:message>

<wsdl:portType name="...">

<wsdl:operation name="invoke" parameterOrder="condition operations params">
<wsdl:input message="impl:invokeRequest".../>
<wsdl:output message="impl:invokeResponse".../>

</wsdl:operation> </wsdl:portType>

The binding and service sections for composite services are shown below:
<wsdl:binding name="..." type="...">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="invoke"> <wsdlsoap:operation soapAction=""/>
<wsdl:input name="invokeRequest">
<wsdlsoap:body encodingStyle="..." namespace="urn:cbsd"

use="encoded"/></wsdl:input> <wsdl:output name="invokeResponse">

<wsdl:service name="..."> <wsdl:port binding="..." name="...">
<wsdlsoap:address location="http://server/composite_service"/>
</wsdl:port></wsdl:service>

As mentioned before, the message exchange style is RPC, and the transport is SOAP
over HTTP.

4.3. Tool Support

To support our approach to service composition, we have implemented a tool. The tool
can be used by a service designer to construct a composite web service, and also by a
client to invoke a composite web service.

The process of creating composite services with our tool is illustrated in Figure 11.
We start with WSDL documents of standard web services, or extended WSDL (WSDL’

N w compile_
W &l///;,' \\\Ei\ Java g dephn?' “
Composite service
designer tool Web service engine

FIGURE 11. Construction process.

in Figure 11) documents for composite services as inputs. The tool generates Java classes

Composite Web Services 13

and the associated extended WSDL document for the resulting composite service. The
Java code of the composite service is compiled and the binary is deployed on to the web
service engine. This construction process can be applied hierarchically, by building (com-
posite) services and composing them successively.

Figure 12 shows a screen shot of our tool being used to create a composite ser-
vice. Through the user interface, the tool allows the service designer to choose WSDL

View windows.

WSDL file

Generate composite service (WSDL and codes)

Caonnector:

@ selector

Service Senvice

| Gondion Operafion Set SEe i

o » I - BlSenice | Standard
ipe

2 |5et? B2Senvice Standard

© Sequencer

g Compasite service name: [C1

Package: |samples.comp.cl

Composite service address: | hitpfserverjservices/C1

Generated WSDL file name: |CyDacuments and SetingsiCuang M. TraniMy Documentsivisua | [Bromse |

|
I

Generated code directory: | CYDocuments and SetiingsiCuong M Tranihy Documentsivisual | [Browse |
I

Deployed directory: |C: BANFic Browse |

FIGURE 12. Composite service designer tool.

or extended WSDL files as its input. The designer can also choose a desired connector,
give a name to the composite service, assign composite service address, and specify the
directory for the generated code.

The example in Figure 12 shows the creation of the composite web service C'1 by
composing two standard web services B1 and B2 using a selector connector. The compos-
ite service address is http://server/services/Cl. The composite service Java
code is generated and compiled. The composite service in binary is deployed to the server
at the directory c: \tomcat-axis\webapps\...\classes\.

Figure 13 shows a screenshot of our tool being used by a client to invoke a compos-
ite service. Our tool allows clients to input a composite service description file (WSDL’
file). The tool then draws a diagram of the workflow structure embodied in the composite
service. The client clicks at each activity in the diagram and chooses one operation to be
invoked. Based on the chosen operations, our tool generates the syntax for client calls to
the composite service.

The example in Figure 13 shows a client using our composite bank service. The
client can see the workflow embodied in the service, chooses the operation withdraw
of the bank branch, and clicks the Generate button. The tool then shows the syntax to
invoke the composite bank service, and the code for this invocation is also generated in a
directory.

14 Kung-Kiu Lau and Cuong Tran

Client Code Builder S|
Chosen composite service WSDL . PACEDesignenCEDesignenbiniDebugtitests wsd
|
Contained workdlow structure
®—{amn
Operations of selected node
dno'string.amountdouble)
double balance (cardno:string)
Client code syntax :
imvoke({*pracCard® "getBank® "withdraw"}, {cardno string amaunt string})

FIGURE 13. Composite service client tool.
S. Discussion

The key difference between composition and orchestration lies in the nature of a com-
posite web service created by our approach. A composite service has all its operations
available for composition or orchestration. By contrast, in an orchestration, only the cho-
sen individual operations of the member services are available for invocation. Because it
contains a workflow structure, a composite service can specify many different business
logics involving the operations of its sub-services. In other words, a composite service
contains many workflows, whereas an orchestration defines just one.

Our approach is distinctive compared with other current approaches. Our composite
service now is truly a composite which captures entire element services and composite
exists at every composition. Composite service is constructed by using our special con-
nector as composition operators. Moreover, composite has separation between invocation
control structure (given by connector). and services. This leads to our approach brings up
some strong benefits. Because composition is fundamentally different from orchestration,
our approach is novel. For practical purposes, we believe our approach also has some
advantages over current approaches to web service orchestration.

First, our approach eases the creation of composite services. Developers need only
focus on building up a structure of available services. Composition does not involve fixed
operations. By allowing parameterisation of operations to be invoked, it enables clients to
choose the operations based on their business logic. Thus, a composite service, once built,
can be used in many different applications. In our example, the composite bank service
C6 can allow multiple applications.

The second benefit of our approach is the reduction in effort of creating and main-
taining web service orchestrations that belong to the same composite. Instead of incurring
cost for creating and keeping separate multiple workflows working, developers of appli-
cations can just use an appropriate composite service which is already constructed to fulfil

Composite Web Services 15

their needs. For example, in our bank composite, only the parametric workflow needs to
be maintained, instead of the individual workflows that it contains. Thus our approach
minimises the maintenance problem as maintenance only happens on the composite ser-
vice, and the client need not change the code of his application for each business logic
embodied in the composite service.

The third benefit is the hierarchical manner of building composite services. After
every composition at every level of the whole system, there exist composite services.
These individual composite services can be used separately by other applications. For in-
stance, in the bank example, two composites C2 and C4 could be used in an application
involving multiple bank consortia. In this case, C6 would allow customers belonging to
multiple consortia to use its sub-services. Another benefit is easing service composition
maintenance. Thanks to the hierarchical nature of our composition approach, if one sub-
service has changed its location, only one composite service containing this sub-service is
affected. The composite can be updated locally by its developer and the change can hap-
pen without requiring updates to other related services. For instance, in the bank example,
if B1 changes, then only C1 is affected.

Finally, as mentioned before, our composite service is still a web service. Thus it can
be used in orchestration. As shown in the previous section, our tool allows a composite
service to be invoked, yielding a workflow. However, our tool is not yet integrated with
standard orchestration tools. For such an integration we need to extend existing work-
flow designer tools such as Eclipse-BPEL. Such a tool would combine a standard WSDL
processor with a processor for extended WSDL as defined in Section 4.1. Our tool can
provide the processor for extended WSDL, and we are currently working on its integration
with Eclipse-BPEL.

6. Related Work

Although orchestration and choreography are related to our work, we have already pointed
out that our approach is fundamentally different. In orchestration, an orchestration lan-
guage, such as BPEL [3], is used for defining executable workflows in XML-based for-
mat, consisting of series of activities. Every activity requires a particular service operation
as input. The workflow can be deployed onto a workflow enactment system, such as the
BPEL engine, which manages the workflow execution. However, existing orchestration
languages like BPEL and YAWL [19] cannot describe parametric workflows as embodied
in our composite web services.

Choreography focuses on describing interactions between services by specifying
operations in structures such as sequence, choice, etc., using a language like WS-CDL [8].
The approach still explicitly requires specific operations to be named in the choreography
document. Furthermore, choreography of services does not result in a service which can
be executed.

Aspect-oriented Web Service (AOWS) [7, 16] is web service based on AOCE (Aspect-
Oriented Component Engineering). A service is enriched with an aspectual description
which supports automated service discovery. This approach uses an AOConnector object

16 Kung-Kiu Lau and Cuong Tran

which serves as a gateway to a client. The connector receives client requests and relays
them to an appropriate AOWS. Their connector is unlike our composition connector be-
cause it does not define a workflow structure, and using their connector on an AOWS does
not produce a service.

Web Transact [6, 15] is a framework for providing transactional features to service
composition. It suggests to compose web services in hierarchical architectures. Standard
web services providing similar functional capabilities are bundled using the mediator pat-
tern to create mediator services. Mediator services are later composed to create composite
services by using WSTL (Web Service Transaction Language) to specify the execution se-
quence of specific mediator service operations. Thus, a composite service in this approach
still involves invocation of specific operations. Also, a composite does not exist at every
level of composition, unlike our approach. Therefore we believe their approach is not
hierarchical.

7. Conclusion

We have presented a new approach for web service composition using exogenous con-
nectors as composition operators on web services. The composite service captures all the
operations provided by the sub-services, and it allows the operations to be invoked in
a defined workflow structure. A composite service thus represents a rich service, giving
clients a choice of many operations. Our approach appears to have benefits compared with
current approaches, especially orchestration.

In future, we plan to work on outstanding issues such as complex data structure
manipulation in service communication, and error propagation among composite services.

In addition, it will be interesting to test the practicality of our approach, with regard
to SOAs for larger real-world applications. To this end, we will need to investigate how
to publish composite services in a suitable registry, along the lines of UDDI [13].

References

[1] Axis - web services framework web site. http://ws.apache.org/axis/.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Springer-Verlag, 2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weeragwarana. Business process execution language
for web services - version 1.1. Technical report, IBM, 2003.

[4] A. Arkin. Business process modeling language. Technical report, BPMI Organisation, 2005.

[5] C. Bohm and G. Jacopini. Flow diagrams, Turing machines and languages with only two
formation rules. Comm. ACM, 9(5):366-371, 1966.

[6] S. Dustdar and W.Schreiner. Survey of web service composition. Int. J. Web and Grid Services,
1(1):1-30, 2005.

Composite Web Services 17

[7] J. Grundy, T. Panas, S. Singh, and H. Stockle. An approach to developing web services with
aspect-oriented component engineering. In In Proceedings of the 2nd Nordic Conference on
Web Services, 2003.

[8] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web services choreography
description language version 1.0. Technical report, W3C, 2004.

[9] K.-K. Lau, L. Ling, and Z. Wang. Composing components in design phase using exogenous
connectors. In /n Proc. 32nd Euromicro Conference on Software Engineering and Advanced
Applications, pages 12—19, 2006.

[10] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model and its preliminary for-
malisation. In F. de Boer et al., editor, Proc. 4th Int. Symp. on Formal Methods for Components
and Objects, LNCS 4111, pages 1-21. Springer-Verlag, 2006.

[11] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software components.
In G. Heineman et al., editor, Proc. 8th Int. Symp. on Component-based Software Engineering,
LNCS 3489. Springer, 2005.

[12] D. Le Métayer, V.-A. Nicolas, and O. Ridoux. Exploring the software development trilogy. In
IEEE Softw., volume 15, pages 75-81, 1998.

[13] E. Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-Wesley,
2002.

[14] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46-52, 2003.

[15] P. Pires. Webtransact: A framework for specifying and coordinating reliable web services com-
positions. Technical report, Federal University of Rio De Janeiro, 2002.

[16] J. Hosking S. Singh, J. Grundy and J. Sun. An architecture for developing aspect-oriented web
services. In Proceedings of European Conference on Web Services, Vaxjo, Sweden, 2005.

[17] S. Thatte. Xlang: Web services for business process design. Technical report, Microsoft, 2001.

[18] E. Thomas. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
2005.

[19] W. van der Aalst, L. Aldred, M. Dumas, , and A. ter Hofstede. Design and implementation of
the YAWL system. In 16th Int. Conf. on Advanced Information Systems Engineering, 2004.

[20] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns. In
Distributed and Parallel Databases, pages 5-51, 2003.

Kung-Kiu Lau and Cuong Tran
School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

e-mail: {kung-kiu, ctran}@cs.man.ac.uk

