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ABSTRACT

Current software product line engineering tools mainly fo-
cus on variability in the problem space, and create product
families by linking variability models to artefacts in the so-
lution space. In this paper, we present a tool that can be
used to define software architectures with explicit variation
points, and hence product families, directly in the solution
space.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.11 [Software Engineering]: Software Archi-
tectures

Keywords

PLE tools, architecture variability, component-based soft-
ware development

1. INTRODUCTION

Product line engineering tools, e.g. pure::variants,® Gears,
and COVAMOF [8], mainly focus on modelling variability
in the problem space, and create product families by link-
ing variability models to artfacts such as a code base in the
solution space [7).

By contrast, software architecture based approaches [1]
create products directly in the solution space. However
most of these approaches do not define variability explic-
itly [4], making it difficult to relate solutions to the problem
space. In this paper we present a tool that can be used to
define software architectures with explicit variation points,
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and hence product families. We briefly explain our approach
and demonstrate the tool on an example.

2. TOOL OVERVIEW

Our tool supports the construction of a product family us-
ing a feature-oriented approach, as illustrated by Figure 1.
Our approach consists of three main stages: (i) build com-

Fo I ~
Fo Rl
O/l\ vOpl
A Ak e e
Fs4 FsFs F7Fs Fo Dl:l
| Mandatory \g.lp_t/ % O a
Kot B B

] Component \_/ Variation operator (O Connector

(a) Feature model (b) Product family

Figure 1: Our approach.

ponents (atomic or composite) to model the leaf features
(F4-Fy) in the feature model, and compose them to model
parent features wherever appropriate (Fs and F7 are com-
posed into F»); (ii) apply variation operators to the set
of components built in (i), according to the variation points
in the feature model (OPT(Fy), OPT(F5), ALT(F3, Fy)), and
repeat this for nested variation points (2 times for F); (iii)
apply family connectors to component sets from (i), (ii)
and (iii) to produce one family (Fp).

For each stage, the tool provides a canvas as a design
space, as well as a palette of pre-defined design blocks. The
tool also performs continuous validation. Errors appear as
cross markers attached to erroneous entities and detailed in
the Problems view. Figures 2, 3 and 5 illustrate our work-
bench for the three stages.

3. TOOL IMPLEMENTATION

Our tool is implemented using a robust stack of model-
driven technologies like Eclipse Modelling Framework [9],
Graphiti,® and CDO.*

Our approach is based on a component model called FX-
MAN, which is in turn based on the X-MAN component

Shttps://eclipse.org/graphiti/
“https://eclipse.org/cdo/
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Figure 2: Eclipse workbench for atomic component development.

model [6] and tool. X-MAN architectures have no variabil-
ity, so in FX-MAN we addded: (i) wariation operators that
generate variants of a set of X-MAN architectures, which we
call an X-MAN set; and (ii) family connectors that compose
multiple X-MAN sets into a product family.

3.1 Component Development

X-MAN components can be atomic and composite. An
atomic component is a unit of computation. Its compu-
tation unit (CU) contains the implementation of the com-
ponent. An atomic component has a number of provided
services implemented by the CU. Figure 2 depicts the de-
sign of an atomic component. To define a service we drag
onto the canvas a service from the palette and then add in-
puts and outputs; then we can generate an implementation
template for the CU and implement the specified service.
Continuous validation will ensure that the final component
is well-formed.

Components are deposited in a standalone or collabora-
tive repository. In our tool, a repository is displayed in the
Repository Fxplorer view, at the bottom of Figures 2 and 3.

A composite component is constructed by composing pre-
constructed components (from the repository) by means of
pre-defined composition connectors and adapters. These are
(exogenous) control structures that coordinate the execution
of their composed components. Our composition connectors
are Sequencer and Selector. They provide sequencing and
branching respectively. Adapters are Guard and Loop, al-
lowing gating and looping respectively. A composite com-
ponent, just as an atomic one, provides services; they result
from the coordination of the services provided by its sub-
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components. In addition to composition connectors, X-MAN
also defines an Aggregator connector, which aggregates in a
new composite component the services exposed by its sub-
components. An aggregated component effectively provides
a facade to the aggregated services.

Figure 3 illustrates the design of a composite component
called AutoCruiseControl. Two components, AdaptSpeed
and CruiseControl, are retrieved from the repository and
composed using a Sequencer and a Guard. Sequencing order,
and gating conditions are specified as labels on coordination
connections. The composition results in the AutoCruiseC-
ontrol provided service.

In addition to control, data flow can also be specified in
the design via data channels. Data can flow ‘horizontally’
between components and ‘vertically’ to the composite com-
ponent services.

The result from component development is a repository
of X-MAN components, which are also architectures them-
selves.

3.2 Variability

To model variability, in FX-MAN, we have defined three
explicit variation operators: Or, Alternative and Opt. They
define the standard ‘inclusive or’, ‘exclusive or’, and ‘op-
tional’ variation points in feature models. Variation oper-
ators can be applied to X-MAN sets to generate variations.
They can be nested within one another, as in feature models.

In our tool, variation operators can be dragged from the
palette (Figure 5), and connected to component (in X-MAN
sets) or to other variation operators. Figure 5 shows two
Alternative and two Optional operators connected to four
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Figure 3: Eclipse workbench for

X-MAN component.® It also shows an Or operator nested
within an Alternative operator.

Variation generation results in sets of X-MAN architec-
tures.

3.3 Composing Architectures into a Family

Family connectors compose X-MAN sets into a product
family, which is an architecture containing the architectures
of all the members. A product family can be adapted by a
family adapter.

Family connectors and adapters are implemented in a
palette in our tool as shown in Figure 5. To apply a family
connector we drag it onto the canvas and make connections
from it to X-MAN components (in X-MAN sets) or varia-
tion operators. In Figure 5, the F-Selector composes three
sets of variations produced by the two Optional and the Al-
ternative variation operators into a single architecture. An
F-Sequencer composes the previous architecture with an-
other set of variations created by the variation operator Or
to yield a larger architecture. Finally, a F-Loop is connected
at the top.

The constructed product family can be explored via the
Product Ezplorer view (bottom, Figure 5). Architectures of
individual members can be directly extracted and executed.

4. EXAMPLE

Consider vehicle control systems (VCS), adapted from [5],
with the feature model in Figure 4.
First, we develop seven X-MAN atomic components (cor-

5The family connectors and adapters specify coordination
and adaptation applied to all variations.

Component Properties View

composite component development.
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VCS
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Figure 4: Feature model of VCS.

responding to seven leaf features): AverageMPH, AverageMPG,
Maintenance, Monitoring, FrontDetection, AllRoundDe-
tection, AdaptSpeed and CruiseControl. They are stored
in the repository. The last two are then retrieved and com-
posed into the composite component AutoCruiseControl in
Figure 3.

Second, we apply variation operators defined in the fea-
ture model to the X-MAN components that have been con-
structed to implement the leaf features. To this end, we
retrieve the components and apply the specified variation
operators to them. In Figure 5, we apply Optional to Av-
erageMPH and AverageMPG; Alternative to Maintenance and
Monitoring, and FrontDetection and Al11RoundDetection;
and Or to the latter and AutoCruiseControl.

Third, we compose all the above variations into all the
possible products specified by the feature model. We use F-
Sequencer, F-Selector and F-Loop, also shown in Figure 5.
The resulting architecture contains a total of 40 products,
which can be inspected, and extracted using the Product
Ezplorer view in Fig. 5.

S. DISCUSSION AND CONCLUSION
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Figure 5: Eclipse workbench for constructing architecture with variability.

Current product line engineering tools are mostly problem
space based (see [2] for a survey). For example, in pure::vari-
ants, a family model is defined to establish links between
features in the feature model (problem space) and available
assets, i.e. code and documentation (solution space). By
contrast, our approach is solution space based. By having a
full set of explicit variation points (including the ‘inclusive
or’) in our architectures, we can map our product families
to the problem space. This is in contrast to most software
architecture based approaches, which are also solution space
based but do not define architectures with a full set of ex-
plicit variation points.

However, currently our tool lacks an interface to the prob-
lem space, i.e. it does not support the end user in the process
of features (or product) selection. In this regard, we intend
to integrate our tool with pure::variants. This will allow us
to extract specific products, thus tackling potential scalabil-
ity problems when dealing with large product families.

At the moment, our tool also does not handle constraints
between features in the problem space; rather, we define
them as filters on product families in the solution space. We
plan to investigate with a real example how efficient these
filters are, and whether/how they could deal with constraints
in the problem space.

Furthermore, our approach only deals with structural vari-
ability, but not parametric variability [3] . Future work will
therefore include an investigation of the latter.

Finally our tool is available at http://xmantoolset.ddns.
net.
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APPENDIX
A. DEMONSTRATION ROADMAP

The tool demonstration begins with a quick overview of
the theoretical foundations for our tool, and is followed by a
demonstration of the steps described in Section 3, illustrated
by the VCS example in Section 4. Each step is illustrated
through small working examples.

Step 1: Construct X-MAN components

The first step is to construct X-MAN components, atomic
or composite, that implement the leaf features in the feature
model. Once implemented, they are deposited in a shared
repository (accessible by the participants). There are seven
leaf features, so we will construct seven X-MAN compo-
nents: AverageMPH, AverageMPG, Maintenance, Monitoring,
FrontDetection, A11RoundDetection, and AutoCruiseCon-
trol. As already stated in Section 4, all the components are
atomic, except AutoCruiseControl, which is a composite
of two atomic components AdaptSpeed and CruiseControl.
We demonstrate how the tool supports their implementa-
tion, and how they can be composed into the AutoCruiseC-
ontrol component. Moreover, we demonstrate how the tool
allows us to generate code for the AutoCruiseControl com-
ponent, and how to verify its behaviour via JUnit tests.

Step 2: Apply variation operators

The second step is to apply variation operators defined in the
feature model to the constructed X-MAN components. To
this end, we retrieve all the seven components from CDO us-
ing the dialogue in Fig. 6, and apply the variation operators
according to the feature model in Fig. 4. The Optional oper-
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4 [7][7] SystemsCheck
[7]¢5 ElectricalSystem  : Boolean
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Figure 6: Dialogue for retrieving components.

ators applied to AverageMPH and AveragelMPG yield the tuple
F1 = ({AverageMPH},(0) and F2 = ({AverageMPG},()) re-
spectively. The Alternative operator applied to Maintenance
and Monitoring gives the set F'3 = ({Maintenancel}, {Monit-
oring}). The Or operator applied to the X-MAN set con-
sisting of AutoCruiseControl and the X-MAN set resulting
from applying the Alternative operator to FrontDetection
and Al1RoundDetection yields the X-MAN set of 5 products:
F4 = ({AutoCruiseControl, AllRoundDetection}, {All-
RoundDetection}, {FrontDetection, AutoCruiseControl},
{FrontDetection}, {AutoCruiseControl}).

By means of the Product Explorer view, we demonstrate
how each variation operator realises the variability just de-
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Figure 7: Product extraction interface.

scribed, and how they can be nested in order to create com-
plex variations of X-MAN sets.

Step 3: Construct the product family

After generating variations, a tuple of X-MAN sets are com-
posed via family connectors into a product family. We demon-
strate how to create the 40 products defined by the VCS
feature model. We choose to compose F'1, F2, F'3 into F'5
with the family connector F-Selector because we want to
allow a driver to choose any subset of the features: Av-
erageMPH, AvergageMPG, Maintenance and Monitoring.
Then we choose to compose F'5 and F'4 with F-sequencer
to combine the driver’s choice with the Cruise Management
feature.

Step 4: Extract family members

All the 40 products can be extracted using the product ex-
traction dialogue box in Fig. 7. The (partial) result is de-
picted in Fig. 8

m

4 (03 > products
7 Product_l.composite
T3 Product_1.diagram
iz Product_10.composite
T3 Product_10.diagram
> Product_11.composite
% Product_11.diagram

Figure 8: Extracted product in project explorer.

We extract product No. 4 (Fig. 9), which is a premium ver-
sion of VCS, has five components: AverageMPH, AverageMPG,
Monitoring, AutoCruiseControl, and A11RoundDetection.
The premium VCS is capable of displaying the result calcu-
lated by AverageMPH, AverageMPG, or Monitoring (chosen by
the user). Then AutoCruiseControl is invoked with the aim
of maintaining the speed (selected by the user). Finally, the
system shows the distance from the vehicle to the nearest
obstacle in a specified direction.

Step S: Test family members

Because all the products in the family are fully formed and
executable, we check their behaviour with JUnit tests. This
is an advantage in practical development. We demonstrate
this by testing the behaviour of the extracted product No.
4 (Fig. 10). This concludes the demonstration.
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