
Verified Component-based Software in SPARK:
Experimental Results for a Missile Guidance System

Kung-Kiu Lau and Zheng Wang
School of Computer Science, The University of Manchester

Oxford Road, Manchester M13 9PL, United Kingdom

kung-kiu,zw@cs.man.ac.uk

ABSTRACT
SPARK is useful for developing reliable software for safety-critical
systems, using the ‘correctness-by-construction’ approach. It also
has verification tools that can be used to produce verified software.
To tackle larger-scale development of verified software, compo-
nents are useful. In this paper we show how to define and im-
plement software components in SPARK and use existing SPARK
tools to produce verified component-based software. We demon-
strate our approach on a missile guidance system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Correctness proofs

General Terms
Verification

Keywords
Proof reuse, SPARK, software components, verified software

1. INTRODUCTION
SPARK [2] is the basis of the ‘correctness-by-construction’ ap-

proach for developing reliable software for high-integrity systems
[6]. Correctness by construction means that defects are avoided or
detected and removed as early as possible in the development cycle.
This reduces production cost directly, as well as subsequent main-
tenance cost indirectly [1]. The approach has been demonstrated
successfully on real-world applications, e.g. [9].

SPARK also has verification tools. With these tools, the correct-
by-construction approach can produce fully verified software. In
this paper, we show that we can develop verified component-based
software in SPARK. Moreover we believe that this approach can
scale up, and thus has the potential to address the scale problem
posed by the Grand Challenge in Verified Software [11, 12].

Our belief is based on our view that the scale problem can only
be tackled by a component-based approach, where software com-
ponents are systematically composed into a complete system. We
have formulated such a component-based approach, and we have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGAda’07, November 4–9, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-876-3/07/0011 ...$5.00.

implemented it in SPARK. This implementation enables us to use
the SPARK tools to produce verified component-based software.
In this paper, we explain our component-based approach and show
how we implement it in SPARK. We illustrate our SPARK-based
approach to verified component-based software with an industrial-
strength case study for a missile guidance system.

2. SOFTWARE COMPONENTS
Software components are intended to enable reuse of pre-existing

components, and thereby reduce production cost and time-to-market
[19]. In a component-based approach to software development, in-
stead of building monolithic systems from scratch each time, pre-
existing components from a repository are (re)used to build many
different systems (Figure 1).

Repository

. . .
C . . .

F . . . E C

A

System 1

B F

A D
A
D

System 2

B
E

Figure 1: Component-based software development.

A generally accepted view of a software component is a unit
of composition [19]. In current component-based approaches [14,
17], components are either objects (as in object-oriented program-
ming) or architectural units (as in software architectures [4]). Ex-
emplars of these approaches are Enterprise JavaBeans [7] and Ar-
chitecture Description Languages (ADLs) [18] respectively. These
kinds of components lack proper composition operators for system-
atic composition.

We have proposed an alternative approach [15], where proper
composition operators are defined. These operators allow us to
build systems by composing components hierarchically. Encap-
sulation and compositionality are the distinguishing characteristics
of our approach. They lead to a hierarchical way of building sys-
tems, in which a composite is self-similar to its sub-components.
Self-similarity means that each composite component has the same
structure as its sub-components. Self-similarity provides a com-
positional approach to system construction, and this is an advance
over hierarchical approaches such as ADLs which are not compo-
sitional.

For verified software, the hierarchical nature of systems means
that verification conditions are hierarchical. As a result, in proving
a composite of sub-components, the proofs of sub-components can
be reused in the proof of the composite. This should enable our
approach to scale up.

51

Encapsulation
(computation and control)

(b) Composite component
(computation)
Encapsulation

Computation
unit

Invocation
connector

U
U1 U2

(a) Atomic component

I2I1

CComposition
connector

C
om

positionality

I

Figure 2: Components and composition in our approach.

2.1 Our Component-based Approach
In our approach (Figure 2), components are constructed from

two kinds of basic entities: (i) computation units, and (ii) connec-
tors. A computation unit U encapsulates computation. It provides
a set of methods (or services). Encapsulation means that U ’s meth-
ods do not call methods in other computation units; rather, when in-
voked, all their computation occurs in U . Thus U could be thought
of as a class that does not call methods in other classes.

There are two kinds of connectors: (i) invocation, and (ii) com-
position. An invocation connector is connected to a computation
unit U so as to provide access to the methods of U .

A composition connector encapsulates control. It is used to de-
fine and coordinate the control for a set of components. For se-
quencing, we use the pipe and sequencer connectors, and for branch-
ing, we use the selector connector.1 A pipe connector that com-
poses components C1, . . . , Cn can call methods in C1, . . . , Cn in
that order, and pass the results of calls to methods in Ci to those
in Ci+1. A sequencer connector is the same as a pipe but does not
pass the results of Ci to Ci+1. A selector connector that composes
components C1, . . . , Cn simply selects one component depending
on a selection condition.

Components are defined in terms of computation units and con-
nectors. There are two kinds of components: (i) atomic, and (ii)
composite (Figure 2). An atomic component consists of a com-
putation unit with an invocation connector that provides an inter-
face to the component. A composite component consists of a set
of components (atomic or composite) composed by a composition
connector. The composition connector provides an interface to the
composite.

Invocation and composition connectors form a hierarchy [16].
This means that composition is done in a hierarchical manner. Fur-
thermore, each composition preserves encapsulation. This kind of
compositionality is the distinguishing feature of our approach. An
atomic component encapsulates computation (Figure 2(a)), namely
the computation encapsulated by its computation unit. A compos-
ite component encapsulates computation and control (Figure 2(b)).
The computation it encapsulates is that encapsulated in its sub-
components; the control it encapsulates is that encapsulated by its
composition connector. In a composite, the encapsulation in the
sub-components is preserved. Indeed, the hierarchical nature of
the connectors means that composite components are self-similar
to their sub-components, as can be clearly seen in Figure 2(b).

In general, a system constructed using our approach consists of
a hierarchy of composition connectors sitting atop a flat layer of
decoupled atomic components (Figure 3). The hierarchy of com-
position connectors totally encapsulates the control in the system,
whilst the atomic components encapsulate the computation per-
formed by the system. The system thus looks like that in Figure 3,
where self-similarity is clearly evident.

1We can use a loop connector for looping, but this is a unary con-
nector and the loop must be finite.

GFCABDE

IGIFICIAIBIDIE

Figure 3: Self-similarity in a generic system.

2.2 Implementation in SPARK
To implement components according to our approach, we use

special SPARK packages. Because components in our approach do
not call each other, packages for components can only import com-
monly used packages such as common types, but not other compo-
nent packages.2

A computation unit is implemented as a package, and an invo-
cation connector as a package that imports this package. A com-
position connector is implemented as a package that imports the
component packages that it connects.

An atomic component is implemented as two packages, one for
the computation unit and one for the invocation connector. A com-
posite component is implemented as a set of packages that include
a package for its composition connector and packages for its sub-
components.

The generic design of an invocation connector is shown in Fig-

1

1 1

1
Name

1

1
Invocation Execute

List of Input List of Output
ResultsParameters

(a)

type CUInvocationType is
record

InvMethod : CUMethod;
InvParam : CUParam;
InvResult : CUResult;

end record;

type CUParam is
record

ParamA : ParamTypeA;
ParamB : ParamTypeB;

end record;
type CUResult is

record
ResultA : ResultTypeA;
ParamB : ResultTypeB;
. . .

. . .

end record;

type CUMethod is (MethodA, MethodB, . . .);

(b)

Figure 4: Invocation connector: design and implementation.

ure 4 (a). Each invocation connector (with a unique ‘Name’) con-
nects a single computation unit defining a number of methods. Each
method has required input parameters (‘List of Input Parameters’)
and provided output results (‘List of Output Results’). An invo-
cation connector can call any method defined in the computation
unit through an ‘Execute’ method by providing required input pa-
rameters and collecting provided output results. This design can be
implemented as an Abstract Data Type (ADT) in SPARK as shown
in Figure 4 (b).

A composition connector, be it Pipe, Sequencer or Selector, takes
at least two components and returns a composite component whose
top-level connector (interface) is this composition connector. The
generic design of a Pipe connector is shown in Figure 5 (a). Each
Pipe connector connects at least two components in a pre-defined
order. Each component has its own top-level connector (interface),
2Importing is expressed by the ‘with’ clause in SPARK.

52

1

1 1

1
Name

1

1
Execute

List of Output

Pipe

Components
List of

Results

(a)

type CParam is

type CPipeType is

record
ParamA : ParamTypeA;
ParamB : ParamTypeB;
. . .

type CResult is
record

ResultA : ResultTypeA;
ResultB : ResultTypeB;
. . .

end record;

end record; record
PParam : CParam;
PResult : CResult;

end record;

(b)

Figure 5: Pipe connector: design and implementation.

which is either an invocation connector or a composition connec-
tor. All the top-level connectors of constituent components form a
‘List of Components’ and their output results form a ‘List of Out-
put Results’. A Pipe connector calls all the ‘Execute’ methods of its
constituent components in the pre-defined order through an ‘Exe-
cute’ method of its own by providing any required input parameters
and collecting provided output results to store in its ‘List of Output
Results’. This design can be implemented as an ADT in SPARK as
shown in Figure 5 (b).

A Sequencer connector can be designed and implemented in a
similar manner; so we omit it here.

The generic design of a Selector connector is shown in Figure 6
(a). Each Selector connector connects at least two components with

1 1

1

1
Execute

List of Output
Components

Selector
1

1
Name

11

Condition

List of
Results

(a)

type CParam is
type CSelCond is (C1, C2, . . .);

record
ParamA : ParamTypeA;
ParamB : ParamTypeB;
. . .

end record;
type CResult is

. . .

record
ResultA : ResultTypeA;
ResultB : ResultTypeB;

end record;

type CSelectorType is
record

SelCond : CSelCond;
SelParam : CParam;
SelResult : CResult;

end record;

(b)

Figure 6: Selector connector: design and implementation.

a pre-defined condition. A Selector connector calls the ‘Execute’
methods of one of its constituent components based on the valu-
ation of its pre-defined condition through an ‘Execute’ method of
its own by providing any required input parameters and collecting
provided output results to store in its ‘List of Output Results’. This
design can be implemented as an ADT in Spark Ada as shown in
Figure 6 (b).

To make the task of constructing components and composing
them easier in practice, we have implemented two languages CSL
and CCL. CSL is used for specifying and generating atomic com-
ponents, and CCL is used for composing components defined in
CSL. Both CSL and CCL are implemented in SPARK, but their
semantics is that of our component-based approach.

The development process using CSL and CCL is summarised
in Fig. 7. To construct an atomic component A with computation

CSLSpec of U
(A.adb)

K.ads, K.adbCCL

A.ads, AInv.ads, AInv.adb

A, B, K

(A.ads)

Figure 7: Development process with CSL and CCL.

unit U , the specification of U (pre/post-conditions of its methods)
is fed into CSL. CSL then automatically generates the invocation
connector for A (AInv.ads, AInv.adb) and the specification for
A (A.ads). The body for A (A.adb), i.e. the code for U , has to be
supplied by the user.

To construct a composite component from components A, B and
composition connector K, these are fed into CCL. CCL then auto-
matically generates the specification of the composite (K.ads) and
the body of the composite (K.adb).

In the next section, we will show how our approach can be used
to produce verified component-based software in SPARK.

3. VERIFIED SOFTWARE
In SPARK, the functional correctness of a procedure can be ver-

ified by using appropriate tools. For this purpose, the procedure
has to be specified by a pre-condition and a post-condition. It
should also contain suitable assertions in its body. In particular,
loops within the procedure body must have suitable assertions that
define the loop invariants.

Consider a package X containing a procedure with a specifica-
tion {(pre-condition) Q, (post-condition) R}, and a body B. The
SPARK Examiner can automatically analyse B and identify all the
paths in B, provided B contains all the necessary annotations, in
particular loop invariants. For each path in B, the Examiner can
also automatically generate its pre-condition U and its post-condi-
tion V from the specification {Q, R} of X and the annotations in
B, and hence a verification condition (VC) for the path. The VC is
of the form H → C, where H is a hypothesis and C the conclu-
sion. H is of course just the pre-condition U of the path, and C is
the weakest pre-condition for the post-condition V of B.

To prove the correctness of X , the VCs of all the paths have to be
proved. The SPARK Simplifier can be used to prove VCs, but often
it cannot do so completely automatically, and the human user has
to complete the proofs of the undischarged proof obligations inter-
actively using the Proof Checker. The Proof Checker allows user-
guided proofs following manually constructed proof rules added
by the user. VCs can also be discharged manually by the Review
Team.

3.1 Verified Component-based Software
In a generic system constructed by our component-based ap-

proach (Figure 3), the paths are hierarchical. This is because all
the control in the system is defined by the hierarchy of composition
connectors sitting on top of the atomic components. Therefore, all
the paths are defined in this hierarchy, and are hierarchical as a
consequence. Hierarchical paths mean hierarchical VCs.

Figure 8 illustrates this. It shows one path P1 in the system in

53

IE
VC4

VC3

VC2

VC1

P4
P3

P2
P1

IAIBID

E ABD

Figure 8: Hierarchical paths and VCs.

Figure 3 (simplified here). P1 contains sub-path P2, which con-
tains sub-path P3, which in turn contains sub-path P4. Conse-
quently, the verification condition VC1 for P1 is defined in terms
of the verification condition VC2 for P2, which is defined in terms
of the verification condition VC3 for P3, which in turn is defined
in terms of the verification condition VC4 for P4.

Hierarchical VCs mean that the proof of a VC can reuse the
proofs of its sub-VCs. So in Figure 8, once the proof of VC4
has been done, it can be reused in the proof of VC3, which can
be reused in the proof of VC2, which in turn can be reused in the
proof of VC1. In general, this means that when constructing a sys-
tem using our approach, we only have to fully prove the VCs at the
lowest level, i.e. at the level of atomic components. Subsequently,
at each level of composition, the new VCs can be proved by reusing
proofs of VCs at the previous level. This reduces the proof effort
at each level, and this is the reason for our belief that our approach
can scale up. In the next section, we show a case study that bears
out our belief.

4. A MISSILE GUIDANCE SYSTEM
Using the SPARK implementation of our component-based ap-

proach, we have experimented on an industrial strength case study,
a Missile Guidance system [10], which we obtained from Praxis
High Integrity Systems.

The Missile Guidance system is the main control unit for an
endo-atmospheric interceptor missile (Fig. 9). The missile system
consists of a main control unit (Nav) and input/output. An I/O han-
dler reads data from different sensors (Barometer, Airspeed, War-

If_radar If_motor If_steer

BUS

I/O

BC1553

If_compass

If_destruct

If_Fins

If_ins

If_ir

If_fuel

If_fuze

If_barometer

If_airspeed

If_warhead

Nav

Figure 9: The missile guidance system.

head, Fins) and passes them via a bus to corresponding processing
units (If Barometer, If Airspeed, If Warhead, If Fins). The output
of these units is used to guide the missile.

Using our component-based approach, we have implemented a
component-based version of the Missile Guidance system. Its ar-
chitecture is shown in Figure 10. Seq1, Seq1’, Seq2 and Seq4 are
composite components whose interfaces are sequencer connectors.
Sel2 is a composite component whose interface is is a selector con-
nector. Seq3 is a sequencer connector, Sel1 a selector, Pipe1 and
Pipe2 are pipe connectors and Loop is a unary iterator.

Seq3

Seq1 Seq1’ Seq2 Seq4 Sel2

Loop

Sel1

Pipe1

Pipe2

Figure 10: A component-based missile guidance system.

DZ : Integer;
Height : Integer;

record
type BarometerType is

package Barometer is

end record;

procedure Set_Altitude_Profile(Height : in Integer; DZ : in Integer;
ABarometer : out BarometerType);. . .

end Barometer;

−−# pre Height /= 0 and DZ /= 0;
−−# post ABarometer.Height = Height and ABarometer.DZ = DZ;
. . .

. . .

Figure 11: Computation unit BM.

record

DZ : Integer;
Height : Integer;

end record;
type BarometerResult is

AMethod : BarometerMethod;
AParam : BarometerParam;
AResult : BarometerResult;

procedure Execute(AInv : in out BarometerInvType);
end record;

type BarometerInvType is
record

. . .
−−# pre (AInv.AMethod = Set_Altitude_Profile) −−>

. . .
−−# post (AInv.AMethod = Set_Altitude_Profile) −−>

end BarometerInvocation;
. . .

package BarometerInvocation is
type BarometerMethod is (Set_Altitude_Profile, Read_Altitude, . . .);
type BarometerParam is

record

Height : Integer;
ABarometer : Barometer;

end record;

(AInv.AParam.Height /= 0 and AInv.AParam.DZ /= 0);

(AInv.AResult.ABarometer.Height = AInv.AParam.Height
and AInv.AResult.ABarometer.DZ = AInv.AParam.DZ);

Figure 12: Invocation connector for BM.

In our implementation, the Missile Guidance system contains
246 packages including tools and a test harness, and a total of
30,102 lines of SPARK code including comments and annotations.
We reused some existing code from Hilton’s implementation, main-
ly for the construction of computation units, which include air-
speed, barometer, steer, etc. These computation units are composed
by composition connectors at different levels into composites that
are stored alongside atomic components in a repository.

An example of a computation unit is the Barometer (‘bm’ in Fig-
ure 16) in the Seq4 composite component, outlined in Figure 11.

An example of an invocation connector is for the Barometer
(‘ibm’ in Figure 16), outlined in Figure 12.

An example of a sequencer composition connector is that in the

54

end record;

record
type Seq4Type is

package Seq4 is
type Seq4Param is

record
BarInv : BarometerInvocation.BarometerInvType;
. . .

type Seq4Result is
record

BarInvResult : BarometerInvocation.BarometerResult;
. . .

end record;

SeqParam : Seq4Param;
SeqResult : Seq4Result;

end record;
procedure Execute(APipe : in out Seq4Type);
. . .
−−# pre (APipe.SeqParam.BarInv.AMethod =

BarometerInvocation.Set_Altitude_Profile) −−>
(APipe.SeqParam.BarInv.AParam.Height /= 0 and
and APipe.SeqParam.BarInv.AParam.DZ /= 0);
. . .

−−# post (APipe.SeqParam.BarInv.AMethod =

(APipe.SeqResult.BarInvResult.ABarometer.Height =
APipe.SeqParam.BarInv.AParam.Height and
APipe.SeqResult.BarInvResult.ABarometer.DZ =

BarometerInvocation.Set_Altitude_Profile) −−>

APipe.SeqParam.BarInv.AParam.DZ);
. . .

end Seq4;

Figure 13: Sequencer connector Seq4.

Seq4 composite component, outlined in Figure 13.
The VCs of the missile guidance system produced by the SPARK

Examiner are indeed hierarchical, as exemplified by the VC for the
Seq4 subsystem in Figure 14. This enables us to reuse proofs of
sub-VCs when proving a VC. In Figure 14, in the proof of the VCs,
(1) is re-written or ‘discharged’ by (1’), and (1’) re-written by (1”),
and so on.

This reduces the total proof effort considerably, with proof at
each level of composition consisting mainly of reused proofs of at
the previous level of composition, as in Figure 8.

We have proved the system completely, using the SPARK Ex-
aminer, Simplifier and Checker. The proof obligation summary is
shown in Fig. 15. The summary is generated automatically by the

0 0
0 0

Total Examiner Simp Checker Review False

00
0 0

00
0 0 0

0 0
0% 0%

969
5
0

701

37%

1494
350

0
0
0

350
0

0
0

0
0

2818 1051

1286

0
0

109
0
0

193 181

1479 290
52% 10%

−−−−−−−−−−−−Proved By−−−−−−−−−−−−−−−

Undiscgd

Total VCs by type:

Assert or Post:
Precondition Check
Check Statement
Runtime check:
Refinement VCs:
Inheritance VCs:

Totals:
% Totals:
−−−−−−−−−−−−−−−−−−−−−−−−End of Semantic Analysis Summary−−−−−−−−−−−−−−−−−

−−

Figure 15: Proof Obligation Summary of missile system.

SPARK Proof Obligation Summariser (POGS). It is a summary for
the VCs: their total number, types, and numbers discharged by each
proof tool.

In the proofs of composite components, we succeeded in reusing
proofs of sub-components, by virtue of the hierarchical nature of
the VCs. We define proof reuse rate for a (composite or atomic)
component simply as the ratio of the number of new VCs for the

(composition or invocation) connector to the number of VCs in the
sub-components (or computation unit). Of course the actual proof
effort for each VC is variable, but we believe the ratio of VC num-
bers does give a first approximation to proof reuse rate.

As an illustration of the proof reuse rates for the component-
based missile guidance system, we will show the proof reuse rates
for part of the system, viz. the composite component Seq4 in
Fig. 10. The subcomponents of Seq4 are shown in Fig. 16, where

Ias

Ibm

bm

as

Ira

ra

Seq4

Ife

fe

Icp

cp

Ise

se

Idt

dt

Icl

cl

Iins

ins

Ifz

fz

Iir

ir

Imt

mt

Iwh

wh

Ien

en

Figure 16: Seq4: part of the missile guidance system.

‘Ibm’ is the invocation of ‘bm’ (Barometer), ‘Ias’ is the invocation
of ‘as’ (Airspeed), etc.

The proof reuse rate for each sub-component of Seq4 is shown
in Fig. 17. We can see that the bulk of proof efforts goes into prov-

bm
11

Ibm
17 23

Package
No. of VCs

65% 61% 65% 65%
Package

28 34No. of VCs
82% 75% 76% 67% 57%

18
67%

as
11

ir Iir Imt Idtse
21

Ias
19

Ise
28

cp
19

Icp
31

mt
19 25

ins
15

dt
12

Iins fe
13

wh
12

Ife
20

Iwh
18

fz
13

cl
12

Ifz
20

Icl
21

65%

ra
28

en
30

80%

Seq4Package
352No. of VCs
98%

79%

Ien

35
Ira

38

Reuse rate 58%

Reuse rate

Reuse rate

Figure 17: Proof reuse rates for Seq4.

ing the computation units of atomic components, but these proofs
are only done once and can be reused afterwards. Our component-
based approach is able to reuse these proofs effectively, thus reduc-
ing the cost of proof efforts of the whole system.

More importantly, this experiment confirms that our component-
based approach can scale up, because of proof reuse.

5. CONCLUSION
In this paper we have demonstrated that our component-based

approach can be used to construct verified component-based soft-
ware. In systems constructed using our approach, VCs are hierar-
chical, in terms of levels of composition. As a result, proof reuse of
sub-VCs is possible, thus considerably reducing the overall proof
effort. Our approach therefore has the potential to scale up.

We have shown supporting experimental results on a missile guid-
ance system with about 30,000 lines of code. Our implementation
is in SPARK, and our experimental results are obtained by using
the SPARK proof tools. We have proved the system completely.

In principle, our component-based approach could be implement-
ed in any verification technology, such as JML/Java [13] and Spec#/
C# [3], for object-oriented languages. For this experiment we chose
SPARK because it is a simpler language and its proof tools have
been tried and tested in industrial projects.

Finally, our approach has some similarities with HOOD. In the
HOOD Avionics Architecture Description Language (AADL) [8],
components are behavioural code of a module, and connections are
procedural code of an operation; connections represent functional

55

VC of Seq4 :

. . .

−−>
Hi : . . .

H1 : fld_height(fld_aparam(ainv)) <> 0 .

−−>
Hi : . . .
. . .

H2 : fld_dz(fld_aparam(ainv)) <> 0 .

C1: fld_amthod(ainv) = set_altitude_profile −−>

C2: fld_amthod(ainv) = set_altitude_profile −−>

fld_height(fld_abarometer(fld_aresult(ainv))) = fld_height(fld_aparam(ainv)) .

fld_dz(fld_abarometer(fld_aresult(ainv))) = fld_dz(fld_aparam(ainv)) .

VC of barometer’s invocation connector (IBM):

VC of barometer’s computation unit (BM) :

. . .

H2 : dz <> 0 .

Hj : . . .
−−>

. . .

(3’’)

H1 : height <> 0 .

C1: fld_height(upf_dz(upf_height(abarometer, height), dz) = height .

C2: fld_dz(upf_dz(upf_height(abarometer, height), dz)) = dz .

(1’)

(2’)

(3’) (4’)

(5’) (6’)

(1’’)

(2’’)

(4’’)

(5’’) (6’’)

H1 : fld_amethod(fld_barinv(fld_seqparam(apipe))) = set_altitude_profile −−> fld_height(fld_aparam(fld_barinv(fld_seqparam(apipe)))) <> 0 .

(1)

H2 : fld_amethod(fld_barinv(fld_seqparam(apipe))) = set_altitude_profile −−> fld_dz(fld_aparam(fld_barinv(fld_seqparam(apipe)))) <> 0 .

(2)

C1 : fld_amethod(fld_barinv(fld_seqparam(apipe))) = set_altitude_profile −−>
fld_height(fld_abarometer(fld_barinvresult(fld_seqresult(apipe)))) = fld_height(fld_aparam(fld_barinv(fld_seqparam(apipe)))) .

(4)(3)

C2 : fld_amethod(fld_barinv(fld_seqparam(apipe))) = set_altitude_profile −−>

fld_dz(fld_abarometer(fld_barinvresult(fld_seqresult(apipe)))) =
(5)

fld_dz(fld_aparam(fld_barinv(fld_seqparam(apipe)))) .
(6)

Figure 14: Hierarchical VCs of component-based missile guidance system.

56

and structural use relationships of components. This makes HOOD
AADL connection a good representation of our composition con-
nector. It would be interesting to investigate the construction of
Avionics systems using a HOOD AADL implementation of our ap-
proach. In particular, we believe that this would make the verifica-
tion of Avionics systems easier through proof reuse.

Acknowledgements
We would like to thank the reviewers for helpful and constructive
comments that have enabled us to improve the paper considerably.

6. REFERENCES
[1] P. Amey. Correctness by construction: Better can also be

cheaper. CrossTalk (The Journal of Defense Software
Engineering), pages 24–28, March 2002.

[2] J. Barnes. High Integrity Software: The SPARK Approach to
Safety and Security. Addison-Wesley, 2003.

[3] M. Barnett, K. Leino, and W. Schulte. The Spec#
programming system: An overview. In Proc. Int. Workshop
on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, LNCS 3362, pages 49–69.
Springer, 2004.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, second edition, 2003.

[5] E. Colbert and B. Lewis. Architecture-centered development
of time critical systems with AADL, UML and Ada. In
Proceedings of ACM SIGAda 2003, 2003.

[6] M. Croxford and R. Chapman. Correctness by construction:
A manifesto for high-integrity software. CrossTalk, The
Journal of Defense Software Engineering, pages 5–8,
December 2005.

[7] L. DeMichiel and M. Keith. Enterprise JavaBeans, Version
3.0. Sun Microsystems, 2006.

[8] P. Dissaux. Using the AADL for mission critical software
development. In Proceedings of ERTS 2004,
http://la.sei.cmu.edu/aadlinfosite/
AADLPublications&Presentations.html, 2004.

[9] A. Hall and R. Chapman. Correctness by construction:
Developing a commercial secure system. IEEE Software,
pages 18–25, Jan/Feb 2002.

[10] A. Hilton. High Integrity Hardware-Software Codesign. PhD
thesis, The Open University, April 2004.

[11] T. Hoare and J. Misra. Verified software: theories, tools,
experiments — vision of a grand challenge project. In
Proceedings of IFIP working conference on Verified
Software: theories, tools, experiments, 2005.

[12] IFIP TC2 working conference on Verified Software:
Theories, Tools, Experiments, 10-13 October 2005, ETH
Zürich, Switzerland. http://vstte.ethz.ch/.

[13] The Java Modeling Language (JML) Home Page.
http://www.cs.iastate.edu/\simleavens/
JML.html.

[14] K.-K. Lau. Software component models. In Proc. 28th Int.
Conf. on Software Engineering, pages 1081–1082. ACM
Press, 2006.

[15] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component
model and its preliminary formalisation. In F. de Boer et al.,
editor, Proc. 4th Int. Symp. on Formal Methods for
Components and Objects, LNCS 4111, pages 1–21.
Springer-Verlag, 2006.

[16] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous
connectors for software components. In G. Heineman et al.,
editor, Proc. 8th Int. Symp. on Component-based Software
Engineering, LNCS 3489, pages 90–106. Springer, 2005.

[17] K.-K. Lau and Z. Wang. A survey of software component
models. Second edition, Pre-print CSPP-38, School of
Computer Science, The University of Manchester, May
2006. http://www.cs.man.ac.uk/cspreprints/
PrePrints/cspp38.pdf.

[18] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, January 2000.

[19] C. Szyperski, D. Gruntz, and S. Murer. Component Software:
Beyond Object-Oriented Programming. Addison-Wesley,
second edition, 2002.

57

