
A Graphical Tool for Model-Driven Development
Using Components and Services

Simone Di Cola, Cuong Tran, Kung-Kiu Lau

School of Computer Science, The University of Manchester

Manchester M13 9PL, United Kingdom

Email: dicolas,ctran,kung-kiu@cs.manchester.ac.uk

Abstract—Combining model-driven engineering with compo-
nent-based and service-oriented approaches can potentially reap
the benefits of all three approaches. In this paper we present a
tool that combines these approaches. We show the key aspects
of the tool and demonstrate its use with a simple example.

I. INTRODUCTION

Model-driven Engineering (MDE) [6] is fast becoming the

standard methodology for software system development [9].

The provision of tool support for MDE is also gathering

pace, nowhere more so than in the Eclipse framework [7].

At the same time, component-based and service-oriented

approaches (SOA) are gaining in popularity because they

offer other sought-after benefits, namely high modularity and

low coupling, as well as the potential to tackle scalability

and complexity. Component-based approaches with properly

defined underlying component models [5] are by definition

model-driven.

In this paper we present a graphical MDE tool for system

development that is based on a component model. In this

component model, services are provided by components, and

are composed when their provider components are composed.

Our tool thus reaps the benefits offered by MDE, component-

based and service-oriented development [1].

II. TOOL OVERVIEW

Our tool supports component-based system development

and its associated life cycle [3]. The latter consists of: (i) a

component development phase; and (ii) a system development

phase. In (i) components are designed and built, and deposited

in a repository. In (ii) components are retrieved and deployed

into the system under construction. Figs. 1 and 2 show our

Eclipse workbench for (i) and (ii) respectively. For each

development phase, the tool provides a canvas as a design

space, as well as a palette of pre-defined building blocks. The

tool provides continuous validation. Errors are marked in the

canvas, and listed in the problems view. The tool generates

code for the resulting system that can be deployed as a stand-

alone application.

Research leading to these results has received funding from the EU
ARTEMIS Joint Undertaking under grant agreement no. 621429 (project
EMC2) and from the Technology Transfer Board (TSB) on behalf of the
Department for Business, Innovation & Skills, UK.

III. TOOL IMPLEMENTATION

The tool is implemented using a powerful stack of model

driven technologies like Eclipse Modelling Framework (EMF)

[7], Graphiti (https://www.eclipse.org/graphiti/), and CDO

(https://eclipse.org/cdo/).

Our approach is based on the X-MAN component model

[2]. It consists of three main entities, namely components,

connectors, and services.

1) Components: X-MAN has two types of components:

atomic, and composite. They are both fully encapsulated, i.e.

they have no external functional dependencies and contain

only provided services. An atomic component is a unit of

computation. Its computation unit (CU) contains the imple-

mentation of the services it exposes. As shown in Fig. 1,

according to the dragged service(s), the tool generates an

interface, and an empty implementation. A composite com-
ponent is constructed by composing pre-defined components

via composition connectors.

2) Connectors: Composition connectors are (exogenous)

control structures that coordinate the execution of the com-

ponents they compose [4]. They are Sequencer and Selector,

which provide sequencing, and branching respectively. In

Fig. 2 a sequencer is shaped as an ellipse, and a selector as a

rhombus. In addition, unary adapter connectors such as Guard,

and Loop provide gating, and looping respectively. In Fig. 2

a loop is shaped as a circle, and a guard as a triangle.

While connectors control execution among component in-

stances, data between components flows through data channels
(dotted arrow in Fig. 2).

3) Services: A service represents an operation exposed

by a component. It contains two main entities: parameters,

and service references. Parameters are inputs and outputs,

while service references specify services in sub-components

that contribute to the provided operation. In Fig. 2, a service

reference is represented as a square.

Starting from the EMF meta-model, the graphical editor has

been implemented using Graphiti, while the model repository

is realised using CDO. Finally, we have used Xtend (https:

//eclipse.org/xtend) to generate code for a valid system.

IV. DISCUSSION AND CONCLUSION

In object-based component models (e.g. EJB) and frame-

works (e.g. OSGi), services are visible at model level, but

service composition is only visible at code level. Here, services

2015 41st Euromicro Conference on Software Engineering and Advanced Applications

978-1-4673-7585-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SEAA.2015.13

181

2015 41st Euromicro Conference on Software Engineering and Advanced Applications

978-1-4673-7585-6/15 $31.00 © 2015 IEEE

DOI 10.1109/SEAA.2015.13

181

Fig. 1: Eclipse workbench for component development.

Fig. 2: Eclipse workbench for system development.

are methods provided by objects, and components (objects) are

composed by method calls.
In ADL-based approaches (e.g. UML 2), both services and

service composition are visible at model level, but service

composition is different from SOA approaches, i.e. compo-

sition is port connection rather than orchestrated.
Our approach is closer to SOA as services and service

composition are visible at model level. As in web services, we

use coordination for service composition. However, whilst web

services use workflow languages like BPEL and BPMN [8],

we define composition in the meta-model itself as composition

(and adaptor) connectors.

REFERENCES

[1] T. Erl. Soa: principles of service design, volume 1. Prentice Hall Upper
Saddle River, 2008.

[2] N. He, et al. Component-based design and verification in X-MAN. In
Proc. ERTS, 2012.

[3] K.-K. Lau, et al. Towards composing software components in both design
and deployment phases. In Proc. 10th CBSE, pages 274–282. Springer-
Verlag, 2007.

[4] K.-K. Lau, et al. Composing components in design phase using exogenous
connectors. In Proc. 32nd SEAA, pages 12–19. IEEE Computer Society
Press, 2006.

[5] K.-K. Lau. Software Component Models: Past, Present and Future. In
Proc. 17th CBSE, pages 185–186. ACM, 2014.

[6] D. C. Schmidt. Model-driven engineering. IEEE Computer, 39, February
2006.

[7] D. Steinberg, et al. EMF: Eclipse Modeling Framework. Addison-Wesley,
Boston, MA, 2. edition, 2009.

[8] S. Weerawarana, et al. Web services platform architecture: SOAP, WSDL,
WS-policy, WS-addressing, and more. Prentice Hall PTR, 2005.

[9] J. Whittle, et. al. The state of practice in model-driven engineering.
Software, IEEE, 31(3):79–85, 2014.

182182

