
A Holistic (Component-based) Approach to
AUTOSAR Designs

Kung-Kiu Lau, Petr Štěpán, Cuong Tran
School of Computer Science

The University of Manchester

Oxford Road, Manchester M13 9PL

United Kingdom

kung-kiu,pstepan,tranc@cs.man.ac.uk

Sébastien Saudrais, Borjan Tchakaloff
Embedded Systems Team

CERIE/Estaca

Rue Georges Charpak, BP76121

53061 Laval Cedex 9, France

s.saudrais,b.tchakaloff@estaca.fr

Abstract—The development of new automotive functions in a
car must comply with the AUTOSAR standard. Such functions
are distributed over the ECUs of the car connected with buses.
The development of these distributed functions is not easy in
AUTOSAR because there is no global view of the system. In
this paper we propose an approach that counters this difficulty
by designing automotive systems with a global view and then
transforming these systems into AUTOSAR systems.

Keywords—Component-Based Development, AUTOSAR, Em-
bedded Systems.

I. INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) [1]
is a standard for automotive electricals/electronics engineering
introduced by automotive manufacturers, suppliers and tool
developers. AUTOSAR aims to break up the coupling between
the hardware infrastructure and the application software, so
that by standardising the architecture, it makes it easier for
designers to cope with the ever increasing complexity of
embedded automotive systems. It also frees up maximum effort
and resources that can now be focused on software design.
AUTOSAR’s development methodology is model-driven. The
software architecture, as well as the ECU hardware and the
network topology are modelled in a formal way as a meta-
model that supports the software development process from
architecture up to integration. The functional software is de-
veloped externally and then incorporated into the architecture.

The basic unit of AUTOSAR is the Electronic Control Unit
(ECU), which provides a set of automotive functions. The
functions are implemented by software components deployed
in ECUs, and therefore AUTOSAR is said to be based on the
component paradigm, which reduces development effort, time
and cost, through software reuse. For each ECU, a set of tasks
is defined. Each task executes a sequence of operations, which
include input/output to/from sensors/actuators, as well as calls
to functions (called runnables) defined in the components. The
behaviour of an ECU is the execution of all its tasks; and the
behaviour of the whole system is the execution of all the tasks
in all the ECUs.

An AUTOSAR system is an embedded system consisting
of a number of ECUs (around 80 in high-end cars) connected
to a bus (Fig. 1). Each ECU contains software components
(SWCs in Fig. 1) inter-connected via their ports. Components

���

��������

�����

����	

����

�����

����
����	

Fig. 1: ECUs with software components.

in different ECUs can be connected indirectly via the bus (or
several buses or channels). The unconnected ports in Fig. 1
are connected to ECUs through buses, connections to sensors
and actuators are implicit as part of the ECU hardware. Thus
all AUTOSAR systems have the same hardware architecture,
namely the one shown in Fig. 1. Also, AUTOSAR does not
define formal semantics for software or software architectures.
Consequently, there are two major drawbacks: (i) there is no
software architecture for the whole system (there are only
software architectures for individual ECUs); (ii) there are no
tasks defined for the whole system (there are only tasks for
individual ECUs).

In the context of CBD (Component-Based Development),
these drawbacks are especially severe. Without a software
architecture or tasks for the whole system, it is difficult to
specify or ascertain the behaviour of the whole system in terms
of the behaviour of individual components. Consequently,
it is difficult to design separate architectures and tasks for
individual ECUs whilst ensuring that together they achieve the
desired behaviour of the whole system.

In this paper, we propose a way to counter this inherent
lack of a global view for AUTOSAR systems. Specifically,
we propose a holistic approach that provides a global view of
AUTOSAR designs. Our approach is component-based, i.e. it
is based on a suitable component model. Our holistic approach
constructs a complete automotive system using the component
model, and then transforms the system into an AUTOSAR
system (with multiple ECUs).

II. A HOLISTIC APPROACH

Our approach is based on the X-MAN component model
[2], [3] and its associated tool [4], [5]. An X-MAN system is a
software architecture which also has behaviour. The idea is to
first construct the required system as an X-MAN system and

2013 39th Euromicro Conference Series on Software Engineering and Advanced Applications

978-0-7695-5091-6/13 $26.00 © 2013 IEEE

DOI 10.1109/SEAA.2013.14

203

IU

U

Atomic

component

(a) Composition

connector

(b)

IA IB

A B

Composite

component

(c)

Fig. 2: The X-MAN component model.

then transform this system into an AUTOSAR system. The X-
MAN system is completely independent of ECUs, but can be
mapped to an AUTOSAR system with an arbitrary number of
ECUs. Now we briefly present the X-MAN component model.

A. The X-MAN Component Model

In the X-MAN component model (Fig. 2), there are two
basic entities: (i) components, and (ii) composition connectors.
Components are units of design with behaviour, exposed
through a component’s interface as provided services. Compo-
sition connectors are composition mechanisms for components.

Components can be atomic or composite. An atomic com-
ponent (Fig. 2(a)) is formed by composing an invocation
connector (IU) with a computation unit (U). The computation
unit contains an implementation of some behaviour (methods)
in a chosen programming language, e.g. C. More importantly,
the computation unit must have complete behaviour, i.e. it
is not permitted to call another computation unit (of another
component) in order to complete its behaviour. The invocation
connector exposes the methods of the computation unit to the
component’s interface and allows them to be executed.

Composition connectors (Fig. 2(b)) are control structures.
They are used to compose components into composite compo-
nents. In a composite component (Fig. 2(c)), sub-components
do not call each other. Instead, the composition connector co-
ordinates the execution of sub-components. Two basic compo-
sition connectors are Sequencer, for sequencing, and Selector,
for branching. In addition, there are special connectors that are
not used for composition, but for adapting single components.
These connectors are called adaptors; examples are Loop,
iteration over a single component, and Guard, for gating.

Data routing can be horizontal or vertical. Horizontal data
routing is between sub-components within a composite com-
ponent. Vertical data routing is data propagation between the
interface of a composite component and its sub-components.
A data route is defined by a data channel. A data channel
has a capacity of 1, and can have two possible read policies:
destructive and non-destructive. Moreover, a data channel can
be initialised to contain an initial value.

An X-MAN architecture is always executable because it
has complete definition of control, data and computation. The
execution semantics for X-MAN is control-driven. Compo-
nent execution is initiated and coordinated by (composition)
connectors. Connectors initiate control to invoke components.
At each component, control then triggers read and write
operations on data channels associated with the component
in order to supply inputs to the component, and distribute the
outputs from the component.

Finally, in X-MAN, components can have contracts that
describe functional and compositional properties, e.g. data

range, worst case execution time (WCET), etc. The contracts
of atomic components enable formal validation and verification
of component implementation. From the contracts of atomic
components, contracts of composite components and systems
can be generated compositionally.

B. Transforming X-MAN to AUTOSAR

In our approach, we first design the structure and behaviour
of a system as an X-MAN architecture, independent on AU-
TOSAR. The next step is to transform the X-MAN system
architecture into an AUTOSAR system, based on the specified
number of ECUs. In this section we explain this transformation
by defining the mappings for basic X-MAN elements (Loop
and Guard are omitted for the lack of space).

1) Atomic Components: Mapping atomic X-MAN compo-
nents to AUTOSAR is straightforward. An atomic X-MAN
component corresponds to an atomic AUTOSAR software
component (SWC). A service in an atomic X-MAN component
corresponds to a runnable in an atomic AUTOSAR SWC.
(Note that an atomic X-MAN component does not define any
task in AUTOSAR.)

For example, we have an atomic X-MAN component C1
with two services S1 and S2. These are transformed into an
atomic SWC1 with two runnables R1 and R2. In this example,
obviously, the two runnables R1 and R2 could be mapped to
different ECUs. In general, services from an atomic X-MAN
component can be mapped to runnables on an arbitraty number
of ECUs.

2) Composite Components: Unlike an atomic component,
a composite X-MAN component also defines tasks (as well
as SWCs). Since in AUTOSAR, tasks are defined and man-
aged by ECUs, the transformation of composite X-MAN
components has to take into account the number of ECUs
being deployed. Without loss of generality, we will discuss
transformation rules from X-MAN to AUTOSAR for two
scenarios: for 1 ECU and for 2 ECUs. The 1-ECU scenario will
show how tasks and runnables can be derived (from X-MAN
components), whilst the 2-ECU scenario will show how tasks
and runnables can be distributed among an arbitraty number of
ECUs. For simplicity, we assume that ECUs are ‘free’. In other
words, we do not take into consideration other configuration
factors such as free memory, load limit, etc.

For a composite component, we need to transform its
(sub-)components, composition connectors and data channels.
Data channels are simply mapped to AUTOSAR data links.
Sub-components can in turn be composite and hence their
transformation is recursive and top-down. Composition con-
nectors initiate control to coordinate the execution of the sub-
components. Therefore they define tasks in AUTOSAR. Ac-
cordingly we map a composition connector to a distinguished
runnable (inside a distinguished SWC) with triggering data
links to the other runnables in the same task.

As an illustration, consider the generic composite com-
ponent CC2 in Fig. 3(a) with two levels of composition. As
depicted, CC2 has a sub-component CC1 that is in turn another
composite component. Suppose that the transformation is to
map to two ECUs with CC1 on a separate ECU (from CC2).

204

CONN1

C1 C2
S11
S12 S22

S21

S1
S2 R21

R22

R12

R11

Rconn1

TaskA

SWC2

SWC1

SWCm

ECUm

(a) (b)

C3
S31
S32

CONN2 S3
S4

R32

R31

SWC3

ECUn

Rconn2

TaskB

Bus

SWCn

CC1

CC2

..

..

Fig. 3: Transforming a composite X-MAN component.

3) Sequencer: A sequencer enables sequential invocations
of components according to their indices. Consider the com-
posite in Fig. 4 (a) in which two components C1 and C2
are composed by a sequencer SEQ1. C1 offers services S11
and S12; C2 offers S21 and S22. The composition yields a
composite component (dashed box) with two services S1 and
S2: the former offers the sequential invocation of S11 and S21;
the latter gives the sequential invocation of S12 and S22. Data
may be passed between S1i and S2i but we omit that here. The
decision to execute which sequence is provided by a control
value, which could come from the system user interface.

For 1-ECU configurations, the X-MAN composite compo-
nent in Fig. 4(a) is transformed to an equivalent AUTOSAR
system in Fig. 4(b). X-MAN components C1 and C2 become
AUTOSAR software components SWC1 and SWC2 respec-
tively. Services S1i and S2i become runnables R1i and R2i.
Transformation of sequencer SEQ1 means transforming all
sequential invocations, i.e. S1 and S2, and to implement the
sequence selection. To realise the sequences, the runnables
are added with data links (and necessary data ports) (e.g.
R11→R21) and set to be data triggered. In order to achieve
the sequence selection, the transformation creates a new
AUTOSAR software component SWC0 containing a time-
triggered runnable called Rentry. Rentry has data links to the
head runnables (R11 and R12) of the two sequences. Rentry is
defined such that it takes a control value and selectively sends
a trigger value to one of the head runnables. The periodic
triggering of Rentry needs to be at least the worst WCET of
all sequences Si. Finally, the transformation creates a non-
preemptible task called Task1, and places the runnables in
the order as they appear in Fig. 4(b). As a result, Task1 will
execute Rentry, R1i and then R2i cyclically.

The transformation for 2-ECU configurations results in the
same elements as those for 1-ECU configurations. However,
the transformation now creates two non-preemptible tasks,
Task1 and Task2, for ECU1 and ECU2 respectively. Task1
consists of SWC0 and SWC1; Task2 includes SWC2. Some
data links (e.g. R11→R21) therefore have to go through a bus,

SEQ1

C1 C2S11
S12 S22

S21

S1
S2

0 1

R21

R22

R12

R11

Rentry

Task1

SWC2

SWC1

SWC0

ECU1

(a) (b)
Fig. 4: Transformation for Sequencer for 1 ECU.

SEL1

C1 C2S11
S12 S22

S21

S1
S2

[cond<0] [cond>0]

R21

R22

R12

R11

Rentry
Task1

SWC2

SWC1

SWC0

ECU1

(a) (b)

cond Rs1
Rs2

Fig. 5: Transformation for Selector for 1 ECU.

which adds some delay to the sequence execution time. In
addition, imposing the sequences S1 and S2 and the sequence
selection on distributed runnables means that any runnables on
Task1 can never execute before any runnables on Task2 finish.
In order to achieve this, the calculation of periodic triggering
of Rentry has to be at least the sum of the worst-case delay
(WCD) on the bus and the worst WCET of all sequences Si.

4) Selector: A selector allows for conditional invocation of
components. Selection conditions are set based on the inputs
to the connector. Consider the composite in Fig. 5(a) in which
two components are composed by a selector SEL1 with an
input cond. The selection condition for C1 is cond<0 and
the selection condition for C2 is cond>0. We assume the
composite component to have two services S1 and S2. S1
offers selection of S11 and S21, while S2 offers selection of
S12 and S22.

For 1-ECU configurations, the transformation of compo-
nents and services is performed in the same way as before.
It is illustrated in Fig. 5(b). X-MAN component Ci becomes
AUTOSAR component SWCi and Sij becomes Rij. The
transformation of selector SEL1 means realising S1 and S2,
and the selection of Si. In order to realise Si, the transfor-
mation defines two new runnables Rs1 and Rs2 for S1 and
S2 respectively. Rs1 is defined so that it takes an input and
outputs a triggering value to R11 iff the input value is less
than 0, or to R21 iff the input value is greater than 0. Rs2
is defined similarly for R12 and R22. The transformation also
adds necessary data links as depicted in Fig. 5(b), and the
runnables Rij are set to be data triggered. The selection of Si
is implemented as the runnable Rentry that is defined to take a
control value and choose either Rs1 or Rs2. The transformation
additionally adds data links to connect Rentry with Rsi, which
are also set to be data triggered. The periodic triggering of
Rentry is calculated to be at least the worst WCET of all
Si. Finally, the transformation creates a non-preemptible task,
namely Task1, to include and execute all the runnables in the
order as they appear in Fig. 5(b).

For 2-ECU configurations, the transformation creates the
same elements as that for 1-ECU configurations. The transfor-
mation, however, creates two tasks, Task1 and Task2, for two
ECUs. Task1 consists of SWC0 and SWC1; Task2 contains
just SWC2. As a result, some data links have to go through
a bus. In addition, we have to guarantee that the selection
of runnables cannot start until previously selected runnables
complete their execution. This requires that Rentry can not be
executed before any runnables in Task2 complete. Achieving
this requirement means that the periodic triggering of Rentry
has to be at least the sum of the worst-case delay (WCD) on
the bus and the worst WCET of all Si.

205

5) Implementation of Transformation: We used Acceleo [6]
to implement the transformation. The transformation takes
three parameters: a model, an allocation configuration, and an
output directory. A model is an X-MAN system architecture.
An allocation configuration specifies a list of ECUs and an
allocation of system components into these ECUs. An output
directory is for containing AUTOSAR system descriptions in
Artext [7]. The result of the transformation consists of two
descriptions contained in two separate files: (i) one contains
definitions of components, runnables, ports, and data links; (ii)
one contains definitions of tasks.

III. STEER-BY-WIRE SYSTEM

Now we illustrate our holistic approach to AUTOSAR
designs by applying it to the Steer-by-Wire system.

A Steer-by-Wire system consists of three main physical
parts: the steering wheel, controllers and the road wheels of
the vehicle. Sensors on the steering wheel detect the angle
and torque provided by the driver and feed this data to the
controllers. The controller combines that data with torque
data from the wheels. The result is then sent to the actuator
attached to the wheel to turn it. At the same time, wheel
sensors detect the torque and angle of the wheel turn to be
fed back to the controllers. This data is combined with the
steering wheel torque as well as vehicle speed and is used
to compute the amount of feedback to return to the steering
wheel. The computed result is then sent to the actuator attached
to the steering wheel to provide feedback to the driver to give
the sensation of an actual mechanical wheel turn on different
kinds of roads [8]. The main functions of Steer-by-Wire are
the Feedback Torque and Rack Torque functions, depicted in
Fig. 6. The main constraints are to satisfy: (i) the desired
response time of the two main functions; (ii) the driver’s
preference for his feel when he turns the steering wheel.

Vehicle Speed
Wheel Torque
Steer Torque

Feedback Torque

Wheel Torque
Steer Torque Rack Torque

FeedbackTorque
Function

Rack Torque
FunctionMode

Mode

Fig. 6: Main functions of Steer-by-Wire.

A. Steer-by-Wire in X-MAN

The first step of our approach is to build the Steer-by-
Wire system in X-MAN. This system is shown in Fig. 7.
We have three components: SteerManager Normal, Steer-
Manager City, and WheelManager. SteerManager Normal and
SteerManager City have a service called ManageSteering.
WheelManager has a service called ManageWheel.

We build the system in two steps. First, we compose the
first two components by a selector SEL1 into a composite
component and set the conditions. Second, we compose the
composite component with the third component by a sequencer
SEQ1 into a bigger composite component, which is the final
system. The system has a system service called Manage. In
addition, the inputs and outputs of the system service are
routed to components and between components by a collection
of data channels.

The system behaves as follows: when system service
Manage is executed, control is passed by the sequencer SEQ1

Fig. 7: Steer-by-Wire system in X-MAN.

to the selector SEL1 that then decides based on its input mode
to invoke either components below it, control is then returned
to the sequencer SEQ1 that invokes the last component.

B. Steer-by-Wire in AUTOSAR

Having the X-MAN model, the next step is to transform it
into an AUTOSAR system, using our Acceleo transformation
tool. However, we first need to set up an ECU architecture to
house the input/output of the software system. The AUTOSAR
representation is based on two ECUs, one for the steer side and
one for the wheel side. Four unconnected ports correspond to
the inputs and the outputs of the Steer-by-Wire system (Fig. 6)
for the steer side. Two network ports, speed and mode, have
their data coming from a bus, while the four other ports are
contained by components and linked to the hardware.

Now, we present the results of transforming the X-MAN
model into AUTOSAR for the given architecture. The trans-
formation produces the AUTOSAR elements only for the
behavioural part. These elements need to be imported into the
empty AUTOSAR architecture with the corresponding inputs
and outputs, to/from the hardware and the network. During the
importation, links are created between the input/output of the
developed system and the existing architecture by replacing
the X-MAN Manage service with the existing ECU ports.

The importation of the first description file (component
definition, runnables, ports and data links) is performed in the
ECU architecture. The transformation has to be parametrised
with the 2-ECU option. The choice of component allocation
can be made by the designer or with an allocation algo-
rithm [9]. For the steer ECU, three component types are cre-
ated, one for each X-MAN component (SteerManager Normal
and SteerManager City) and one for the connector tree, cor-
responding to the sequencer and selector connectors. A new
port type Trigger is created for the triggering of the runnables:
it consists of a boolean signal. The other port types are
already present in the architecture as I/O of the system.
The ConnectorTree component has four runnables, each one
triggered by data reception. Two runnables correspond to the
selector connector, begin and end, and the two others to the
sequencer. The other components have one runnable, also data
triggered. Three delegated ports are generated because of the
absence of the wheel manager on the ECU and the triggering
of the wheel runnable on the wheel ECU. The delegated ports
send data over a bus so the bus database is updated with

206

the new signals. Fig. 8 shows the imported components and
their port connections (the existing components of the empty
architecture are omitted). The ConnectorTree component has
ports connected to itself, due to the composition of a selector
and a sequencer. The beginning of the sequencer is directly
followed by the selector and the end of the sequencer is
connected to the beginning to restart the sequence.

The importation of the second description file (tasks
definition) is performed on the complete ECU architecture.
Two tasks are already present on the ECU configuration:
SchM Task for the ECU initialization and Task Sensor for
the hardware abstraction and the sensors/actuators runnables.
The task mapping of the Steer-by-Wire system is com-
posed of one task TaskSbW, containing all the generated
runnables. For each execution of the task, only the triggered
runnables will be called. As the two runnables SteerMan-
ager Normal Behaviour and SteerManager City Behaviour
are selected by a selector, they cannot be called at the same
time. Two different execution paths are possible for the gen-
erated task containing only one of these two runnables. The
transformation process also produces the code of the connector
runnables.

IV. EVALUATION

The generated AUTOSAR systems have to be evaluated
to check if they satisfy the timing requirements of the steer-
by-wire system. The evaluation is performed first on the
AUTOSAR architecture model and then on a NEC V850 board
connected with a CAN bus to a simulation bench. We assume
that the worst-case execution time (WCET) of the components
is known.

Architecture Model Evaluation: An AUTOSAR architec-
ture’s timing properties can be checked with a tool like Symta-
S using techniques described in [9]. For our evaluation, 5ms
is given as the desired response time. The tool explores the
different possible system execution paths and compares their
execution time to the required response time. The length of
the physical cable and the transmission through the low-level
layers has an estimated execution time of 1 ms. Two different
paths of the generated task have to be explored depending on
the value of mode. The two paths are given by the X-MAN
model. All the paths are evaluated and the total time of the
two paths is less than 5ms, as required.

Application Evaluation: The application is deployed on
two ECUs. The generation of the architecture code is done
with the DaVinci tool and the code is compiled with the
GreenHills compiler. The runnables’ code is generated during
the transformation based on the type of the X-MAN connector:

SteerManager_City

feedbackTorque

steerTorque
wheelTorque

TriggerIn

TriggerOutspeed

SteerManager_Normal

feedbackTorque

steerTorque
wheelTorque

TriggerIn

TriggerOut

speed

ConnectorTree

SEQ1_End_TriggerInSEL1_Choice1

SEL1_ENd_TriggerIn

SEL1_Choice2

SEL1_End_TriggerOut

SEL1_Begin_TriggerIn
SEQ1_Begin_TriggerOut

SEQ1_Begin_TriggerIn
SEQ1_End_TriggerOut

Mode

SEL1_End_TriggerOut

speed Mode

SEQ1_End_TriggerIn

Fig. 8: AUTOSAR steer components for 2-ECUs.

an if statement for a selector or a port writing for a sequencer.
The evaluation is performed with the tool Vector CANoe, the
bus interface CANCaseXL, and the test bench VT System.
CANoe sends sensor data to the VT System connected to
the physical input ports of the boards and checks the time
reception of the output of the Steer-by-Wire system. CANoe
is also responsible for sending the mode and speed messages
through the CAN bus using the CANCaseXL interface.

As was the case for the architecture model evaluation, the
response time of the two architectures is also valid regarding
the expected time response.

V. CONCLUSION

In this paper we have presented a holistic approach to
designing AUTOSAR applications with X-MAN. The designer
has a global view of a system, in terms of complete software
architecture and overall behaviour, without being restricted to
the ECU view used in AUTOSAR tools. A transformation has
been defined to produce AUTOSAR models from X-MAN.
The same X-MAN model can be transformed into different
AUTOSAR architectures with different numbers of ECUs, all
of which have the same behaviour as the runnables are data-
triggered. The approach has been validated on AUTOSAR
compliant boards.

As on-going work, we are optimising the transformation
to avoid port connections within the same component and to
reduce the number of generated runnables. We also intend to
adapt the transformation to other popular platforms, such as
AADL [10].

REFERENCES

[1] AUTOSAR Partnership, “AUTOSAR - the worldwide automotive stan-
dard for E/E systems,” 2011.

[2] K.-K. Lau, P. Velasco Elizondo, and Z. Wang, “Exogenous connectors
for software components,” in Proc. 8th Int. Symp. on Component-based
Software Engineering, LNCS 3489. Springer, 2005, pp. 90–106.

[3] K.-K. Lau, M. Ornaghi, and Z. Wang, “A software component model
and its preliminary formalisation,” in Proc. 4th Int. Symp. on Formal
Methods for Components and Objects, LNCS 4111. Springer-Verlag,
2006, pp. 1–21.

[4] K.-K. Lau and C. Tran, “X-MAN: An MDE tool for component-
based system development,” in Proc. 38th EUROMICRO Conference
on Software Engineering and Advanced Applications. IEEE, 2012, pp.
158–165.

[5] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P. Rümmer,
and S. Sharma, “Component-based design and verification in X-MAN,”
in Proc. Embedded Real Time Software and Systems, 2012.

[6] Obeo, “Acceleo User Guide,” Tech. Rep., Oct. 2011. [Online].
Available: http://www.obeonetwork.com/page/acceleo-user-guide

[7] C. Knüchel, M. Rudorfer, S. Voget, S. Eberle, R. Sezestre, and A. Loyer,
“Artop – an ecosystem approach for collaborative AUTOSAR tool
development,” in International Congress on Embedded Real Time
Software and Systems, 2010.

[8] K. Chaaban, P. Leserf, and S. Saudrais, “Steer-by-wire system
development using autosar methodology,” in Proceedings of the
14th IEEE international conference on Emerging technologies
& factory automation, ser. ETFA’09. Piscataway, NJ, USA:
IEEE Press, 2009, pp. 1110–1117. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1740954.1741107

[9] A. Daghsen, K. Chaaban, and S. Saudrais, “Software function allocation
and configuration of an autosar-compliant system,” in SAE 2012 World
Congress & Exhibition, Detroit, Michigan, USA, April 2012.

[10] P. H. Feiler and D. P. Gluch, “Model-based engineering with aadl: An
introduction to the sae architecture analysis & design language,” 2012.

207

