
X-MAN: An MDE Tool for
Component-based System Development

Kung-Kiu Lau and Cuong M. Tran

School of Computer Science, The University of Manchester

Manchester M13 9PL, United Kingdom

Email: kung-kiu, ctran@cs.manchester.ac.uk

Abstract—The X-MAN tool has been developed in the Euro-
pean project CESAR, for component-based system development.
CESAR is a large industrial project that aims to develop a
component-based technology that can be used for developing
embedded systems in multiple domains, including automotives
and avionics. X-MAN has been successfully evaluated by CE-
SAR’s external reviewers and internally by Airbus Operations
Limited for the avionics domain. X-MAN is designed and
implemented using MDE; in this paper we describe its design
and implementation.

I. INTRODUCTION

Component-based system development is one of the main

technical objectives of the CESAR project (see footnote). In-

deed CESAR’s aim is to develop a component-based technol-

ogy to support system development for embedded systems in

multiple domains: automotives, avionics, railways, aerospace

and automation. As a partner in CESAR, we (the University

of Manchester) have developed a tool for component-based

system development. This tool is based on the X-MAN com-

ponent model [8], and supports the complete life cycle for

component-based system development [10]. The X-MAN tool

has been successfully evaluated by external reviewers of the

CESAR project as well as by Airbus Operations Limited for

the avionics domain within CESAR.

X-MAN is an MDE tool, implemented in GME [14]. In this

paper, we discuss the design and implementation of X-MAN.

II. COMPONENT-BASED SYSTEM DEVELOPMENT

Component-based development aims to (i) build compo-

nents and deposit them in a repository; and (ii) use or reuse

these pre-existing components to build many different systems

by assembling the components using composition mechanisms

that have also been pre-defined [9].

. . .
E C

B F

A D

AC . . .

F . . .
A
D

B
E

Repository

Components

System 1

Systems

System 2

Fig. 1. Component-based system development.

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement no. 100016 and from
the Technology Strategy Board, UK. It has been carried out on the CESAR
project (http://www.cesarproject.eu).

This is illustrated by Fig. 1. For a given problem domain,

components are identified and developed, using domain knowl-

edge. Similarly, composition mechanisms for the components

are defined and fixed for the domain.

In adddition, V&V (Verification and Validation) should be

carried out on components in the repository, prior to deploying

these components in different systems. That is, component

V&V should be performed separately from, and prior to

system V&V.

A. The W Model

The life cycle for component-based system development

is thus different from that for traditional approaches. The

standard model for traditional approaches is the V model. The

V model is applied to only one system; it defines a top-down

design process that starts from the system specification and

arrives at a system architecture by successively decomposing

the specification. Components in the system architecture are

thus identified and defined top-down; these components are

specific to this system, and are therefore not repository com-

ponents. Thus the V model defines only a system life cycle,

not a component life cycle. In contrast, in component-based

development, components are identified and defined bottom-
up, from domain requirements. These components are domain-

specific, but not specific to any one system, and are therefore

repository components developed in a component life cycle,

separately from, and prior to, the system life cycle.

Therefore a complete life cycle for component-based de-

velopment should consist of two life cycles: a component
life cycle and a system life cycle. Accordingly, in [10], we

proposed the W model for component-based development.

As depicted in Fig. 2, the W model essentially consists of

two V models: one for the component life cycle and one

for the system life cycle. The component life cycle starts

from domain knowledge and ends with a (domain-specific)

component repository 1. The system life cycle, starts from

system requirements, takes components from the component

repository developed in the component life cycle, and ends

with acceptance testing. V&V for components happens in the

component life cycle, separately from, and prior to, system

V&V in the system life cycle. Indeed, due to component V&V,

system V&V should be much easier, since it can make use of

1The component life cycle may be repeated for all components in a domain.

2012 38th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-4790-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SEAA.2012.32

158

Coding Coding

testing
Acceptance

Component
V&V, certification

knowledge
Domain

design
Component

requirements
System

specification
System

adaptation & deployment
Component selection,

System
assembly

V&V
System

V&V
Compositional

Component Life Cycle System Life Cycle

Fig. 2. The W Model.

compositional V&V, which results from the composition of

components that have been V&V’ed previously.

To develop repository components in the component life

cycle, and to deploy them into systems in the system life

cycle, we need a component model that defines components

and composition mechanisms that can be used in these life

cycles. To this end, we use the X-MAN component model

[10], [5], [8].

B. The X-MAN Component Model

In the X-MAN component model (Fig. 3), there are two

basic entities: (i) components, and (ii) composition connectors.

Components are units of design with behaviour; behaviour

is exposed through a component’s interface as provided ser-

vices. Composition connectors are composition mechanisms

for components.

IU

U
IBIA

A B ATM

(a) Atomic
component

Composition
connector

Composite(b) (c)
component

(d) Bank
system

BB

SEQ

Fig. 3. The X-MAN component model.

Components can be atomic or composite. An atomic com-

ponent (Fig. 3(a)), is formed by composing an invocation

connector (IU) with a computation unit (U). The computation

unit contains an implementation of some behaviour (methods)

in a chosen programming language, e.g. C. More importantly,

the computation unit must have complete behaviour, i.e. it

is not permitted to call another computation unit (of another

component) in order to complete its behaviour. The invocation

connector exposes the methods of the computation unit to the

component’s interface and allows them to be executed.

Composition connectors (Fig. 3(b)) are control structures.

They are used to compose (atomic or composite) compo-

nents into composite components. In a composite component

(Fig. 3(c)), sub-components do not call each other. Instead,

the composition connector coordinates the sub-components’

execution.

Two basic composition connectors are Sequencer and Se-
lector. Sequencer provides sequencing, whilst Selector offers

branching. For instance in the bank system in Fig. 3(d), the

sequencer SEQ first calls ATM to get customer inputs and then

calls the bank branch BB to handle the inputs.

In addition, there are special connectors that are not used

for composition, but for adapting single components. These

connectors are called adaptors; examples are Loop and Guard.

Loop allows for iteration (over a single component) and Guard
offers gating.

The execution semantics for X-MAN is control-driven.

Component execution is initiated and coordinated by (com-

position) connectors. Connectors initiate control to invoke

components. At each component, control then triggers read

and write operations on data channels associated with the

component in order to supply inputs to the component, and

distribute the outputs from the component. Data routing can

be horizontal or vertical. Horizontal data routing is between

sub-components within a composite component. Vertical data

routing is data propagation between the interface of a com-

posite component and its sub-components. A data channel

has a capacity of 1, and can have two possible read policies:

destructive and non-destructive. Moreover, a data channel can

be initialised to contain an initial value.

C. Using X-MAN Components with the W Model

X-MAN components can be used for system development

following the W model. This is because X-MAN components

have a life cycle that matches the W model. This life cycle

has 2 phases: (i) component design (and implementation), and

(ii) component deployment. Component design is concerned

with building repository components and therefore coincides

with the component life cycle of the W model. Component

deployment uses repository components to construct systems,

and therefore coincides with the system life cycle of the W

model.

In the component design phase, X-MAN components are

templates that are meant to be suitable for a number of systems

(in a domain). Hence, the repository contains templates. In the

component deployment phase, X-MAN components are in-

stances of components in the repository. Instances are created

by instantiating, adapting and initialising templates. Because

of that, instances tend to be specific to the system they are

part of. Therefore, it is not desirable to store these instances

in the repository.

propagation

instantiation

(a) Atomic component (b) Composite component

IU

U BA
D

D

D d1 d2

ins1 ins2

Fig. 4. Initialisation data in X-MAN component.

To serve the purpose of component instantiation and ini-

tialisation, a component in the component design phase can

declare its required initialisation data in its interface. An

initialisation data declaration contains a type, a default value,

and optionally a value range. Initialisation data of a composite

component are propagated from its sub-components, i.e. by

159

vertical data routing. An example is shown in Fig. 4. In

Fig. 4(a), the atomic component declares a data element D
which is then initialised to d1 and d2 in two instances, ins1 and

ins2. In Fig. 4(b), the data element D of the sub-component

B is propagated to the composite component.

In addition, during component deployment, component

adaptation allows us to enable only selected services out of

all the provided services of a component. For example, in

Fig.3(d), although the bank branch component in the reposi-

tory may have three services, namely Withdraw, Deposit, Bal-
ance, the deployed instance BB may have only the Withdraw
and Balance services.

III. THE X-MAN TOOL

The X-MAN tool supports component-based development

using X-MAN components and following the W model. It is

implemented in a model-driven manner using an MDE tool

called GME (Generic Modelling Environment).

A. The Generic Modelling Environment (GME)

GME [14] is a generic and customisable modelling envi-

ronment. As comparable to the de facto standard GMF, GME

customisation begins with metamodelling. A metamodel in

GME is essentially a class diagram with well-known concepts

such as inheritance and containment. In addition, there are

notions of proxy and references. Proxy allows for cloning

a metamodel element so that clones could co-exist and be

arranged conveniently in a large and complex metamodel. This

in effect enables us to define clear and well-organised dia-

grams. Reference allows for creating references to metamodel

elements.

Once a metamodel is created, it needs to be registered

with GME. After that, models can be instantiated from the

registered metamodel.

An important feature of GME is the concept of aspect. An

aspect defines a view in which specified metamodel elements

are displayed. In general, there could be overlapping between

aspects if the shared metamodel elements are used to link

the aspects semantically. Aspects are part of a metamodel in

GME and therefore, they will be registered to GME as a part

of metamodel registration.

Interpreter is another significant concept in GME. An inter-

preter can take an active model and process it. Model process-

ing can vary from traversing to inserting and modifying model

elements. Traversing a model is perhaps the most interesting

as it enables us to perform model validation, transformation

and execution. Obviously, an interpreter needs a concrete

implementation to determine how the model interpretation is

done.

In order to define an interpreter, GME provides a wizard

embedded in Microsoft Visual Studio. The wizard asks for

the interpreter name and metamodels on which the interpreter

will be working. An interpreter can register to any number of

metamodels or all available ones.

Like GMF, GME generates C++ classes for metamodel

elements. Accessing models is by calling accessor methods

of these classes in an interpreter implementation. Moreover,

it is encouraged to use the GoF Visitor design pattern [4] in

implementing interpreters. Each metamodel class is generated

to contain the accept method and an extra Visitor class is

also generated to have a number of visit methods for all

metamodel classes. Through implementing the visit methods,

we can access any model elements for any model processing

mentioned above.

B. Implementation Outline

Following GME principles, we developed our metamodels

and interpreters. Specifically, we defined two metamodels: one

for the component life cycle and one for the system life cycle.

Having the metamodels immediately makes the modelling

functionality available. However, in order to fully implement

the activities in the life cycles, we had to add extra implemen-

tation in the form of interpreters. We developed two sets of

interpreters that are called Component Designer and System
Assembler.

We used C++ to implement all our interpreters. In addition,

MySQL [11] was used as the database engine to host the

repository and an ORM framework called ODB [3] was

utilised for rapid development. In order to execute component

implementation in C, we employed a C interpreter called Ch

[13]. We also linked into GME an external code editor called

SciTE [12]. SciTE could be configured to call a suitable

compiler/interpreter, which is Ch in our case, to compile

source codes.

C. Component Life Cycle Metamodel

The metamodel for the component life cycle is presented

in Fig. 5. The top-level element is AtomicComponent and

CompositeComponent, which contains other elements to con-

struct the the definition of a (atomic or composite) component.

ComputationUnit has an attribute, namely ExecutableCode,

to capture an implementation. CompositeComponent contains

one or more Connector and a number of Component, which are

design phase instances. Connector can be Sequencer, Selector,

Loop and Guard. More importantly, components have a num-

ber of Service with Input and Output. Component could also

have DataElement, which models initialisation data. Moreover,

there is DataChannel that connects a pair of parameters, which

can be inputs and outputs. Like DataChannel, DataAssignment
links two data elements to allow for propagation of data

initialisation.

Optionally, Contract, which is formally defined as a pair

of pre- and post-condition, can be defined for services of

components for verification purposes. Components have the

attribute Verified to indicate whether all contracts have been

verified successfully.

For the separation of control and data, we defined two

aspects, which are ControlView and DataRoutingView. Con-
trolView is set to show components, services and connectors,

whereas DataRoutingView is assigned to display services,

initialisation data and data channels. DataRoutingView also

displays Selector, Loop, and Guard as they own inputs.

160

��������	�
�
��
����	�
���

������� �����

�������
��
�����

������� �����

��	������	�
�
��������	�
���

����������
��
����	�
���

�	��	�� �����
������ ����

������������������
��������	�
���

��	������� ����
������� ����

	�

��
��
��������	�
���

 ���!�������	�
�
��������	�
���

������ ����
��
������� �����
���������� �����
 ������������� �����
�	�������� "���
#�$��	���� "���
��		���������� �����
%������������ "���

��	����#���	����
��#���	������

����	���
��
�����

�	������������ �����
��������������� �����

��	����
���������

���&��#���	����
��#���	������

 ����&�����
��������������

��������� �����
�������� ����

��������
��������������

������ �����
�	��	�� �����

	�

��
��
��������	�
���

�������	
���������

���	�������
��������������

������ �����
�	��	�� �����

������������������
���������

��	������� ����
������� ����

	������
��
	�

��
��
���������

	�

��
��
���������

%�����������������	
���������

��$�����	
���������

��������������
���������

��	������� ����
������� ����

���������
���������

 ���'��� �����

����% �� �����

%���(��
��������������

�����������)���
���������

!
�����"�������� �����

���&��
���������

%���	��
��
�����

�����
��
�����

�	��	�� �����
������ ����

�����	��
��
�����

 ���!������
���������

������ ����
��
������� �����
���������� �����
 ������������� �����
�	�������� "���
#�$��	���� "���
��		���������� �����
%������������ "���

*���
���������

*��������� ����

+��	�
���������

��������	#���	����
��#���	������

 ���
���'�����
��������������

�	�,--.

,--.

,--.

,--.

,--.

,--.

/--/ /--/

/--.

,--.

,--.

,--.

,--.

���,--.

�	�
,--.

,--.

,--.

,--.

,--.

���
,--.

,--.

/--/

,--.

/--.

�	�
,--/

/--.

0--.

0--.

���0--.

/

�	�/

���
/

/

/--.

/

�	�
,--.

,--.

���,--.

Fig. 5. Metamodel of component life cycle.

D. Component Designer

Component Designer consists of a number of interpreters

that supports component design, validation, verification, de-

posit and deployment. They appear as IGn, VAL, VER, DEP,

RM and RET tools in a toolbar as depicted in Fig.6.

Fig. 6. Component life cycle toolbar.

1) Component Design: For an atomic component, the de-

sign environment is presented in Fig.7. In this instance, an

atomic component called CllVoter was designed. There is a

design palette on the left, a tree view of the design on the

right, and the main design view in the middle. The main

view shows that CllVoter is an atomic component built by

connecting an invocation connector to a computation unit. The

computation unit has its implementation in the bottom left text

box. The source code is in C and could be annotated with

pre-defined tags to support automatic component interface

generation. Interface generation is triggered by pressing the

IGn button.

The component has its interface containing the provided

service vote (purple box), which takes five inputs (blue boxes)

and produces one output (green box).

Fig. 7. Designing an atomic component.

For composite component design as visualised in Fig.8,

the design palette is updated to display suitable connectors

for building composite components. These connectors are

Selector, Sequencer, Loop, and Guard. There are also other

design entities such as Service and DataElement. Composite

components are built by composing component instances.

In our example, an instance of Sequencer connector called

161

Fig. 8. Designing a composite component (control view).

SEQ1 composed three component instances Voter, PSW and

Locker. Note that Voter is an instance of the previously

constructed atomic component CllVoter. Component execution

sequence is specified on the connections between SEQ1 and

the instances e.g. 0,1, and 2. Like atomic components, the

composite component has its interface consisting of inputs and

outputs. For instance, the service Control has fourteen inputs

and three outputs.

Having defined the control in the composite component,

we also had to specify the data routings, i.e. both vertical

and horizontal ones. Fig.9 shows our data routings for this

composite component. The horizontal data routing consists of

�������

	�
����
��

�
�	�����

���������	��

���
�
�
���������	���
�
����	
�
������
������
����������

���������	��

���
�
�
���������	���
�
����	
�
������
������
����������

�	������
��

�
����	
�
��������

���������
���������	���
����������
��� �
�!����
�
���������	��

���������
"
�#���$%
!��

�
����	
�
��������

���������
���������	���
����������
��� �
�!����
�
���������	��

���������
"
�#���$%
!��

�����������

�������

���������

�
�����������

����
����

���

����
��

��������� �!���

��������� �!���

�������������� �!��

���
��� ���%�$��

�������
�������
������

��� ���%�$���

���
��� ���%�$��

�������
�������
������

��� ���%�$���

"� ���"� �

�
�	�����

�
�	�����

#��$�
�!

�������

%��������

��

�
�����������

&
����&'��

Fig. 9. Designing a composite component (data routing view).

the only data channel connecting the output cll of Voter to the

input CLL of Locker. All other data channels contribute to the

vertical data routing.

As can be easily seen, we have modelled control and data

separately. This gives clarity and expressiveness. However,

we need to ensure that the models (e.g. Fig.8 and Fig.9) are

not contradicting. Hence, we implemented a validation tool

called VAL for this purpose. The tool uses the control view

as the base model and traverses the data view checking data

channel directions and channel ends. For instance, the channel

connecting inputs Closed1 and closed1 (of Voter.vote) is valid

because it defines a valid vertical data flow from the composite

component interface to the sub-component Voter’s interface. In

addition, the channel flowing from output cll (of Voter.vote) to

input CLL (of Locker.Lock) is also valid because it complies

with the execution sequence, i.e. Voter first and then Locker.

2) Component Retrieval and Deposit: As mentioned be-

fore, composite components are built from component in-

stances. Component instantiation starts by pressing the RET
tool. The tool provides a chain of component selection

and instantiation dialogues. We need to provide the nec-

essary details, which are instance name, services and ini-

tial values, to create component instances. The compo-

nent instantiation dialogue is visualised in Fig.10. In this

example, we specified the instance name as Voter and

Fig. 10. Instantiating a component.

selected the

provided

service Vote
to have in

the instance.

The latter

step is

important

because

components

can have

many services

but we need

to be able

to adapt an

instance to

have enough

functionalities, in order to construct the required functionalities

of a composite component.

Component deposit is triggered by running the DEP tool.

When executed, component deposit automatically triggers the

component validation tool to guarantee design validity. If the

design is valid, it will be stored in the repository.

3) Repository: Repository management is implemented via

the RM tool. RM offers repository management with facilities

such as component lookup, removal, sorting, exporting and

categorisation. We offered these facilities through a set of

dialogues triggered in the RM tool. The main dialogue is

shown in Fig.11. There is a list of components on the left and a

component summary view on the right. Component list can be

shorted by using the filtering tool at the top. In addition, com-

ponents can be removed and categorised using the repository

management tools at the bottom. Finally, component interface

can be revealed in order to support component selection.

162

����
������	

���������
 ����

�������
������

��������
 ���	�

������������������
�����������

�������������
������	

����������������
�����������

�����
������	

������������
������	�����

�����������
������	�����

 �	���
 ����

!���"	����������
������	�����

��� �	���
 ���	�
��� �	���
 ���	�
������� �	���
 ���	�
���������
 #��	
$�����	�����
 #��	
��%������
 #��	
�����
 ����

!���"	�����
������	

��� �	���
 ���	�
��� �	���
 ���	�
������� �	���
 ���	�
���������
 #��	
$�����	�����
 #��	
��%������
 #��	
�����
 ����

!�������&�����
������������

!����'����	
������������

��	����
 ����
��������
 ���	�
 �	���
 ���	�

�������
������	

��������
������������

(�����
 ���	�
�����
 ���	�

�����
������

�����
 ����
(�����
 ���	�
 �	���
 ���	�����������

�����������

�����
 ����
(�����
 ���	�
 �	���
 ���	�

��������
������

�������������
 ���	�
��������������
 ���	�

$������
������

 ��	�����

������	

��%������
������	

�����������
������������

(�����
 ���	�
�����
 ���	�

��		
����
������	

(�������
������

���������$���
������	

!���&��
 ���	�
�����$!�
 ���	�

������
������	

 �	���
 ����

	���
���		
����
������	�����

/--/

,--.

,--.

,--.

,--.

,--.

���
,--.

���
,--.

,--.

,--.
,--.

/--.

,--.

,--.

���,--.
���
,--.

,--.

/--/ /--/

,--.

,--.

���,--.���,--.
,--.

,--.

/--. ���/--.

���
,--.

/--.

Fig. 12. Metamodel of system life cycle.

Fig. 11. Repository.

E. System Life Cycle Metamodel

The metamodel for system life cycle is presented in Fig. 12.

In this life cycle, System is the top element containing all

others, as opposed to (atomic and composite) components

in the component life cycle. A system is formed from a

number of ComponentInst and Connector. Connectors are

the same ones in the component life cycle. Similarly, there

is DataChannel that connects a pair of parameters, which

can be inputs and outputs. System can have a number of

SystemService. Each SystemService has Inputs and Outputs
and necessary DataChannels. Note that, SystemService can

also contain Contract, which is also defined as a pair of pre-

and post-condition. Contracts of a system service are supposed

to be generated from and verified against those of components

by using a suitable verification approach.

As in the component life cycle, we defined two aspects to

separate control and data modelling in systems.

F. System Assembler

As shown in Fig.13, System Assembler consists of a set of

tools for system design, validation, verification and simulation.

These tools are implemented as RET, VAL, VER and SIM on

the toolbar.

Fig. 13. System life cycle toolbar.

1) System Design and Validation: Like composite com-

ponent design, the system design environment has a design

palette that offers connectors, data element and system in-

terface. A system is constructed by composing component

instances with connectors. The RET tool is used for component

instantiation and initialisation. Component instantiation in this

life cycle requires model transformation, i.e. from Atomic-

Component and CompositeComponent in metamodel in Fig.5

to ComponentInst in Fig.12. The transformation is rather

straightforward because the key elements, which are Service

and DataElement, in both metamodels are conveniently the

same.

An example of system design is depicted in Fig.14. Two

instances namely Door1 and Door2 are composed by a

connector SEQ1. Again, the execution sequence of the two

instances is specified on the connections, e.g. 0 and 1. The

163

Fig. 14. Designing a system (control view).

system interface offers a number of inputs and outputs that

are built from those of the instances.

As well as the control view, a data view needs to be created

for the system. We omit this view for lack of space.

System design validity is checked by launching the VAL
tool which works in the same way as it does on composite

components. The tool goes through all data channels and

makes sure that they are consistent with the control in the

control view.

2) Simulation: In order to validate a system assembly

against its requirements, we can define a number of test

cases with inputs and assertions, and use our SIM simulation

interpreter to execute the system assembly against these test

cases.

Once the system is fully defined, we validated the system

by simulating it and evaluating its outputs using a set of test

cases derived from the system requirements. The simulation

tool SIM is visualised in Fig.15. The simulator is showing the

signature of the selected system service. The service requires

a number of inputs such as DiffPressure1, DiffPressure2,

On Ground and so on.

The simulation will iterate once through all test cases and

log inputs and outputs at every possible elements. When the

simulation is finished, the results are displayed in a separate

dialogue. We can select an individual test case and inspect the

execution traces to debug the system. The simulation result

dialogue is depicted in Fig.16.

3) Verification: Component and system verification are also

implemented as interpreters, which are named VER in both

Fig.6 and Fig.13. They simply export component and system

designs in a suitable format, for instance XML, and pass

them to suitable verification tools, such as CBMC and XMAN

Verifier as in the work of [5].

Fig. 15. The simulator.

Fig. 16. A simulator result.

IV. AN INDUSTRIAL EXAMPLE

Now we present an industrial example from the avionics

domain that we have implemented using the X-MAN Tool.

The example is a simple version of the Door Management

System (DMS) on a civil aircraft;2 it manages only two

passenger doors (the most complicated system can consist of

up to fourteen doors).

Structurally, each door is equipped with a number of sensors

that produce readings of closed status, lock-latched status,

door handle position, and slide armed status. In addition, there

are inputs coming from other systems on the aircraft (e.g.

differential pressure, air speed readings).

Functionally, the system monitors the door status, manages

the evacuation slide, and controls the door lock actuator for

each door. The door status is calculated from closed, locked,

and latched signals.Also, a warning is activated when the

inner door handle is moved and the evacuation slide is in

armed position. The evacuation slide management furthermore

generates a warning if the aircraft is on ground, the cabin is

still pressurised but the slide is disarmed. Finally, the door lock

2This is a pilot application on the CESAR project.

164

control only permits the door to be unlocked if the aircraft

is on ground and the situation is ’emergency evacuation’ or

windspeed is lower than 12kph.

From our analysis of the DMS system, we identified three

components namely CllVoter, PSWController, and Locking-

Controller. These components are common and can be used

many times in possible variants of DMS, e.g. a DMS variant

consisting of 4 passenger doors. Hence, in the component life

cycle, we designed the three components and deposited them

in the component repository.

To realise the above functionality, we needed to compose

the identified components. Moreover, since all doors have the

same functionality, it is more efficient to build the functionality

as a composite component so that every door is an instance

of this composite component.

Therefore, after creating the three above atomic compo-

nents, we create three instances to build the composite com-

ponent DoorControllerComposite, as depicted in Fig.8.

Then, we implemented the DMS system by instantiating

the composite component DoorControllerComposite twice and

composing these instances as in Fig.14 3.

We validated that system by defining three test cases and

testing the system against them. The results (in Fig.16) told

us that the system behaves exactly as expected. In particular,

the first test case expects the outputs LockingCmd D1 and

LockingCmd D2 to be 1. The execution trace shows exactly

that the two actual outputs (at the bottom) are also 1.

V. EVALUATION AND CONCLUSION

Compared to the initial version in [10], the X-MAN tool in

this paper has evolved tremendously. The successful evaluation

by Airbus Operations Limited for the avionics domain not

only resulted in many alterations and improvements, but it

also highlighted the major industrial requirements that X-

MAN now meets. One such requirement is the construc-

tion of composite components in the component life cycle.

Composite components allow for reusing ‘big’ components,

which leads to simpler but highly factored designs. Another

industrial requirement is hierarchical component and system

construction. Hierarchical construction leads to composition-

ality, which in turn tackles scale and complexity. It is thus

crucial for systematic construction of large complex systems.

Clear data routing is another requirement, by Airbus engineers.

For this we introduced data channels so that control and data

can be modelled independently. Such separation is significant

for effective modelling as well as architecture analysis and

reasoning.

The MDE approach has enabled us to realise all these

improvements relatively quickly and painlessly.

In a wider scope, tools for component-based software de-

velopment generally support ADL-like component models in

which components are architectural units. More importantly,

components are usually products of system analysis and

3Ideally, we could have used a better connector called Cobegin that provides
concurrency [7]

design, i.e. there is no true component life cycle or well-

defined repository. Components are normally abstract entities

and hence have no implementation, with the exception of

Modelica [1] and SOFA2 [2]. Moreover, modelling in these

tools does not offer clear separation of control and data.

In contrast, the X-MAN tool supports the W model. Com-

ponents are always defined for reuse (for a domain) and

can also be pre-validated. Systems always use components

from a well-defined repository to ensure quality and cost

savings. In addition to that, the tool encourages separation

of concerns in development by clearly distinguishing the

two key concepts in modelling, namely control and data. It

also emphasises separate development phases for component

design and deployment. As a result, roles, such as component

developer and system assembler, can be clearly defined and

applied in development for efficient management.

In the future, more changes are needed. We need to imple-

ment a code generator that is capable of generating a restrictive

set of code complying to the avionics DO-178B standard. To

this end, we intend to utilise the model transformation tool

suite called GReAT [6]. Also, we will seek opportunities to

apply the X-MAN tool to other domains. Finally, we want to

improve the V&V aspect in order to support more properties

such as safety and reliability.

REFERENCES

[1] Modelica Association. Modelica tools https://www.modelica.org/tools.
[2] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing

advanced features in a hierarchical component model. In Proceedings of
the Fourth International Conference on Software Engineering Research,
Management and Applications, pages 40–48, Washington, DC, USA,
2006. IEEE Computer Society.

[3] CODE SYNTHESIS TOOLS CC. Odb: C++ object-relational mapping
(orm) http://www.codesynthesis.com/products/odb/.

[4] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Professional
Computing. Addison-Wesley, 1995.

[5] N. He, D. Kroenig, T. Wahl, K.-K. Lau, C.M. Tran, F. Taweel, P. Rum-
mer, and S. Sharma. Component-based design and verification in x-man.
In To appear in Proceedings of ERTS 2012, 2012.

[6] Vanderbilt University Institute for Software Integrated Systems. The
graph rewrite and transformation (great) tool suite http://repo.isis.
vanderbilt.edu/tools/get tool?GReAT.

[7] K.-K. Lau and I. Ntalamagkas. Component-based construction of
concurrent systems with active components. In Proc. 35th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA
2009), pages 497–502. IEEE, 2009.

[8] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors
for software components. In G. Heineman et al., editor, Proc. 8th
Int. Symp. on Component-based Software Engineering, LNCS 3489.
Springer, 2005.

[9] K.-K. Lau and Z. Wang. Software component models. In IEEE
Transactions on Software Engineering, volume 33. IEEE Computer
Society, October 2007.

[10] Kung-Kiu Lau, Faris M. Taweel, and Cuong M. Tran. The w model for
component-based software development. In Proceedings of SEAA 2011,
Finland, 2011. IEEE Computer Society.

[11] Oracle. Mysql:: the world most popular open source database http:
//www.mysql.com/.

[12] Scintilla project. Scite - a free source code editor for win32 and x
http://www.scintilla.org/, 2012.

[13] SoftIntergration. Ch – an embeddable c/c++ interpreter, c and c++
scripting language http://www.softintegration.com/.

[14] Vanderbilt University. Gme: Generic modeling environment http://www.
isis.vanderbilt.edu/Projects/gme/, 2008.

165

