
The W Model for
Component-based Software Development

Kung-Kiu Lau, Faris M. Taweel and Cuong M. Tran
School of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom
{kung-kiu,ftaweel,ctran}@cs.man.ac.uk

Abstract—For general (modular) system development with
verification and validation (V&V), the V Model is the industrial
standard. For component-based development, there is a well-
understood standard process, but it does not specifically address
V&V. In this paper, we propose such a model, that we call the W
Model. We have implemented it using Model-Driven Engineering.

I. INTRODUCTION

Software development processes for component-based de-
velopment (CBD) are well-defined and well-understood, to
the extent that there is a widely accepted standard generic
CBD process, namely one with separate processes for compo-
nent development and (component-based) system development.
However, the current standard CBD process does not yet
take into account V&V (verification and validation) properly.
Thus, compared to non-CBD processes for V&V, such as the
more or less standard V Model in industry (in particular the
avionics domain), the current standard CBD process needs
enhancements for the purpose of V&V.

In this paper we introduce a new CBD process that we call
the W Model. This is related to the V Model; basically the W
Model defines one V for the component development process,
and one V for the system development process, and conjoins
the two processes into a single CBD process. The V for
component development defines a process for identifying and
defining repository components from the domain requirements,
i.e. from the domain model of the application domain, as well
as V&V for such components. The V for system development
defines a process for assembling or composing repository
components (more precisely their instances) into a system
according to the system requirements, as well as V&V for each
component composition, and V&V for the resulting system.

II. CBD PROCESSES

A number of development processes for CBD have been
proposed, e.g. [4], [14], [21], [2], [7], to name but a
few. (A recent survey can be found in [13].) Naturally
these processes all reflect the desiderata of CBD [1],
and converge on the general view depicted in Fig. 1.

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement no. 100016 and from
the Technology Strategy Board, UK. It has been carried out on the CESAR
project (http://www.cesarproject.eu).

System Development
Component−based

Component Assembly

Component Adaptation

Component Selection

Requirements Analysis

Design

Testing

Maintenance

Implementation

Component
Development

Fig. 1. CBD processes.

The generic CBD process
in Fig. 1 comprises
two separate processes:
one for component
development, and one for
component-based system
development. Component
development is also known
as ‘development for reuse’,
since it is concerned with
developing components
that can be stored in a
repository and (re)used to build different systems. Component-
based system development is also known as ‘development
with reuse’, since it is concerned with developing systems by
reusing pre-built components (the result of the component
development process).

Each process follows the same life cycle of ‘requirements
analysis, design, implementation, testing and maintenance’.
For component development, implementation is a single ac-
tivity, whereas for system development, implementation is a
sequence of activities based on pre-built components, namely
component selection, adaptation and assembly.

III. THE V MODEL

The CBD process in Fig. 1 does not explicitly address V&V,
i.e. Verification and Validation. For general (modular) system
development, the standard model for V&V is the V Model

The V Model is an adaptation of the traditional waterfall
model for modular system development. It defines a sequen-
tial process consisting of phases for requirements, system
specification, system or architectural design, module design,

requirements
System

System
specification

Architectural
design

Module
design

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Coding

test plan
Unit

test plan
Integration

test plan
System

test plan
Acceptance

V & V

D
e
ve

lo
p
m

e
n
t T

e
st

in
g

Fig. 2. The V Model.

implementation and
testing. Implementa-
tion consists of cod-
ing for the individual
modules, and cod-
ing for integrating
the modules into the
entire system using
the architectural de-
sign for the system.
Testing follows coding. [25] (Fig. 2). Thus the coding phase

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.17

47

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.17

47

2011 37th EUROMICRO Conference on Software Engineering and Advanced Applications

978-0-7695-4488-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SEAA.2011.17

47

divides the whole process into ‘development’, the left arm of
the V, and ‘testing’, the right arm of the V.

During each of the development phases (in the left arm of
the V), a test plan is drawn up for the corresponding testing
activity (in the right arm of the V). For example, an acceptance
test plan is drawn up from the requirements, since acceptance
testing will be performed against the requirements. Similarly,
unit test plans are generated from module design, since unit
testing will be carried out on the modules, and so on.

Testing follows a sequential process, in reverse order of
the development phases, as is usual for modular system
development. Thus unit testing is performed first, followed
by integration testing, system testing and finally acceptance
testing. Each testing activity is carried out according to the test
plan generated during the corresponding development phase.

The key property of the V Model is that it is a top-down
approach to system design and development, as Fig. 2 clearly
shows. First, a top-level design is made of the architecture
of the entire system; this identifies and specifies sub-systems
or modules, and their inter-relationships. Then the individual
modules are designed according to their specifications in the
top-level design. In general, this top-down approach may be
applied successively, each time decomposing sub-systems or
modules in the current level of design into further sub-systems
or modules. This decomposition is repeated as many times as
is necessary, until a final design is arrived at in which the
design of the system as well as all the individual modules is
deemed complete, i.e. no further decomposition is necessary
or desirable.

IV. ADAPTING THE V MODEL FOR CBD

Compared to the standard CBD process in Fig. 1, which
contains two life cycles, one for component development and
one for system development, the V Model contains only one
life cycle, for system development. So, the question is ‘How
can we adapt the V Model for V&V in CBD?’

The standard CBD process in Fig. 1 shows CBD as an
essentially bottom-up approach to system design, in the sense
that components have to be developed first (in the component
life cycle), and any particular system is constructed from these
components (in the system life cycle). In contrast, as we have
explained in the previous section, the V Model (Fig. 2) is
essentially a top-down approach to system design: the system
is designed first (thus identifying the requisite components),
and then components are developed.

A straightforward adaptation of the V Model for CBD
would be to retain the top-down approach to system design
but use a component as a module, as shown in Fig. 3. For
example, the V model adopted by the avionics industry as
a CBD process (e.g. Airbus processes [9], [11]) is such an
adaptation.

However, such a straightforward adaptation of the V Model
is at variance with the standard CBD process in Fig. 1,
precisely because it does not include a component life cycle
and consequently does not incorporate the bottom-up nature
of CBD.

V & V

requirements
System

System
specification

Architectural
design

design testing

Integration
testing

System
testing

Acceptance
testing

Coding

test plan

test plan
Integration

test plan
System

test plan
Acceptance

Component ComponentComponent

D
e
ve

lo
p
m

e
n
t T

e
st

in
g

Fig. 3. Adapting the V Model for CBD.

An adaptation
of the V Model
for CBD that
does incorporate
the bottom-
up nature of
CBD is that of
[6]. It does so
by containing
separate life
cycles for component development and system development,
like in Fig. 1. However, this adaptation really applies the V
Model only to its system life cycle; there is no evidence of
the V Model in its component life cycle (which is the same
as the one in Fig. 1).

In our view, to adapt the V Model properly for CBD, we
need not only to incorporate both the component life cycle and
the system life cycle, but also to apply the V Model to both
of these cycles. In addition we need to specify a component
model that defines the components (and their composition)
properly. (A definition and survey of component models can
be found in [18].)

We have defined such an adaptation, using a component
model that we have defined ourselves. Now we describe our
adaptation, which we call the W Model.

V. THE W MODEL

Our component model [17], [15], [26] is called X-MAN,
and we have defined a CBD process based on X-MAN. This
process is shown in Fig. 4.

System Life Cycle
(for one system)

System requirements

System specification

System Assembly
Composition of

Architecture

deployed components

selection & adaptation
Component

Deployment of components
in a specific system

Component Deployment

Component Life Cycle
(for a domain)

Design and implementation

components & connectors
of domain−specific

Component Design

Repository

Domain knowledge

Fig. 4. X-MAN CBD process.

It consists of a component life cycle and a system life cycle,
in line with the standard CBD process (Fig. 1). However,
it differs slightly from the latter, in that its component life
cycle is a more complete one, namely the idealised one [18].
The idealised component life cycle is so-called because it
meets all the desiderata of CBD that have been identified
in the literature [1]. It consists of two phases: component
design and component deployment, and is set in the context
of a problem domain. In the design phase, components are
(identified and) designed and constructed according to the
domain requirements or knowledge [16], and deposited into
a repository. Repository components are domain-specific but
not system-specific. In the deployment phase, components are
retrieved from the repository and instantiated into executable

484848

component instances which are then deployed into a specific
system under construction.

The system life cycle also differs slightly from that in Fig. 1
in that system design is now replaced by a completely bottom-
up process of component selection (from the repository) and
adaptation, followed by (component deployment in the compo-
nent life cycle followed by) system assembly, which is simply
the composition of the deployed components. The bottom-
up nature of this process is indicated by an iterative loop in
Fig. 4. It is worth noting that within this loop, the component
life cycle links up with the system life cycle, since deployed
components (from the component life cycle) are iteratively
assembled into the system under construction (in the system
life cycle). This link is denoted by the arrows between the two
life cycles in Fig. 4, via the step of component selection and
adaptation, and the step of component deployment.

Applying the V Model to both the component and system
life cycles yields a CBD process with V&V as shown in Fig. 5.
Compared to the straightforward adaptation of the V Model

Component
V&V

Compositional
V&V

System
V&V

System Life Cycle
(for one system)

System requirements

System specification

System Assembly
Composition of

Architecture

deployed components

selection & adaptation
Component

Deployment of components
in a specific system

Component Deployment

Component Life Cycle
(for a domain)

Design and implementation

components & connectors
of domain−specific

Component Design

Repository

Domain knowledge

Fig. 5. X-MAN CBD process with V&V.

in Fig. 3, component V&V (which corresponds to component
testing in Fig. 3) now occurs in the component life cycle,
whilst compositional V&V (which corresponds to integration
testing in Fig. 3) and system V&V (which corresponds to
system testing in Fig. 3) occur in the system life cycle.

The X-MAN CBD process with V&V in Fig. 5 can be
re-cast straightforwardly as a process with two conjoined V
Models, one for the component life cycle and one for the
system lifecycle. These two V Models are conjoined via the
step of component selection, adaptation, and deployment. This
‘double V’ process is shown in Fig. 6. We call it the W Model.

Component
V&V, certification

Coding

testing

V&V
System

Acceptance

V&V
Compositional

Coding

(For one system in the domain)

knowledge
Domain

design
Component

requirements
System

specification
System

adaptation & deployment
Component selection,

System
assembly

Fig. 6. The W Model.

We have highlighted the V&V activities in the W Model by
boxes with black borders.

VI. A MODEL-DRIVEN IMPLEMENTATION

We have implemented the W Model in a CBD tool following
the Model-Driven Engineering approach. The implementation
of the X-MAN Tool is done using the GME toolkit [12].
In GME, meta-models that contain definitions of elements,
structures and syntax have to be defined first using UML-like
class diagram notation. Models can then be created by instan-
tiating the pre-defined meta-models. To provide behaviours
for models, GME allows us to develop interpreters that can
interact with models, i.e. execute or manipulate models.

To implement the W Model, we have to implement: (i) the
X-MAN component model, for defining and constructing com-
ponents and their composition mechanisms; (ii) the component
life cycle in the W Model; (iii) the system life cycle in the
W Model; (iv) the link between the component and system
life cycles; (v) component V&V; (vi) compositional V&V;
and (vii) system V&V. For lack of space, we cannot describe
these. The X-MAN component model has been described in
other papers, e.g. [17], [15], [26].

Fig. 7 shows a Component Designer that supports the
component life cycle: component design, V&V, and storage. It
shows a component Locker under construction, with a design
palette on the left, tree view of the design on the right, and
the main design view in the middle.

Fig. 7. Component Designer: Component life cycle.

Fig. 8 shows a System Assembler that supports the sys-
tem life cycle: composition of selected deployed component
instances. Components are selected from the repository and
instantiated, and the instances are then deployed. Similar to
the Component Designer, the System Assembler offers design
palette, tree view and main view for system design. In Fig.8
the system is being built from component instances CLLVoter,
ClsSen11, etc., using connectors CLLSen Seq1, CLLSen Seq2
and so on.

VII. DISCUSSION AND CONCLUSION

The name W Model has been used in software testing
[22] and product line engineering [19] in the context of
traditional (i.e. non-CBD) software engineering. [22] extends
the V Model by adding a branch that integrates testing with
debugging and code changes. [19] applies the V Model to

494949

Fig. 8. System Assembler: System life cycle.

domain engineering and application engineering in product
lines. This is similar to our approach, except that they do not
use components and component composition, or the idealised
component life cycle.

In the context of CBD, our W Model is similar to standard
CBD processes, e.g. [4], [14], [21], [7], in that they both
contain separate life cycles for components and systems.
However, unlike these processes, its component life cycle is
the idealised one, which meets all the CBD desiderata in the
literature [1]. In particular the idealised component life cycle
defines component composition in both component design and
component deployment phases. This emphasis on composition
results in compositionality, which is an important property that
is beneficial for practical system development, since it enables
hierarchical system development and compositional reasoning.

The component life cycle of our W Model is similar to that
in the Y Model [2]. In the Y Model, components are developed
using domain engineering techniques, and then archived. A
framework is then defined for selecting components from the
archive, and for assembling them into systems. The archive
is of course just a repository. The framework is a structure
for assembling components, and is therefore like a system
assembler. However, the Y Model does not apply the V Model
in any way to its component life cycle. (The same is true
of component models that incorporate domain engineering
techniques, e.g. EAST-ADL [20].) Moreover, the Y Model
does not define a component model.

For the purpose of V&V, our W Model is different from
other adaptations of CBD processes based on the V Model
for modular system design. The W Model contains a V model
for both component and system life cycles, whereas other
adaptations, e.g. [6], contain only a V model for the system
life cycle. The value of a V Model for the component life
cycle is that we can do component V&V and store pre-verified
components in the repository. These components could be
certified according to certain standards. Then, compositional
V&V of composites can be carried out by re-using component
V&V.

REFERENCES

[1] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger,
W. Pree, M. Stal, and C. Szyperski. What characterizes a software
component? Software – Concepts and Tools, 19(1):49–56, 1998.

[2] L.F. Capretz. Y: A new component-based software lifecycle model.
Journal of Computer Science, 1(1):76–82, 2005.

[3] The SoftIntegration Ch SDK. http://www.softintegration.com/products/
sdk/chsdk/.

[4] B. Christiansson, L. Jakobsson, and I. Crnkovic. CBD process. In
I. Crnkovic and M. Larsson, editors, Building Reliable Component-
Based Software Systems, pages 89–113. Artech House, 2002.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Proc. of TACAS, 2004.

[6] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based devel-
opment process and component lifecycle. Journal of Computing and
Information Technology, 13(4):321–327, November 2005.

[7] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based develop-
ment process and component lifecycle. In Proc. Int. Conf. on Software
Engineering Advances, pages 44–53, 2006.

[8] Firebird – The RDBMS that’s going where you’re going. http://www.
firebirdsql.org/.

[9] M. Fortes da Cruz and P. Raistrick. AMBERS: Improving Requirements
Specification Through Assertive Models and SCADE/DOORS Integra-
tion. In F. Redmill and T. Anderson, editors, The Safety of Systems,
Proc. 15th Safety-critical Systems Symposium, pages 217–241, Bristol,
UK, February 2007. Springer London.

[10] The Eclipse Foundation. Eclipse Process Framework Project (EPF).
http://www.eclipse.org/epf/general/description.php.

[11] A.P. Gaufillet and B.S. Gabel. Avionic software development with
TOPCASED SAM. In Proc. Embedded Real Time Software and Systems
2010, 2010.

[12] GME: Generic Modeling Environment. http://www.isis.vanderbilt.edu/
Projects/gme/.

[13] K. Kaur and H. Singh. Candidate process models for component based
software development. Journal of Software Engineering, 4(1):16–29,
2010.

[14] G. Kotonya, I. Sommerville, and S. Hall. Towards a classification
model for component-based software engineering research. In Proc.
29th EUROMICRO Conference, pages 43–52. IEEE Computer Society,
2003.

[15] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model
and its preliminary formalisation. In F.S. de Boer et al., editor, Proc.
4th Int. Symp. on Formal Methods for Components and Objects, LNCS
4111, pages 1–21. Springer-Verlag, 2006.

[16] K.-K. Lau and F.M. Taweel. Domain-specific software component
models. In G. Lewis, I. Poernomo, and C. Hofmeister, editors, Proc.
12th Int. Symp. on Component-based Software Engineering, LNCS 5582,
pages 19–35. Springer-Verlag, 2009.

[17] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors
for software components. In G.T. Heineman et al., editor, Proc. 8th Int.
Symp. on Component-based Software Engineering, LNCS 3489, pages
90–106. Springer-Verlag, 2005.

[18] K.-K. Lau and Z. Wang. Software component models. IEEE Trans. on
Software Engineering, 33(10):709–724, October 2007.

[19] J.-H. Li, Q. Li, and J. Li. The W-Model for testing software product
lines. In International Symposium on Computer Science and Computa-
tional Technology, pages 690 –693, 2008.

[20] ATESST PROJECT. East ADL2 Specification. http://www.atesst.org/
home/liblocal/docs/EAST-ADL-2.0-Specification 2008-02-29.pdf.

[21] I. Sommerville. Software Engineering. Addison Wesley, 7th edition,
June 2004.

[22] A. Spillner. The W-MODEL – strengthening the bond between develop-
ment and test. In Int. Conf. on Software Testing, Analysis and Review,
2002. http://www.sqe.com/stareast.

[23] SQLAPI++ - C++ library for accessing SQL databases. http://www.
sqlapi.com/.

[24] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley, Boston, MA, 2. edition, 2009.

[25] The V-model. Development standard for IT-systems of the Federal
Republic of Germany, IABG. http://www.v-modell.iabg.de.

[26] P. Velasco Elizondo and K.-K. Lau. A catalogue of component
connectors to support development with reuse. The Journal of Systems
and Software, 83:1165–1178, 2010.

505050

