
D-XMAN: A Platform For Total Compositionality
in Service-Oriented Architectures

Damian Arellanes and Kung-Kiu Lau
School of Computer Science

The University of Manchester

Manchester M13 9PL, United Kingdom

{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Current software platforms for service composition
are based on orchestration, choreography or hierarchical or-
chestration. However, such approaches for service composition
only support partial compositionality; thereby, increasing the
complexity of SOA development. In this paper, we propose
DX-MAN, a platform that supports total compositionality. We
describe the main concepts of DX-MAN with the help of a case
study based on the popular MusicCorp.

Index Terms—service composition, platform, orchestration,
choreography, scalability, microservices, exogenous connectors

I. INTRODUCTION

Service-Oriented Architectures (SOA) are popular in the

software industry because they enable high modularity. Many

software platforms for service composition have been proposed.

However, such platforms only provide support for partial

compositionality, since they are based on orchestration [1],

choreography [2], [3] or hierarchical orchestration [4], [5],

[6]. Partial compositionality [7] requires software developers

to design individual workflows for the invocation of service

operations, leading to combinatorial explosion and, therefore,

increasing the complexity of SOA system development.

Total compositionality [7] means that two or more services

can be composed into a new (composite) service of the same

type, that preserves all the operations provided by the composed

services. It implies a hierarchical composition structure but not

the other way round. Total compositionality is crucial for the

scalability of SOA systems since it only requires the design

of one workflow for the invocation of any operation in any

composed service.

In this paper, we present DX-MAN, a platform for total

compositionality based on the hierarchical model we presented

in [7], where services and exogenous connectors are first-class

entities. Exogenous connectors are architectural elements that

mediate the interaction between services. They originate control

and coordinate the execution of an SOA system by passing only

control; to this end, they encapsulate a network communication

mechanism in general and control in particular.

The rest of the paper is organized as follows. Section II

presents an overview of the proposed platform. Section III

discusses the strengths of the proposed platform and presents

the concluding remarks.

II. PLATFORM OVERVIEW

DX-MAN is a platform that delivers the necessary pro-

gramming abstractions and the runtime environment to design,

deploy and execute SOA systems. DX-MAN relies on the

notion of service template and service instance. A service

template provides the skeleton of a service design, whereas a

service instance is the result of a service template deployment.

In this section, we describe the main concepts of DX-

MAN with the help of a case study based on the popular

MusicCorp [8]. The objective of this case study is the creation

of new customers which get a record in a loyalty points bank

and receive a welcome pack/email. Fig. 1 shows the service

composition and the data flow of our case study. For further

details about the model and the case study, please refer to [7].

Fig. 1. Service composition and data flow of our case study.

A. Platform Architecture

We implemented DX-MAN in Java due to the popularity of

this programming language. A central service repository was

also implemented to publish and retrieve service templates so

as to support reuse. Data is managed by MozartSpaces 2.3

[9],1 a popular data space that offers extensive support. Figure

2 illustrates the architecture of DX-MAN.

1The central service repository and the data space can reside at any network
address.

2017 IEEE 7th International Symposium on Cloud and Service Computing

978-0-7695-6328-2/17 $31.00 © 2017 IEEE

DOI 10.1109/SC2.2017.55

283

Fig. 3. Process for service design and reuse in DX-MAN.

Fig. 2. DX-MAN platform.

DX-MAN API hides the complexity of the platform and offers

the constructs to design and deploy services, and execute SOA

systems. DX-MAN Core is divided into three modules: (a)

Repository Management provides the functionality to publish

and retrieve services from the central service repository; (b)

Data Space Management provides the functionality to perform

operations in the data space such as reading and writing; and

(c) Deployment Management offers the functionality to deploy

services. Network Management contains the communication

mechanisms to perform operations on the network such as

passing control between connectors and connecting to the

central repository.

A node is a logical entity within a network that uses DX-

MAN. It can host any number of service instances in its Java

Virtual Machine (JVM). DX-MAN requires every node to have

support for Java Runtime Environment (JRE) 1.8. A node can

play the role of provider, consumer, or both. On the one hand,

a provider node publishes service templates in the central

repository for further reuse. On the other hand, a consumer

node retrieves templates from the central repository, in order

to design composite service templates.

Provider nodes are required to set a deployment directive in

service templates. A downloadable directive indicates that the

service template must be deployed in the Java Virtual Machine

(JVM) of consumer nodes. A non-downloadable directive states

that the service template is always deployed in the JVM of

the respective service provider.

A complete life cycle for SOA development should consist

of two life cycles: a service life cycle and a system life cycle.

The service life cycle comprises two phases: (1) design and

(2) deployment. During the phase (1), a node designs service

templates. For the phase (2), deployment directives drive the

deployment of service templates in the JVM of the respective

nodes.

The system life-cycle consists of three phases: (1) design,

(2) deployment and (3) execution. During the phase (1), a

node designs a system template (which has the form of a

composite service template). System templates are deployed in

the phase (2) by using a bottom-up approach: atomic services

are deployed first and the top-level composite is deployed at

the end. Finally, systems are executed in the phase (3).

Figure 3 shows a BPMN diagram that depicts the overall

process for service design and reuse in DX-MAN. Designing

an atomic service template comprises the following steps: (1)

implementation of the computation unit, (2) creation of the

atomic service template, and (3) publication of the atomic

service template in the central repository. The step (3) is carried

out only if the node is a provider node.

Service composition requires (1) the retrieval of service

templates from the central repository for the composed services;

(2) the customization of the retrieved service templates;

(3) the creation of the composite service template; (4) the

customization of operations and data flow for the composite

service; and (5) the publication of the composite service

template in the central repository. It is important to mention that

composite service templates can be designed without reusing

templates from the central repository. The step (1) is carried

out only if the node is a consumer node and the step (5) is

performed only if the node is a provider node. Steps (2) and

284

(4) are optional.

Next, we describe how DX-MAN maps definitions of our

model to Java language primitives. In particular, we follow a

programmer’s point of view to show how the case study is

implemented using DX-MAN API constructs.

B. Atomic Services

An atomic service is formed by connecting an invoca-

tion connector with a computation unit. A computation unit

encapsulates the implementation of some behaviour and is

not allowed to call other computation units. An invocation

connector provides access to the operations implemented in

the computation unit. A computation unit has the form of a

Java class (Fig. 4). Computation unit operations are defined

as class methods, annotated with @Operation. Operation

parameters must be annotated with @ParameterInfo, and they

must specify a property (of String type) for the parameter

name and a property (of Class type) for the parameter type.
The DXManAtomicParameterIn class is a wrapper for an input

parameter, while the DXManAtomicParameterOut class is a

wrapper for an output parameter. DXManAtomicParameterIn
and DXManAtomicParameterOut provide methods to get and

set data values, respectively. A computation unit is unaware of

how data is handled internally by DX-MAN.

1 public class EmailServiceCU {
2 ...
3 @Operation
4 public void sendWelcEmail(
5 @ParameterInfo(name="email", type=String.class)

↪→ DXManAtomicParameterIn customerEmail,
6 @ParameterInfo(name="res", type=String.class)

↪→ DXManAtomicParameterOut msgResult) {
7 ...
8 }
9 }

Fig. 4. Example of a computation unit definition.

The constructor of an atomic service template requires the

name of the service, the class of the computation unit and

the deployment directive. When an atomic service template is

created, atomic service operations are automatically extracted

from the methods annotated in the computation unit; then, the

invocation connector is automatically created and connected

to the respective computation unit.

Provider nodes publish atomic service templates in the

central repository, using the publish(ServiceTemplate) method

of the ServiceDesigner class. For instance, the template for

EmailService could be created and published with a non-
downloadable directive as follows:

serviceDesigner.publish(serviceDesigner.createAtomicServiceTemplate(
↪→ "EmailService", EmailServiceCU.class, NON_DOWNLOADABLE));

C. Composite Services

A composite service consists of a set of (atomic and/or

composite) services composed by a composition connector.

A composition connector defines explicit control flow and

coordinates the execution of n > 1 (atomic and/or composite)

services. Thus, services do not have any code for invoking

other services. Composition connectors can be defined for the

usual control structures in SOA for sequencing, branching, and

parallelism. A parallel connector executes all the composed

services in parallel, whose constructor only requires the

templates for the composed services.

A sequencer connector executes composed services in

sequential order. Its constructor receives the set of composed

service templates, whose argument order matches the execution

order.

A selector connector uses predefined conditions to choose

the composed services to be executed. Its constructor receives a

set of instances of the ConditionMapping class which associates

a condition with a service template. Conditions are specified

in the matches(ConnectorDataSpace) method of a Java class

implementing the ConnectorCondition interface (Fig. 5). The

ConnectorDataSpace class provides methods to match the value

of a connector’s input parameter with any value specified by

the designer. For instance, the matchesRegex() method requires

two arguments: the name of the connector’s input and the

regular expression to match with. Designers do not know how

data is handled internally by connectors.

1 public class ConditionEmailGuard implements ConnectorCondition {
2 @Override
3 public boolean matches(ConnectorDataSpace cds) {
4 return cds.matchesRegex("email", getEmailPattern());
5 }
6 ...
7 }

Fig. 5. Example of a connector’s condition definition.

Adaptation connectors provide complementary control struc-

tures in SOA such as looping and guarding. They do not

compose services as they only operate, if a predefined condition

is true, over an individual service. Any number of adaptation

connectors can be connected to any composed service. For

instance, our case study requires a guard adapter to deny the

invocation of EmailService, if the customer email is invalid.

Fig. 5 shows the definition of the condition for this adapter.

Figure 6 shows an example of the design of a compos-

ite service template. The retrieveFromRemoteRepository(int)
method, provided by the ServiceDesigner class, is used by

consumer nodes to retrieve service templates from the central

repository (lines 1-2). This method only requires the id of the

service template to be retrieved. Retrieved service templates

can be customized, e.g., by changing the service name (line

3), selecting the operations to be used or both.

The constructor of a composite service template requires

the service name, the template for the composition connector,

the deployment directive, and the set of composed services

(line 9). When a composite service template is created, a

composite service interface is automatically constructed from

the interfaces of the composed services. Hence, a composite

has available all the operations of the composed services.

We use data channels to define data flow which is orthogonal

to control flow. A data channel connects two endpoints: an

285

1 CompositeServiceTemplate postService = (CompositeServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(4);

2 AtomicServiceTemplate emailService = (AtomicServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(3);

3 emailService.getInfo().setServiceName("EmailService");
4
5 GuardAdapterTemplate gua1 = new GuardAdapterTemplate(ConditionEmailGuard.

↪→ class);
6 gua1.addInput(new DXManParameterIn("email", String.class, 0));
7 emailService.addAdapter(0, gua1);
8
9 CompositeServiceTemplate senderService = serviceDesigner.

↪→ createCompositeServiceTemplate("SenderService", new
↪→ SequencerConnectorTemplate(postServiceTemplate,
↪→ emailServiceTemplate), DOWNLOADABLE, postServiceTemplate,
↪→ emailServiceTemplate);

10
11 serviceDesigner.createDataChannel(senderService, sendWelcomeEmail,

↪→ senderServiceTemplate, "sendWelcomeEmail", "email",
↪→ emailServiceTemplate, gua1, "email");

12
13 serviceDesigner.publish(senderService);

Fig. 6. Example of a design process for a composite service template.

origin parameter from with a destination parameter to. Data

channels are automatically created when a composite service

template is created. After composition, composite service

operations can be customized to add new data channels or

remove the existing ones (line 11).

Like atomic service templates, composite service tem-

plates are published in the central repository using the pub-
lish(ServiceTemplate) method of the ServiceDesigner class (line

13).

D. System Design, Deployment and Execution

Our approach for service composition enables hierarchical

construction of SOA systems. Therefore, there is a service at

every level of the hierarchy and there is always one connector

at the top-level that initiates the execution. The top-level

composite represents a system per se.
The SystemDesigner class provides the means to create and

deploy system templates. A system template does not require

a deployment directive since it is always deployed in the JVM

of the provider node. The deployment of a system template

results in a system instance available to final users. In our case

study, CustomerService is created and deployed as follows:

systemDesigner.deploySystem(systemDesigner.createSystemTemplate(
↪→ "CustomerService", new SequencerConnectorTemplate(
↪→ loyaltyPointsBankTemplate, senderServiceTemplate),
↪→ loyaltyPointsBankTemplate, senderServiceTemplate));

The RemoteSystem class allows final users to interact with

the system, e.g., by invoking operations or reading output

values.

III. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a platform that supports total com-

positionality in SOA. Current platforms for service composition

are only focused on partial composition, where the designer

needs to create multiple workflows for the invocation of service

operations, leading to combinatorial explosion. In contrast, in

DX-MAN, designers only need to design one workflow for

the invocation of services (not for the invocation of individual

operations). We described the main concepts of DX-MAN with

the help of a case study based on the popular MusicCorp.

DX-MAN separates data, control and computation, in order

to encourage the maintenance, reuse and evolution of SOA.

In particular, such a separation of concerns makes it easy to

reason about data flow, control flow and behaviour separately.

DX-MAN is based on exogenous connectors which coor-

dinate services from outside, so services do not have code

to interact one another directly. Thus, DX-MAN allows the

development of encapsulated services. This helps to avoid

rigidity so if the designer changes a service, other services are

not changed.

Moreover, services do not know the location of other services.

This is important for SOA as service instances can be anywhere

and their locations can even dynamically change.

An important advantage of DX-MAN is its hierarchical

nature to construct systems, resulting in well-structured code

for the final system, which is easy to understand and therefore

maintain. Services can be as simple as possible and their size

can be small (e.g., a microservice) or big (e.g., a composite

service composing plenty of services). A bottom-up approach

should make services more tractable and, hence, practicable to

reason about services and their composition separately.

Model-Driven Engineering (MDE) is gaining popularity in

software system development. For this reason, we are currently

working on MDE techniques for DX-MAN. Additionally, we

would like to migrate our platform to the Cloud and evaluate

it in a real-world application. In fact, we are currently in

discussion with an industrial partner on this matter.

ACKNOWLEDGMENT

The first author would like to thank CONACyT for the

financial support to carry out his research.

REFERENCES

[1] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218–238, Oct. 2014.

[2] N. Taušan, J. Markkula, P. Kuvaja, and M. Oivo, “Choreography in the
embedded systems domain: A systematic literature review,” Information
and Software Technology, Jun. 2017.

[3] S. Keller, M. Tivoli, M. Autili, and C. Thomas, “CHOReVOLUTION:
Dynamic and Secure Choreographies of Services,” CHOReOS, White
paper, Mar. 2017.

[4] W. Jaradat, A. Dearle, and A. Barker, “Towards an autonomous decentral-
ized orchestration system,” Concurrency Computat.: Pract. Exper., vol. 28,
no. 11, pp. 3164–3179, Aug. 2016.

[5] G. Chafle, S. Chandra, and V. Mann, “Decentralized Orchestration of
Composite Web Services,” in Proceedings of the 13th International WWW
Conference, 2004, pp. 134–143.

[6] W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter
Hofstede, “Design and Implementation of the YAWL System,” in Advanced
Information Systems Engineering. Springer, Berlin, Heidelberg, Jun. 2004,
pp. 142–159.

[7] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in Proceedings of the 10th IEEE International
Conference on Service Oriented Computing and Applications (SOCA
2017). Kanazawa, Japan: IEEE Computer Society, 2017.

[8] S. Newman, Building Microservices, 1st ed. Beijing Sebastopol, CA:
O’Reilly Media, Feb. 2015.

[9] E. Kuehn, “MozartSpaces,” http://www.mozartspaces.org, 2017.

286

