
Automatic Control Flow Generation from Software
Architectures

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu, vukis}@cs.man.ac.uk

Abstract. In a traditional software architecture, control originates in components
and flows to other components via connectors. The system’s control flow is fixed
at design time, when components and their inter-connections are specified. Code
generated from the design inherits this control flow, and consists of component
code and glue code that tightly couples connected components. This means that
code generated from a given software architecture is system-specific, and is there-
fore neither generic nor reusable. In this paper we describe an approach which
allows separate reuse of component code and connector code, and thus making it
possible to build architectures from pre-existing components and generic connec-
tors. Furthermore, we show we can implement such architectures by generating
control flow at run-time automatically.

1 Introduction

In a traditional software architecture [15], control originates in components (boxes) and
flows to other components via connectors (lines). The system’s control flow is fixed at
design time, when components and their inter-connections are specified, in an Archi-
tecture Description Language (ADL), e.g. Acme [7].

Mostly ADLs do not provide any support for creating code for the system from its
architecture. When they do, as in ArchJava [3,1] (based on Acme), code generated from
the architecture inherits the control flow fixed at design time, and consists of component
code and glue code that tightly couples connected components. This means that code
generated from a given software architecture is system-specific, and is therefore neither
generic nor reusable.

In this paper we describe an approach which allows separate reuse of component
code and connector code, and thus making it possible to build architectures from pre-
existing components and generic connectors. Furthermore, we show that we can imple-
ment such architectures by generating control flow at run-time automatically.

To achieve this we take a different approach to system construction. We take control
out of components and put it into connectors. That is, in our approach, control in the sys-
tem does not originate in components but in their connectors. This makes components
completely encapsulated, and therefore independent and easier to reuse. Furthermore,
our connectors are generic, like the Bus connector in C2 [17], and we can reuse them
among different systems. To construct a system, we choose a set of pre-existing, inde-
pendent components required for the system, connect them with a set of (pre-existing)

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 323–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

324 K.-K. Lau and V. Ukis

generic connectors, and generate control flow of the system automatically at run-time.
Thus our approach obviates the need for generating glue code to put together compo-
nents and connectors, in contrast to ArchJava. In addition, our components as well as
connectors can be used in different systems with different control flows. Our automatic
runtime control flow generation not only instantiates components and connectors, like
the C2 Bootstrapper, but, unlike the C2 Bootstrapper, also generates the whole control
flow of the system automatically at run-time.

In this paper we describe how we can generate control flow at run-time. We begin
by briefly surveying current approaches for code generation from software architec-
tures (Section 2). Next, we introduce our connectors as origins of control flow in a
system (Section 3.1), and explain architectures containing our connectors (Section 3.4).
Subsequently, we explain how to automatically generate control flow at runtime (Sec-
tion 3.5) and provide an example (Section 4). Finally, we briefly evaluate our approach
(Section 5).

2 Code Generation from Traditional Software Architectures

Among existing ADLs, Acme/ArchJava [3,1] and C2 [17] are representative examples
of ADLs that support code generation from architectures.

Acme/ArchJava (Fig. 1 (a) shows an example architecture) allows automatic genera-
tion of code from an architecture. Components and connectors are generated afresh for
each system. That is, neither components nor connectors pre-exist or are reused from
system to system.

B

C

D

E

F

G

A

B

C
A

D

E

F

G

(a) Acme/ArchJava (b) C2

Fig. 1. Software architecture examples

In C2 (Fig. 1 (b) shows an example architecture) components have to be coded first.
Components communicate by sending events to each other. Their code must explic-
itly identify events they can deal with and provide corresponding actions. Events are
transported by buses between components. The bus is a generic connector, and is not
generated afresh for every system but is reused in all systems. To implement an ar-
chitecture, C2 provides a Bootstrapper, which allows instantiation of components and
connectors at run-time. These instances together with event-handling constitute the run-
time system. Thus in C2 the bus is reused but not the components, because the latter are
‘hard-wired’ to events for a specific system.

No ADL inherently intends both component and connector reuse from an architec-
ture description. This is exactly what our approach endeavours to achieve. We want
to have pre-existing components as well as pre-existing connectors, and reuse them to
build many architectures.

Automatic Control Flow Generation from Software Architectures 325

In the ArchJava example in Fig. 1 (a) for instance, component A knows connector
AB. The connector AB in turn knows component B. Thus, A cannot be reused inde-
pendently without AB and AB without B. Furthermore, component B knows connector
BD. The connector BD in turn knows component D. Thus, B cannot be reused without
BD and BD without D. In other words, neither components nor connectors in ArchJava
are independently reusable entities.

In the C2 example in Fig. 1 (b), connectors AB and BD etc. are constructed from
one generic bus connector template and, unlike in ArchJava, are not coded afresh for
each component connection. Thus connectors AB, BD etc. are generic and indepen-
dently reusable. However, component A sends a specific event with a specific format,
say AB Event, to the connector AB. The connector AB dispatches the AB Event to
component B. Component B is waiting for the arrival of this specific event, knows its
format and how to handle it. Moreover, once component B has processed the AB Event,
it originates another event, say BD Event, to the bus connector BD. The bus connector
BD dispatches the BD Event to component D. Component D is waiting for the arrival
of the BD Event, knows its format and how to handle it. In other words, components
in C2 wait for specific incoming events from and send (or originate) specific outgo-
ing events to other components. Therefore, components in C2 are not independently
reusable encapsulated entities.

By contrast, we want to be able to reuse components A, B, D etc. independently as
well as connectors AB, BD etc.

3 Our Approach

In this section we explain our approach. The key characteristics of our approach are that
(i) components pre-exist and are reusable; (ii) connectors (pre-exist and) are generic and
reusable; (iii) run-time systems can be generated from architectures by automatically
generating control flow.

To make our components reusable, we make them encapsulated and thus indepen-
dent, by taking control out of them. Thus in our approach, components are units of
computation (linked by connectors). A component is a unit of software with (i) an inter-
face that specifies the services it provides (i.e. its methods) and the services it requires,
and the dependencies between the two sets of services; and (ii) code that implements
the provided services. In essence it is similar to Szyperski’s definition [16]. However,
our components do not invoke methods or services in other components. Rather, they
only perform their provided services (methods) when they are invoked from outside, by
connectors. Thus our components encapsulate computation.

We put control in connectors. Connectors are composition operators that compose
components into systems. They are exogenous, i.e. they initiate and coordinate method
calls in components, and handle their results. Thus they determine control flow and
data flow, i.e. they encapsulate communication in general, and control in particular.
Exogenous connectors play a fundamental role on our approach.

3.1 Exogenous Connectors

Exogenous connectors were introduced in [12]. Here, we briefly explain them.

326 K.-K. Lau and V. Ukis

The distinguishing characteristic of exogenous connectors is that they encapsulate
control. In traditional ADLs, components are supposed to represent computation, and

C
A

B
D

E

(a) Components and connectors (b) Control flow

Fig. 2. Traditional ADLs

connectors interaction between components [13] (Fig. 2 (a)). Actually, however, com-
ponents represent computation as well as control, since control originates in compo-
nents, and is passed on by connectors to other components. This is illustrated by Fig. 2
(b), where the origin of control is denoted by a dot in a component, and the flow of
control is denoted by arrows emanating from the dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled,
albeit only indirectly via their ports, and the control flow between components is fixed
at their design time.

By contrast, in exogenous connection, control originates in and flows from connec-
tors, leaving components to encapsulate only computation. This is illustrated by Fig. 3.

a();
b();

A
A.a();
B.c();

Con1

c();

B

d();

C
E

g();

component

f();
e();
DCon2

A.b();
C.d(); C.d();

D.e();

Con3

E.g();
D.f();

Con4

connector

(a) Example

a();
b();

A

Con1

c();

B

d();

C
E

g();
f();
e();
DCon2 Con3 Con4

(b) Control flow

Fig. 3. Connection by exogenous connectors

In Fig. 3 (a), components do not call methods in other components. Instead, all method
calls are initiated and coordinated by exogenous connectors. The latter’s distinguishing
feature of control encapsulation is clearly illustrated by Fig. 3 (b), in clear contrast to
Fig. 2 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and co-
ordinate control (and data). With exogenous connection, components are truly indepen-
dent and decoupled.

Automatic Control Flow Generation from Software Architectures 327

Exogenous connection is not provided by any existing ADLs. However, exogenous
connection has been defined as exogenous coordination in coordination languages for
concurrent computation [2]. Also, in object-oriented programming, the courier pattern
[6] uses the idea of exogenous connection whereby a courier object links a producer-
consumer pair of objects by calling the produce method in the producer object and
then calling the consume method in the consumer object with the result of the produce
method.

3.2 Connector Type Hierarchy

The concept of exogenous connection entails a type hierarchy of exogenous connectors.
Because they encapsulate all the control in a system, such connectors have to connect to
one another (as well as components) in order to build up a complete control structure for
the system. For this to be possible, there must be a type hierarchy for these connectors.

In the connector type hierarchy for our approach, components are obviously a basic
type. Because components are not allowed to call methods in other components, we
need an exogenous method invocation connector. This is a unary operator that takes
a component, invokes one of its methods, and receives the result of the invocation.
To structure the control and data flow in a set of components or a system, we need
other connectors for sequencing exogenous method calls to different components. So
we need n-ary connectors for connecting invocation connectors, and n-ary connectors
for connecting these connectors, and so on. In other words, we need a hierarchy of
connectors of different arities and types.

Example 1. (Exogenous Connector Hierarchy). Consider a system whose architecture
can be described in Acme [7] and C2 [17] as in Fig. 1 (a) and (b) respectively. Using
exogenous connectors in our approach, the corresponding architecture is that shown in
Fig. 4.

InvG

S3
P1

InvFInvCInvAInvBInvDInvE

P2

D B A C F GE

S2S1

Fig. 4. Exogenous connection example

At the lowest level, level 1, we use invocation connectors that connect to individual
components and make calls into them. There are no other kinds of connectors at this
level. In Fig. 4, the invocation connectors are InvE, InvD, InvB etc.

At the next level, level 2, we need a selector connector to implement branching in
the system. Such a connector connects connectors and makes a call into a selected one
of the connectors. In Fig. 4, at level 2, selector S1 connects InvE and InvD, and decides
whether to call E or D depending on the selection condition it receives from its parent
connector P1. Similarly, S2 connects and selects from F and G.

At level 3, we need a pipe connector to implement sequential control. Such a con-
nector connects connectors and makes consecutive calls into these connectors in the

328 K.-K. Lau and V. Ukis

order in which they are connected to it. In Fig. 4, P1 is a pipe connector. It connects to
InvB (which calls a method in B) and passes the result to the selector S1. S1 uses the
result as a selection condition to select component E or D. Similarly, the pipe P2 effects
sequential control between C and selector S2.

Finally, at level 4, the top level, there is only one connector. This is a selector S3,
which selects P1 or P2 depending on the top-level (user) input.

In general, connectors at any level other than the first can be of variable arities; connec-
tors at any level higher than 2 can be of variable arities and types; and we can define
any number of levels of connectors. Connectors at level n for any n > 1 can be defined
in terms of connectors at levels 1 to (n − 1). At the top level, there is always just one
connector. A detailed definition of the hierarchy can be found in [12,11].

3.3 Implementing Generic Connectors

Exogenous connectors can be implemented as generic connectors, such that: (i) generic
connector templates can be defined and stored; (ii) these connector templates can be
deployed to a system; and (iii) connector instances can be created and used to build the
control structure of any specified system (with exogenous connectors). In particular, we
want to do so for any connector at any level. In [12] we show an implementation in
Java that is generic only in the sense of (i), and that only defines connectors for specific
levels. Here we describe how we can define connectors at any level that are generic in
the sense of (i), (ii) and (iii). We use C# in .NET for the implementation.

We implement three kinds of connectors (invocation, pipe and selector) as a hierar-
chy of classes, with a base class Connector.

The Connector class has several Execute methods for executing either a single given
method (with its parameters) or a given set of methods (with their parameters). These
are the following public virtual void methods:

... Execute (string method, object[] params);//(1)

... Execute (string[] methods, object[] params);//(2)

... Execute (int cond, string method, object[] params);//(3)

... Execute (int cond, string[] methods, object[] params);//(4)

Using the Connector class, we can define a generic connector at any level of the hierar-
chy. Such a connector inherits from Connector, and implements the appropriate Execute
method(s).

Only the invocation connector makes calls into components from within its Execute
method (1).

The selector connector’s Execute method can be passed a list of methods (4). Con-
sider the case of just one method (3). In this case, the Execute method of a selector
connector is used for calling one method on the connector inside the selector which
gets selected according to the condition cond which is passed into the method. In our
current implementation, the selection condition is an integer but it can easily be ex-
tended to other types in future.

The selector assumes that all the connectors in it can in principle deal with the
method passed into it. Therefore it is also sufficient to provide only one list of

Automatic Control Flow Generation from Software Architectures 329

parameters. Whichever connector gets selected, the method method and parameters
params will be passed to it.

The Execute method of a pipe connector (2) is represented by a loop, which se-
quentially processes all the connectors in it. Basically, the pipe connector takes the first
connector, makes a call into it, obtains the result and makes a call into the second con-
nector passing the result obtained from the first connector as a parameter into the second
one and so on until the end of the loop is reached.

In the loop the first thing is to check whether we are at the beginning of the loop. If
we are, then the parameters passed into the Execute method can be used as they are, to
be passed into the first connector. On the other hand, if we are in the middle of the loop,
the parameters to be passed on to the next connector are the results from the previous
one.

Next if the connector to be called in the current loop iteration of the pipe is a selector
connector, we have to extract the first parameter from the Execute method’s parameter
list if we are at the beginning of the loop, or the first element of the result array from
the previous invocation if we are in the middle of the loop, and pass it to the selector
connector as a condition.

Then if we are at the first loop iteration we can call into the selector straight away,
but otherwise we have to adjust the method array and remove the first element from it
because the first method has already been processed in the previous loop iteration.

If the connector in the current loop iteration is not a selector, we do not have to bother
with the first element in the parameter list to be processed as a selection condition,
and can call the Execute method straight away considering the necessary method array
adjustment for each loop iteration.

Eventually the Result is retrieved from the connector processed in the current itera-
tion, and will be used in the next iteration as parameter list for the next connector in the
pipe. Once the end of the loop is reached, the Result is returned by the pipe.

The connectors we present here are generic because they are independent, self-
contained and can be used by any application. As shown in the above description, no
application-specific logic has been put into the connectors. In fact, in a general sense
they could even be thought of as light-weight components in the system.

Exogenous connectors form a hierarchy and thus can contain one another. Thus, pipe
and selector connector can contain invocation, pipe or selector connectors. It is possible
to add a connector to the “host” connector after the “host” connector has been cre-
ated when building a connector hierarchy. This allows for “late-binding” of connectors,
which is used for system control flow generation.

3.4 Architectures with Exogenous Connectors

Having implemented generic exogenous connectors, in this section we show how archi-
tectures can be defined using them. Just as exogenous connection entails a connector
type hierarchy, so the latter in turn entails a strictly hierarchical way of constructing
systems by composing components. As illustrated by Figure 4, in such a system, com-
ponents form a flat layer, and the entire control structure (of connectors) sits on top of
this. Beyond level 1, the precise choice of connectors, the number of levels of connec-
tors, and the connection structure, depend on the relationship between the behaviour

330 K.-K. Lau and V. Ukis

of the individual components and the behaviour that the whole system is supposed to
achieve. Whatever the control structure, however, it is strictly hierarchical, which means
that there is always only one connector at the top level. This is the connector that initi-
ates control flow in the whole system.

Example 2. (The Bank Example). Consider a bank system, whose architecture is de-
scribed in Acme in Figure 5 (a). The system has just one ATM that serves two bank

BC1

BC2

ATM

B1

B2

B3

B4 BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

(a) Acme (b) Exogenous connection

Fig. 5. Architecture of the bank example

consortia (BC1 and BC2), each with two bank branches (B1 and B2, B3 and B4
respectively). The ATM passes customer requests together with customer details to
the customer’s bank consortium, which in turn passes them on to the customer’s bank
branch. The bank branches provide the usual services of withdrawal, deposit, balance
check, etc.

At level 1, each component has an invocation connector. At level 2, there is a selector
connector S1 that is used to select the customer’s bank branch from banks B1 and B2,
prior to invoking that branch’s methods requested by the customer. Similarly, there is a
level-2 selector connector S2 for choosing between B3 and B4, prior to invoking their
methods requested by the customer. To pass values from one bank consortium to one of
its banks we need a pipe connector; at level 3, we have two pipe connectors P2 and P3,
for BC1 and BC2 respectively. At level 4, S3 is a selector connector that selects the
customer’s bank consortium from consortia BC1 and BC2. Finally, at level 5, the top
level, the pipe connector P1 initiates the bank system’s operational cycle by passing
customer requests and card information to the ATM , invoking the ATM ’s methods,
and then passing the resulting value to connector S3.

3.5 Automatic Control Flow Generation

Separation of control flow and computation using exogenous connectors means that
control flow is not kept inside components like in current ADLs but can be managed
outside. Having implemented generic exogenous connectors, in this section we show
how a system’s control flow can be generated automatically, given its architecture, i.e.
the connection structure for the components.

As depicted in Figure 6 (which should be read from bottom to top, as indicated by
the arrow on the left), to generate a system’s control flow we need 3 kinds of entities:
(a) independent components; (b) generic exogenous connectors; and (c) an XML de-
scription of the system’s architecture, i.e. the connection structure of the system. These

Automatic Control Flow Generation from Software Architectures 331

BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

I1 I2 I3 I4 I5 I6 I7

XML description of

I S Pgeneric connectors

BC1 ATM BC2 B3 B4B1B2independent
components

Interface to the run−time system

Automatic generation of control flow

software architecture

Fig. 6. Automated control flow generation

3 entities are independent from one other, i.e. components can be connected by any
connectors depending on a specific system’s needs, and connectors can take part in any
connection structure.

The output of the control flow generation is a run-time system constructed in accor-
dance with the given connection structure description, along with an interface, which is
the top-level connector in the architecture. The system constructed provides all control
flow paths possible in the system specified by (c). A particular run-time request to the
system may not use every control flow path available. Nevertheless, the system con-
struction ensures that all possible control flow paths are available to serve all requests
placed on the system through the top-level connector in the architecture.

Application-independent templates for connectors can be created as shown in Sec-
tion 3.3 and reused for different applications by creating application-specific instances.
Note that connector template instances are not ordinary class instances in the sense of
object-oriented programming. When a connector template is instantiated it gets adapted
to the current place in the connection structure. The generic exogenous connectors can
be deposited in a repository and retrieved on demand for each application. Further-
more, for any specific application with an exogenous control or connection structure,
the generic connectors can be instantiated, on the fly, into the instances in the latter’s
connection structure. This means that it is possible to generate the control flow of a
system dynamically and automatically from its architecture.

To illustrate this, consider the connection structure of the Bank example in Figure 6.
The system contains three pipe connectors and three selector connectors (as well as
seven invocation connectors). Each of these connectors hosts different connector types
(and in different numbers). For example, the pipe P1 hosts a selector S3 and an invo-
cation connector I4 for the component ATM, whereas the pipe P2 hosts a selector S1
and an invocation connector I3 for the component BC1. Although the two pipes are
doing completely different things, they have been constructed from the same template.
The template is generic enough to embody different instances. So, P1 is an instance of
the pipe template that hosts the selector S3 and the invocation connector I4, and P2 is
an instance that hosts the selector S1 and the invocation connector I3.

332 K.-K. Lau and V. Ukis

The same applies to selector and invocation connectors (and indeed to any connec-
tor). A selector connector template can take any number of any connectors, and an
invocation connector template can call any method on any component.

Thus we can automate the process of control flow construction for any system with
an exogenous connection structure by instantiating connector templates into instances
in the latter.

Note that, by contrast, ADL systems do not have these properties. In such systems,
connectors are not generic but system-specific, and components, rather than connec-
tors, form a hierarchy. Only C2 makes use of a generic (bus) connector. However, in C2
components originate control to other components and therefore cannot be reused inde-
pendently as self-contained units of computation.The chain of dependent components
is laid down at components’ design time. By contrast, we do it at run-time.

3.6 Connection Structure Description

In order to build up a control structure on the fly, it needs to process a system’s connec-
tion description. We choose to write the description in XML because: (a) XML itself is
hierarchical, and so is particularly suited to expressing our connector hierarchies; (b) the
system description can be automatically checked against a pre-defined XML schema,
thus eliminating (some) errors right at the beginning; (c) there is good tool support for
XML, e.g. we use XMLSpy from Altova; (d) the system integrator can be guided by
a tool while developing a system control structure description according to the XML
schema; (e) XML schemas are extensible in a consistent manner [5]; this is important
because when the schema is extended to include new connector types, for instance, old
system descriptions, which have been checked against the old schema, will be able to
pass the schema check using the new schema. Using XML for system description is
also favoured by XML ADLs [14,8,4].

The XML schema we use for system control structure description is depicted in
Figure 7. The top-level XML element is called “ExADL” and has two child elements:
(i) connector types and (ii) system, in that order. (i) contains an extensible specification
of exogenous connector types which are generic and not system-specific; whilst (ii)
contains a (system-specific) specification of the system using these connector types.
Connector types presented here include invocation, pipe and selector connectors.

A system can contain any number of connector types which can contain one another.
The connector type hierarchy defined in the schema is of course the same one that we
used for implementing these connectors.

Note that connector types presented here are not the only ones possible. We show
only these connector types here because they are used in the Bank Example. In general,
any exogenous connector types are conceivable. For example, a repeater connector,
which repeats some invocations into a component, or a sequencer connector, which has
the semantics of the pipe connector but does not pipe values from one component to an-
other one. What is important is that all these connectors can be described using system
control structure description and instantiated at runtime. That is, the infrastructure for
building systems using exogenous connectors is defined by the extensible XML schema
for system control structure description.

Automatic Control Flow Generation from Software Architectures 333

Fig. 7. XML schema for system connection structure description

As an example of system connection structure description, the bank system can be
described by the outline in Figure 8.This can be read as: ‘A pipe P1 contains an invoca-
tion connector and a selector S3. The invocation connector contains a component ATM .
The selector S3 contains a pipe P2, which contains a component BC1, and so on’.

3.7 Implementation of Control Flow Generation

To generate a system’s control flow, its XML description is processed. First of all the
XML description is checked against the schema shown in Figure 7. If the XML sys-
tem description does not pass the schema check, the system will not be created. This
enforces the connector hierarchy to be always well-defined by the schema. During the
processing of the system element, the connector types are retrieved first and stored for
future use. A connector type is instantiated each time a specific connector occurs in
the system connection structure description. For example, each time a pipe element oc-
curs in the XML description of the system, an instance of a pipe is created from the
information stored before.

To describe the implementation, we follow the sequence of operations that are car-
ried out to process a system control structure description. First, the system control flow

334 K.-K. Lau and V. Ukis

<system>
<pipe name="P1">
<invocation>

<component name="ATM" type="Components.ATM, Components"/>
</invocation>
<selector name="S3">

<pipe name="P2">
<invocation>
<component name="BC1" type="Components.BankConsortium ...

</invocation>
<selector name="S1">
<invocation>

<component name="B1" type="Components.Bank ...
</invocation>
<invocation>

<component name="B2" type="Components.Bank ...
</invocation>

</selector>
</pipe>
...

Fig. 8. Connection structure description for the bank example

description gets validated against the XML schema and gets loaded unless the descrip-
tion violates the schema. Second, information about the location of each connector class
is stored for creating connector instances in future. We use XPath expressions to retrieve
the XML nodes (e.g. “//connector types/pipe”). The information stored is a piece of text
containing the class name and a .NET assembly name containing the class. Using this
information .NET runtime (CLR) can load the assembly into a process and create an in-
stance of the class inside. Third, the top-level connector is identified and created, Then
system control flow construction begins. The complete system is created beneath the
top-level connector, using a recursive method:

private void LoadSystem(XmlNode theXmlNode,
Connector theCurrentConnector) {...}

This recursive method has 2 parameters: (i) the current XML node in the system con-
trol structure description to be processed; and (ii) the current connector, which will take
the connectors created from the child nodes of the XML node passed into the method
as child connectors. Thus when entering the method we always have a connector cre-
ated in the previous iteration and its XML representation. The method iterates through
the child nodes of that node, creates connectors out of them and puts each of these
connectors as a child connector into the connector passed into the method.

The recursion itself can only occur when processing either a pipe or a selector con-
nector. An invocation connector cannot cause the recursion since the only XML node
that can be beneath invocation is component, according to the XML schema. On the
other hand, we do not know which XML node will occur after pipe or selector. The
schema only enforces that it will be either pipe, selector or invocation. In order to inves-
tigate what is below a pipe or a selector we engage in a recursion passing the necessary

Automatic Control Flow Generation from Software Architectures 335

parameters, namely the current connector and its XML representation, and in the next
iteration explore the child nodes. The recursion ends when an invocation connector is
found.

During the construction of the system control flow all possible control flow paths in
the system are laid down, while a particular request to the system does not necessarily
makes use of all of them but follows some paths necessary to answer the request.

4 Example

Now we illustrate the use of exogenous connectors for automatic runtime control flow
generation, using the bank example (Example 2), with the architecture described in
Figure 5 (b).

The first step is to implement the components. In our implementation, components
are C# classes with public methods (that can be invoked by the invocation connectors)
for the usual ATM operations like insert card, enter password, withdraw, deposit, check
balance, etc. The objects (of these classes) do not call methods in other components.

The second step is to specify the system in XML following the XML schema. We
have already done this in Figure 8.

The third step is to actually construct the system according to the process outlined
above. The result is the running system with control flow as shown in Figure 6.

Now we briefly explain how the automatically generated bank system works, and
therefore how it can be used to provide services, by means of an example. Consider
the service request of getting the balance of an account. The get balance operation
(illustrated for card 4711) is implemented by using TopLevelConnector of the bank
system, as follows:

TopLevelConnector.Execute(new string[] {"GetBankConsortiumID_",
"GetBranch_", "GetBalance"}, new object[] {4711});

The top-level connector P1 gets a list of methods, namely GetBankConsortiumID ,
GetBranch and GetBalance, and parameters to be propagated through the system. Only
invocation connectors in ATM , BC1 and B1 respectively call these methods. The con-
nectors themselves draw on various Execute methods offered by their base class Con-
nector to propagate the necessary information down towards invocation connectors.
Where the control flow can pass (at which connector and component) was specified
before in the system description. The concrete control flow for a request depends on re-
quest parameters. For example, a particular bank is selected for executing an operation
on an account according to the account number of the customer.

For the get balance operation, the control flow involved is shown in Figure 9.
Note that the control flow for get balance operation does not use all possible control

flow paths laid down on system construction but rather uses a part of them. Figure 6
shows that the system contains all the possible control flow paths. Figure 9 depicts
control flow paths necessary for serving the request to get an account balance. Another
request may need completely different paths than those used when serving account
balance request.

336 K.-K. Lau and V. Ukis

Level 1

B2 B1 BC1 ATM

P1

S3

S1

P2

Get
balance

Level 3

Level 2

Level 4

Level 5

Fig. 9. Control flow for get balance

Other operations to be performed by the Bank System like deposit and withdraw can
be implemented as follows:

Deposit $100 onto account the card 4711 belongs to:

TopLevelConnector.Execute(new string[]
{"GetBankConsortiumID", "GetBranch", "Deposit"},
new object[] {"100", "4711"});

Withdraw $100 from account the card 4711 belongs to:

TopLevelConnector.Execute(new string[]
{"GetBankConsortiumID", "GetBranch", "Withdraw"},
new object[] {"100", "4711"});

Besides the Bank Example we have implemented a complex Automated Train Protec-
tion System (ATP) using exogenous connectors. In that system we implemented some
other connectors in addition to those presented in this paper and we could reuse con-
nectors from this paper in the ATP system. For lack of space we do not discuss the ATP
System here.

5 Discussion and Concluding Remarks

In this paper we have presented an approach to automatic runtime system control flow
generation from software architectures using exogenous connectors. In particular, we
showed our procedure for control flow construction. As far as we know, our approach is
unique because it generates control flow of systems consisting of independent, reusable
components automatically.

Code generators like the one in ArchJava generate code with components originating
control flow to other components. Tools like Bootstrapper in C2 do not create control
flow of the system at runtime but only instantiate components and connectors, with
control flow already implemented in components and via connectors. In other words,
traditional ADLs do not allow automatic runtime control flow generation for a system.

Furthermore, ADLs do not have generic and hierarchical connectors. XML-based
ADLs like xADL 1.1 [8] and xADL 2.0 [4], which have XML descriptions of their
architectures, do not generate control flow automatically at runtime.

Table 1 summarises related approaches and shows the differences to our proposed
approach.

Automatic Control Flow Generation from Software Architectures 337

Table 1. Comparison with related architectures

Automated
Approach Access to Control Component Connector control

component origin reuse reuse flow
generation

ArchJava/ACME by method call component no no no
xADL by method call component no no no

C2 by event component no yes no
Exogenous by method call connector yes yes yes

Our future work is concerned with predictability of system properties resulting from
composing components using connectors into a system. We have shown that automatic
composition is possible by constructing system’s control flow on the fly. However, it is
highly desirable as well to be able to predict the result of this automated control flow
construction before it actually takes place. Therefore we are working on Deployment
Contracts [10] for components, which is metadata [9] attached to the components, with
a view to being able to analyse that metadata before the actual composition takes place.
The analysis should flag incompatible components for composition. By having this, we
will be able to predict conflicts by doing some compositional reasoning.

References

1. J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software architecture to
implimentation. In Proc. ICSE 2002, pages 187–197. IEEE, 2002.

2. F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and
C. Hankin, editors, Lecture Notes in Computer Science 1061, pages 34–56. Springer-Verlag,
1996.

3. ArchJava web page. http://archjava.fluid.cs.cmu.edu/index.html.
4. E.M. Dashofy, A. van der Hoek, and R.N. Taylor. A highly-extensible, XML-based architec-

ture description language. In Proc. Working IEEE/IFIP Conference on Software Architecture,
pages 103–112. IEEE Computer Society, 2001.

5. L. Dykes, E. Tittel, and C. Valentine. XML Schemas. Sybex Inc, 2002.
6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The courier pattern. Dr. Dobb’s Journal,

Feburary 1996.
7. D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based

systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47–68. Cambridge University Press, 2000.

8. R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. N. Taylor. xADL: Enabling
architecure-centric tool integration with XML. In Proc. 34th Hawaii Int. Conf. on System
Sciences, 2001.

9. K.-K. Lau and V. Ukis. Component metadata in component-based software development: A
survey. Preprint 34, School of Computer Science, The University of Manchester, Manchester,
M13 9PL, UK, October 2005.

10. K.-K. Lau and V. Ukis. Deployment contracts for software components. Preprint 36, School
of Computer Science, The University of Manchester, Manchester, M13 9PL, UK, February
2006.

http://archjava.fluid.cs.cmu.edu/index.html

338 K.-K. Lau and V. Ukis

11. K.-K. Lau, V. Ukis, P. Velasco, and Z. Wang. A component model for separation of control
flow from computation in component–based systems. In Proceedings of the 1st International
Workshop on Aspect-Based and Model-Based Separation of Concerns in Software Systems,
ENTCS, www.elsevier.nl/locate/entcs, Nuremberg, Germany, November 2005.

12. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS
3489, pages 90–106, 2005.

13. N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In
Proc. 22nd International Conference on Software Engineering, pages 178–187. ACM Press,
2000.

14. S. Pruitt, D. Stuart, W. Sull, and T.W. Cook. The merit of XML as an architecture description
language meta-language. Microelectronics and Computer Technology Corporation, 1998.

15. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

16. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, second edition, 2002.

17. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A. Nies,
P. Oreizy, and D. L. Dubrow. A component- and message-based architectural style for GUI
software. Software Engineering, 22(6):390–406, 1996.

	Introduction
	Code Generation from Traditional Software Architectures
	Our Approach
	Exogenous Connectors
	Connector Type Hierarchy
	Implementing Generic Connectors
	Architectures with Exogenous Connectors
	Automatic Control Flow Generation
	Connection Structure Description
	Implementation of Control Flow Generation

	Example
	Discussion and Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

