CBSE and MDE: Fitting the Pieces Together

Kung-Kiu Lau

School of Computer Science
The University of Manchester
United Kingdom

kung-kiu.lau@manchester.ac.uk

Keynote, ModComp 2016, 4 October 2016, Saint-Malo, France

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016

Overview

Structure of Talk
o MDA/MDE/CBSE: Terminology, essential elements and links
@ Our work in CBSE

@ Our use of MDE
@ Observations/questions on MDE

Acknowledgement: Joint work with Simone di Cola and Cuong Tran

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 2/32

MDA vs CBSE

MDA CBSE
process-centric product-centric
top-down bottom-up
correct-by-transformation correct-by-composition

cim

Computation-independent Model

Business Process

transformed to

[Business Functionality | pja
and Behaviour

(Domain model) Platform-independent Model

J

transformed to

System Model) PSM

(Libraries, Components, ...)

v

Code

) Platform-specific Model

v

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 3/32

MDE

Meta-metamodel
e.g. Ecore, GME Metamodel

instance of

Metamodel
e.g. UML Metamodel

instance of

Model
e.g. UML diagrams

Transformation Language
e.g. ATL (M2M), Acceleo (M2T),
GReAT (M2M)

instance of

Transformation Rules
e.g. UML to code (M2T)

J Transformation

Implementation

'l execution e.g. executable model, code
niversity of Manchester) MDE and CBSE ModComp 2016 4/32

MDE + CBSE: Our Approach

Meta-metamodel
e.g. Ecore, GME Metamodel

Transformation Language

A e.g. ATL (M2M), Acceleo (M2T),
instance of GReAT (M2M)
Metamodel instance of

FX-MAN Metamodel Transformation Rules

] FX-MAN to functional model (M2M)
instance of FX-MAN to code (M2T) Model

) Functional model
Model (Domain model)

FX-MAN architecture

J Transformation Implementation
'l execution ‘ Executable FX-MAN system

MDE + CBSE with Component Model (FX-MAN)

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 5/32

CBSE: General Picture

Repository Systems

0B el
1

Generlc Components System 1 System 2

@ Repository = Pre-existing components (in a domain)

@ Repository components reused in many systems (in the domain)
@ System = Composition of components

@ Composition — Reuse

@ ‘Bottom-up’

v

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 6/32

Components and Composition

Construction View

Uil Composition Mechanism
Composition Containment Extension Connection Coordination
. . . Higher-order function
Function Function nesting Function call
Procedure Procedure nesting Procedure call
Class nesting
_5 Class Object composition| Multiple inheritance Object delegation
!>m Object aggregation
E Mixin Mixin inheritance
g Mixin/Class Mixin-class inheritance
g, Trait Trait composition Trait composition
a| Trait/Class Trait-class composition | Trait-class composition
Subject Subject composition
Feature Feature composition
Aspect/Class Weaving
Module Module nesting Module connection
Architectural unit Port connection
Fragment box Invasive composition Invasive composition
é Process Channels Data coordination
: Orchestration
% WElDEemites (Control coordination)
Encapsulated Exogenous composition
component (Control coordination)
K.-K. Lau and T. Rana. A Taxonomy of Software Composition Mechanisms. In Proc. 36th Euromicro Conference on
Software Engineering and Advanced Applications, pages 102-110, IEEE, 2010.
Kung-Kiu Lau (University of Manchester) MDE and C ModComp 2016

7/32

Software Component Models

A software component model defines:

@ components
@ composition mechanisms

CBSE with a component model is model-driven by definition:
@ model for components
@ model for composition
+ model-driven implementation of components
+ model-driven implementation of composition

K.-K. Lau and Z. Wang. Software Component Models. /EEE Transactions on Software Engineering 33(10):709-724,
October 2007.

K.-K. Lau, Z. Wang, S. Di Cola, C. Tran and V. Christou. Software Component Models: Past, Present and Future. Tutorial
at COMPARCH 2014 Conference, 30 June 2014, Lille, France.

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 8/32

Types of Components

A Generic Component

Il

Required Service)— —Q Provided Service

An Object An Architectural Unit

An Encapsulated Component

L 5

in1 outl
in2 out2

Provided
method O

Provided | Required | Composition
Components | iViSES | ‘Semices | mechanism
Objects Methods — Method call

i P
Architectural | Out-ports | In-ports | coQftion
Encapsulated Exogenous
comgonents Methods | None comgosition

Kung-Kiu Lau (University of Manchester) MDE and CBSE

ModComp 2016 9/32

Types of Composition Mechanisms

Connection: Method Call & Port Connection

—>delegation I plug —— connector

(a) Direct message passing (b) Indirect message passing

Coordination: Exogenous Composition

communication
channel

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016

Idealised Component Life cycle

Composition in Component Design Phase and Component Deployment Phase

Idealised Component Life Cycle Traditional CBSE Desiderata

Run-time Phase

Design Phase Deployment Phase

Run-time
Environment

At

BC

Desideratum

Design Phase

Deployment Phase

Components should
pre-exist

Deposit comfzonents

in repository

Retrieve components

from repository

Components should be
produced independently

Use builder

Components should be
deployed independently

Use assembler

It should be possible to copy

Copies possible

~ Copies and_
instances possible

and instantiate components
It should be possible to Composition it f
build composites possible Composition possible

It should be possible to
store composites

Use repository

I:| Component (binary)

[l Deployment phase
composition operator

[:-}Compcnen((source code)

i
@ Design phase
composition operator

I:| Component
instance

K.-K. Lau and Z. Wang. Software Component Models.

IEEE Transactions on Software Engineering
33(10):709-724, 2007.

M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G.
Pomberger, W. Pree, M. Stal and C. Szyperski. What
characterizes a software component? Software — Concepts
and Tools 19:49-56, 1998.

ModComp 2016

11/32

niversity of Manchester)

Kung-Kiu Lau

Taxonomy of Component Models

Builder RTE Builder | Repository RTE
R insA AT insA
I)
== lisE BT iBe InsB

; Category 1: Design without Repository Category 2: Design with Deposit-only Repository
(Acme-like ADLs, UML2.0, PECOS) (EJB, OSGi, Fractal, COM, .NET, CCM)

Builder Repository Assembler RTE Builder [Repository RTE
(A TA A |or insA | A
- i - '

k Category 3: Deployment with Repository Category 4: Design with Repository
(JavaBeans, Web Services) (Koala, SOFA, KobrA, SCA, Palladio, ProCom)

Builder | Repository || Assembler RTE

o LA e
K~ > AR
B ‘AB: AB > InsAB

~
0
i
o
-

Category 5: Design and Deploy with Repository
(X-MAN)

K.-K. Lau, Z. Wang, S. Di Cola, C. Tran and V. Christou. Software Component Models: Past, Present and Future. Tutorial
at COMPARCH 2014 Conference, 30 June 2014, Lille, France.

v

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 12/32

CBSE Desiderata: Present & Future

Taxonomy of component models shows:

@ Current component models do not fully meet the traditional CBSE
desiderata

@ CBSE faces new challenges:
» increased scale
» increased complexity
» assurance of safety of large complex systems

@ Future component models have to meet these new desiderata

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 13/32

X-MAN Component Model

Components & Composition

Composition connector -
Composite component

Atomic component Control o
o .

awo ... 5 >
ALK AASA SEE
Sequ-er.w;er Sele:c.tc;r n

Computation

@ Hierarchical (algebraic) composition = scale and complexity
@ Compositional verification = large-scale verification (of safety)

K.-K. Lau, P. Velasco Elizondo and Z. Wang. Exogenous Connectors for Software Components. In Proc. 8th International
SIGSOFT Symposium on Component-based Software Engineering. LNCS 3489:90-106, Springer-Verlag, 2005.

K.-K. Lau, M. Ornaghi and Z. Wang. A Software Component Model and its Preliminary Formalisation. In Proc. 4th
International Symposium on Formal Methods for Components and Objects, LNCS 4111:1-21, Springer-Verlag, 2006.

N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, P. Rummer and S. Sharma. Component-based Design and Verification
in X-MAN. In Proc. Embedded Real Time Software and Systems, 2012.

niversity of Manchester) MDE and CBSE ModComp 2016 14/32

X-MAN Meta-model

E Ecipee crg et 2002 Geniodel

[Ebaser]

= DESTRUCTIVE ReAD v Zoowe | = name :Estrng
- NONE DESTRUCTVE READ | | = CPlusbls - whiebo x %

J— T
target 0.1

= name : Esting
O Datarype

m}
e I
]

= showedName : Estring

Source datachannels

<

o contract
= name : Estring

 preConditon Estrng
= postCondion: Estring

o

Hoatachamel | [E Forometer |

m
et

= poly : ChamnelPoly | £ = order - et |
i i

- T 01
- o — i
4|_lj ‘ ‘ ‘ 0
El B 5 Composte | [Emput [] B output | 5 Component [Datatlement |
15 condtion: estring__| = name : Esting = name - Estrng = ange: Esrng
cmecions [comeon [monst8mg | | It B | s e
el o 1 = Comment :Esting = ovalue : svaobject
- = verfied: Edooleanobiect
‘methods| = valid : EBooleanObject o
 Agaregator “ i
e | |
==L — | S
. imvokes
Hseqencer | [[Seleator | f | —]
]] 3 E =
Y = packageNlame : EString ¥ .= componentrype: eswing
T /\ = interfaceCode : Estring .
“ = sourceCode : EString
8 Looy Guard | [EDbconnector] [HRowne | [Dataspace
= ToopType : Loopype] I | 1|
|

ModComp 201

MDE Tool for X-MAN

Project Explorer Code Generator Adapter Connector ‘Composition Connector Palette

S

e e e
Vien Neigus o e (VRN i Vi
See e 0| ¢ o=

rmepees [=2y 22 [

Source
Code

Generated _|
Code

Comnonem__’
Design

Instance

u
Problems View Data Channel Repository View Service Reference

K.-K. Lau and C.M. Tran. X-MAN: An MDE Tool for Component-based System Development. In Proc. 38th EUROMICRO
Conference on Software Engineering and Advanced Applications, pages 158-165, IEEE, 2012.

S. Di Cola, K.-K. Lau and C. Tran. A Graphical Tool for Model-Driven Development Using Components and Services. In
Proc. 41st EUROMICRO Conference on Software Engineering and Advanced Applications, pages 181-182, IEEE, 2015.

Kung-Kiu Lau (University of Mal r MDE and CBSE ModComp 2016 16/32

X-MAN Example

Vehicle Control System (VCS)

A VCS is a real-time, on-board system for supervising a vehicle.
It manages several routine services and tasks, including:

@ statistical data calculation

e.g. of fuel consumption and of average speed

@ observation or monitoring of the vehicle’s internal state

e.g. maintenance status

@ cruise control

i.e. automatically controlling the vehicle’s speed in such a way that a steady (cruise) speed can be set (by the driver) and

then maintained by taking over control of the throttle whenever necessary

@ collision detection

to ensure safety and enable automatic driving (while cruising)

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 171732

VCS System

in X-MAN

£ Product 4 22

(a)

loopData

Loop
(*® loop)

loop=="VehicieOn 1

AverageMPH
@ Hours.
o

AverageMPG
@ ruel -

Monitoring
@ Data -
® Message

T Sequencer 7
X 1 ~@ SelectedSpeed
BN
b Sgectr ¥ condton Direction
- =°"d'ﬂ/ AutoCruiseControl AllRoundDetection ® selection
® Averag:
AutoCruiseControl
An e e AR aRe oS, @ SclectedSpeet— @ Direction © Message
® ThrotlePositior @ Distance
* Distance

[Armsetaven:
[Avmseiec s

] Merorma wonvrn
s

AuteCruisaContal A
GtoCusaCantel
AlRsunDstecions
IRounsDetection

niversity of Mal

Palette 4
i Select
£} Marquee
&> Connectors ©
Guard
Loop
Sequencer
Aggregator
Selector
(= Connections ©
*CoordinationCo.
**DataChannel

&> Services
Osenvice
O serviceReference

(= Data ©

[

) DataElement

® input
© Output

ModComp 201

VCS Functional Model: State Chart

Z: Product_4_State_Chart 2 =B
% Palette >
[="VehidleOn"] % Select
=" AverageMPH'] [[="Monitoring’] [F“AverageMPG”ﬂ i Marquee
AverageMPH Monitoring AverageMPG [EConnectog
? ? ? @ xor
e (& State
(Gy q [computng Computing
AverageMPH {__ Monitoring AverageMPG State
1 03 1 @end
® © © Ostart
L J > Transition
“>Transition

[="VehicleOn"] [~c="VehicleOn"]

~350]

AllRoundDetection

\amasssmssmamsSESSEEREEREENEREEE
Computing

AllRoundDetection

®

[~="VehideOn"]

MDE and CBSE ModComp 2016

Kung-Kiu Lau (University of Manchester)

VCS Functional Model: Activity Chart

£ Product 4 Activity_Chart 52

ves
Product_4
i loopData loopDte
{“Selection L [T
Input_Parameters AllRoundDetection
SelectedSpeed
Direction Distance
AutoCruiseControl
—_—
ThrottlePosition
Fuel Miles
Monitoring.
SERSESESESES NN
Data Message ¥
AverageMPG
%v —_—
Hours
T AverageMPG

-1

N AverageMPH

versity of Manchester)

|

Output_Parameters

=g
i Palette b
i Select
{1 Marquee
& flow Line ®

*~ Data-flow
*Control-flow
& Activity ©
Data-store
Activity
B Control Activity
External

VCS Testing

gt Junit 52
Finished after 0.21 seconds

Runs: 4/4 B Errors: 0 B Failures: 0
4 i) VCSTest [Runner: JUnit 4](0.195 5)

£ testDoExecute_select_Maintanence (0.068 5

£ testDoExecute_Maintenance_1 (0.048 <)

e testDoExecute_Maintenance_2 (0.016 s)

e testDoExecute_select_AverageMPH (0.063 5)

[vCsjava 2

public final class VCS{

* Active service pointer

* Component instances declaration

private AverageMPH averageMPH;
prl.vate Maintanence maintanence;

...... 4o EmnniPadariion FammiNadacdion.

tl m

private String activeServiceName = null;

+ = Failure Trace

[

El Console 53
% % | Eu &l B

<terminated> VCSTest [JUnit] C:\Program Files (x86
Need Routine Maintenance

Front Distance: 15@m

Don't Need Maintenance

Front Distance: 156m

Need Maintenance Immediately

Front Distance: 156m

Average MPH is : 37.5 miles per hour
Front Distance: 158m

ModComp 2016 21/32

CBSE Life Cycle in a Domain

Domain knowledge

System requirements
|
System spelciﬁcation

__ Component selection
& adaptation

Design & implementation
of (domain-specific)
of components

Rep01|itory Apo=om==== !

Deployment of components
in a specific system
I

@ Context for CBSE is a domain (of multiple systems) J

Composition of
deployed components

Y
Architecture

@ Separate life cycles for components and systems

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016

Compositional V & V

System
requirements

Component System

Life Cycle System Life Cycle
Domain
knowledge

specification
Component g ¢ System
design assembly

K.-K. Lau, F. Taweel and C. Tran. The W Model for Component-based Software Development. In Proc. 37th
EUROMICRO Conference on Software Engineering and Advanced Applications, pages 47-50, IEEE, 2011.

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016

Product Families in a Domain

Fo ~

Fo F1' |:|
Fi. P2 F3 \opy
N N AN Fi F2

Fa FsFe F7Fs Fo [FaJ[Fs] JI| [Fe.F]

lMandatory $Optional /C\Alternative i i alt
Feature model a a

[CJ component _/ Variation operator (O Connector

Product family architecture

Domain Model = Feature Model + Functional Model (Behaviour)

Domain Engineering = Domain Knowledge —> Domain Model —-
Product Family Architecture (Reference Architecture)

v

K.-K. Lau and S. Di Cola.(Reference) Architecture = Components + Composition (+ Variation Points)? In Proc. 1st
International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures, pages
1-4, ACM, 2015.

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 24/32

FX-MAN Component Model

Family Composition
X-MAN Set Family Connector Product Family

10 ":'\D?D!
Variation Generation

Variation Operator Tuple of X MAN Sets

7 [er =
" -0

S. Di Cola, C. Tran, K.-K. Lau, C. Qian and M. Schulze. A Component Model for Defining Software Product Families with
Explicit Variation Points. In Proc. 19th International ACM SIGSOFT Symposium on Component-Based Software
Engineering, pages 79-84, ACM, 2016.

X-MAN Set
(Set of X-MAN Components)
O

niversity of Manchester) MDE and CBSE ModComp 2016 25/32

FX-MAN Meta-model

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 26/32

MDE Tool for FX-MAN

e P

i N
o NovgaeSach et KN o el
SPTE LT QYoo - Quikneces || g | R, Rsoue [ERRAEY 10a

B [mwsEs =0

- - | e b
4 G4 > VCS VAN Companert X Man 15t dect
iy s

-

& Vartion Operstors

/ N
{ (rae) 1

& Fomily Comecton.
FamiySequencer

Fsador
Famiyggrgator

AutoCruiseControl FamiySelector
FamiyGus
AutoriseControl O Famistocp
xman

@ seiectoaspesd

\ omerss /[e \ swemame /. © trtoposton

i ot
© ouput

FrontDetection AllRoundDetection

Averagenon Hamtenance Honiorng Frontetecion MRoundDetecton
® hos ® Cumiattticae ® o ® vistance @ oirecton
® s ® nessage ® tessage ® Detecton

© wuorsgonrn

s/ XE =3

Ojecotecor i

S. Di Cola, K.-K. Lau, C. Tran and C. Qian. An MDE Tool for Defining Software Product Families with Explicit Variation
Points. In Proc. 19th International Conference on Software Product Line, pages 355-360, ACM, 2015.

iversity of M r ModComp 20

FX-MAN Example: Family of ECL Products

/
-

| U Beam Configuration | ~——#| I

|¢9Reduceu L|@

: 4 Separate DRL" Ights <

U External Car Lights Fe... |
] - 3 Automatic High/Low B.
. i E Camera
ps:demands: "High Beam”

E High/Low Beam Contro.
7 Driver Assistance | K Automatic Light
ps:demands: "Low Beam® |—#| I Light Sensor

ps:demands: "Cornering .

[3 Adaptive Forward Ligh...
3 Cornering Lights
static Cornering Lights
? Fog Lights. 4 Reguires: “Fog Lights™

4 LED

@ Standard Bulb

386 product variants (28688 without constraints)

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 28/32

FX-MAN Example: Family of ECL Products

386 product variants (28688 without constraints)

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 29/32

CBSE + MDE in Our Approach: Summary

Models and Transformations

Component Model Model M2M Model M2T |Implementation
X-MAN Fu'&cgg?al <—— | Component | ——> Code
X-MAN Fulicional | «—— | Comboneon | ——> fatle
povan | ol | S | Frodus
FX-MAN Functional | « Corf’\aprgisl%ion

g Product
PN | iodel | | pFami e

Functional Model = State Charts + Activity Charts
Product Family = Set of X-MAN Architectures

Technology Stack

Spray

Xtend
L | A c
Graphiti | Acceleo 5

Xcore(EMF)

V.

Kung-Kiu Lau (University of Manchester)

MDE and CBSE

ModComp 2016

v

30/32

What We Have Done

@ We use models everywhere
@ We use MDE for tool development

@ We have not focused on platforms, or associated M2M
transformations

Tool Downloads
http://www.click2go.umip.com/i/software/x_man.html

Feedback most welcome!

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 31/32

http://www.click2go.umip.com/i/software/x_man.html

Closing

Some Observations/Questions on MDE Technology

@ More modelling elements?
» composition (not just association and containment)
» components (units that are more compositional than classes)
» behaviour (e.g. control, coordination)

@ Higher-level abstractions?

not just classes

less coupled to OO technology

more hierarchical modelling (more than referencing)
model transformations may be challenging

v

vV vy

Kung-Kiu Lau (University of Manchester) MDE and CBSE ModComp 2016 32/32

