
Specifying Compositional Units for Correct

Program Development in Computational Logic

Kung-Kiu Lau1 and Mario Ornaghi2

1 Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom

kung-kiu@cs.man.ac.uk
2 Dipartimento di Scienze dell’Informazione, Universita’ degli studi di Milano

Via Comelico 39/41, 20135 Milano, Italy
ornaghi@dsi.unimi.it

Abstract. In order to provide a formalism for defining program cor-
rectness and to reason about program development in Computational
Logic, we believe that it is better to distinguish between specifications
and programs. To this end, we have developed a general approach to
specification that is based on a model-theoretic semantics. In our pre-
vious work, we have shown how to define specifications and program
correctness for open logic programs. In particular we have defined a no-
tion of correctness called steadfastness, that captures at once modularity,
reusability and correctness. In this paper, we review our past work and
we show how it can be used to define compositional units that can be
correctly reused in modular or component-based software development.

1 Introduction

In software engineering, requirements analysis, design and implementation are
distinctly separate phases of the development process [18], as they employ dif-
ferent methods and produce different artefacts. In requirements analysis and
design, specifications play a central role, as a frame of reference capturing the
requirements and the design decisions. By contrast, data and programs only ap-
pear in the implementation phase, towards the end of the development process.
There is therefore a clear distinction between specifications and programs.

In Computational Logic, however, this distinction is usually not maintained.
This is because there is a widely held view that logic programs are executable
specifications and therefore there is no need to produce specifications before the
implementation phase of the development process. We believe that undervalu-
ing specifications in this manner is not an ideal platform for program devel-
opment. If programs are indistinguishable from specifications, then how do we
define program correctness, and how do we reason about program development?
We hold the view that the meaning of correctness must be defined in terms of
something other than logic programs themselves. We are not alone in this, see
e.g., [17, p. 410]. In our view, the specification should axiomatise all our rele-
vant knowledge of the problem context and the necessary data types, whereas,

M. Bruynooghe and K.-K. Lau (Eds.): Program Development in CL, LNCS 3049, pp. 1–29, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Kung-Kiu Lau and Mario Ornaghi

for complexity reasons, programs rightly capture only what is strictly neces-
sary for computing. In the process of extracting programs from specifications,
a lot of knowledge is lost, making programs much weaker axiomatisations. This
suggests that specifying and programming are different activities, involving dif-
ferent methodological aspects. Thus, we take the view that specifications should
be clearly distinguished from programs, especially for the purpose of program
development. Indeed, we have shown (in [28,29]) that in Computational Logic,
not only can we maintain this distinction, but we can also define various kinds
of specifications for different purposes. Moreover, we can also define correctness
with respect to these specifications.

Our semantics for specification and correctness is model-theoretic. The declar-
ative nature of such a semantics allows us to define steadfastness [34], a notion of
correctness that captures at once modularity, reusability and correctness. Open
programs are incomplete pieces of code that can be (re)used in many different
admissible situations, by closing them (by adding the missing code) in many
different ways. Steadfastness of an open program P is pre-proved correctness of
the various closures of P , with respect to the different meanings that the spec-
ification of P assumes in the admissible situations. For correct reuse, we need
to know when a situation is admissible. This knowledge is given by the prob-
lem context. We have formalised problem context as a specification framework
[27], namely, a first-order theory that axiomatises the problem context, charac-
terises the admissible situations as its (intended) models, and is used to write
specifications and to reason about them.

In this paper, we review our work in specification and correctness of logic pro-
grams, including steadfastness. Our purpose is to discuss the role of steadfastness
for correct software development. In particular, we are interested in modularity
and reuse, which are key aspects of software development. Our work is centred
on the notion of a compositional unit. A compositional unit is a software com-
ponent, which is commonly defined as a unit of composition with contractually
specified interfaces and context dependencies only [46]. The interfaces declare
the imported and exported operations, and the context dependencies specify the
constraints that must be satisfied in order to correctly (re)use them. Through-
out the paper, we will not refer to compositional units as software components,
however, for the simple reason that as yet there is no standard definition for the
latter (although the one we used above [46] is widely accepted). So we prefer
to avoid any unnecessary confusion. In our compositional units, the interfaces
and the context dependencies are declaratively specified in the context of the
specification framework F axiomatising the problem context. F gives a precise
semantics to specifications and allows us to reason about the correctness of pro-
grams, as well as their correct reuse. Thus, in our formalisation, a compositional
unit has a three-tier structure, with separate levels for framework, specifications
and programs.

We introduce compositional units in Section 2, and consider the three levels
separately. We focus on model-theoretic semantics of frameworks and specifica-
tions, and on steadfastness (i.e., open program correctness).

Specifying Compositional Units for Correct Program Development 3

In Section 3, we show how the proposed formalisation of compositional units
can be used to support correct reuse. Our aim is to highlight the aspects related
to specifications, so we consider only the aspects related to the framework and
the specification levels, while assuming the possibility of deriving (synthesising)
steadfast programs from specifications.

At the end of each section we briefly discuss and compare our results with
related work, and finally in the conclusion we comment on future developments.

2 Compositional Units

In our approach, compositional units represent correctly reusable units of specifi-
cations and correct open programs. Our view is that specifications and programs
are not stand-alone entities, but are always to be considered in the light of
a problem context. The latter plays a central role: it is the semantic context
in which specifications and program correctness assume their appropriate mean-
ing, and it contains the necessary knowledge for reasoning about correctness and
correct reuse. This is reflected in the three-tier structure (with model-theoretic
semantics) of a compositional unit, as illustrated in Figure 1.

Specifications

Sp1 ; . . . ; Spn ; RD1; . . . RDk

Programs

Pid1 : Sπ1 ⇒ Sδ1{C1}; . . . ; Pidh
: Sπh ⇒ Sδh

{Ch}

Compositional Unit K

Framework F(ΠF ⇒ ∆F)

Signature Σ
Axioms X
Theorems T

Fig. 1. A three-tier formalism.

At the top level of a compositional unit K, we have a specification framework
F , or framework for short, that embodies an axiomatisation of the problem
context. F has a signature Σ, a set X of axioms, a set T of theorems, a list
ΠF of open symbols, and a list ∆F of defined symbols. The syntax ΠF ⇒ ∆F

indicates that the axioms of F fix (the meaning of) the symbols ∆F whenever F
is composed with frameworks that fix ΠF . The defined and open symbols belong
to the signature Σ, which may also contain closed symbols, namely symbols

4 Kung-Kiu Lau and Mario Ornaghi

defined completely by the axioms (i.e., independently from ΠF). Frameworks
are explained in Section 2.1, and framework composition is explained in Section
3.1.

In the middle, we have the specification section. Its role is to bridge the gap
between the framework F and the chosen programming language. So far, we have
considered only logic programs, and the corresponding specification formalism
is explained in Section 2.2. The specification section contains the specifications
Sp1 , . . ., Spn of the program predicates occurring in the program section. It may
also contain a set of specification reduction theorems theorems RD1, . . . , RDk,
that are useful to reason about correct reuse. Specification reduction is explained
in Section 3.2.

At the bottom, we have the program section. Programs are open logic (or con-
straint logic) programs. An open program Pidi : Sπi ⇒ Sδi {Ci} (1 ≤ i ≤ h) has
an identifier idi, an interface specification Sπi ⇒ Sδi and a set {Ci} of implemen-
tation clauses. Sπi and Sδi are lists of specifications defined in the specification
section. An interface specification contains all the information needed to correctly
reuse a correct program. Programs and correctness are explained in Section 2.3.
Correct reuse is explained in Section 3.3.

2.1 Specification Frameworks

A specification framework F is defined in the context of first-order logic, and
contains the relevant knowledge of the necessary concepts and data types for
building a model of the application at hand.

We distinguish between closed and open frameworks. A closed framework
F = 〈Σ,X,T〉 has a signature Σ, a set X of axioms, and a set T of theorems.
It has no open and defined symbols, that is, all the symbols of Σ are closed.

Example 1. An example of closed framework is first-order arithmetic NAT =
〈ΣNat,XNat,TNat〉, introduced by the following syntax:3

Framework NAT ;
decls: Nat : sort;

0 : []→ Nat;
s : [Nat]→ Nat;

+ , ∗ : [Nat, Nat]→ Nat;
axs: Nat : construct(0, s : Nat);

+ : i + 0 = i;
i + s(j) = s(i + j);

: i ∗ 0 = 0;
i ∗ s(j) = i ∗ j + i;

thms: i + j = j + i;
. . .

3 In all the examples, we will omit the outermost universal quantifiers, but their omni-
presence should be implicitly understood.

Specifying Compositional Units for Correct Program Development 5

The signature ΣNat, introduced in the declaration section decls, is the signature
of Peano’s arithmetic. The axioms XNat, introduced in the axs section, are the
usual ones of first-order arithmetic. 0 and s are the constructors of Nat and their
axioms, which we call the constructor axioms for Nat, are collectively indicated
by construct(0, s : Nat). The latter contains Clark’s equality theory [35] for 0
and s, as well as all the instances of the first-order induction schema. NAT has
been widely studied, and there are a lot of known theorems (in section thms),
including for example the associative, commutative and distributive laws.

Theorems are an important part of a framework. However, they are not
relevant in the definitions that follow, so we will not refer to them explicitly
here.

For closed frameworks we adopt isoinitial semantics, that is, we choose the
intended model of F = 〈Σ,X〉 to be a reachable isoinitial model, defined as
follows:

Definition 1 (Reachable Isoinitial Model [5]). Let X be a set of Σ-axioms.
A Σ-structure i is an isoinitial model of X iff, for every model m of X, there is
a unique isomorphic embedding i : i→ m.

A model i is reachable if its elements can be represented by ground terms.

Definition 2 (Adequate Closed Frameworks [30]). A closed framework
F = 〈Σ,X〉 is adequate iff there is a reachable isoinitial model i of X that we
call ‘the’ intended model of F .

In fact i is one of many intended models of F , all of which are isomorphic.
So i is unique up to isomorphism, and hence our (ab)use of ‘the’.

As shown in [5], adequacy entails the computability of the operations and
predicates of the signature.

Example 2. NAT is an adequate closed framework. Its intended model is the
standard structure N of natural numbers (N is a reachable isoinitial model of
XNat). N interprets Nat as the set of natural numbers, and s, + and ∗ as the
successor, sum and product function, respectively.

The adequacy of a closed framework is not a decidable property. We have the
following useful proof-theoretic characterisation, which can be seen as a “richness
requirement” implicit in isoinitial semantics [31]:

Definition 3 (Atomic Completeness). A framework F = 〈Σ,X〉 is atomi-
cally complete iff, for every ground atomic formula A, either X � A or X � ¬A.

Theorem 1 (Adequacy Condition [38]). A closed framework F = 〈Σ,X〉
is adequate iff it has at least one reachable model and is atomically complete.

Closed adequate frameworks can be built incrementally, starting from a
closed adequate kernel, by means of adequate extensions.

6 Kung-Kiu Lau and Mario Ornaghi

Definition 4 (Adequate Extensions [30]). An adequate extension of an ad-
equate closed framework F = 〈Σ,X〉 is an adequate closed framework Fδ =
〈Σ ∪ δ,X ∪Dδ〉 such that:

a) Dδ is a set of (Σ ∪ δ)-axioms, axiomatising a set of new (i.e., not in Σ)
symbols δ;

b) the Σ-reduct i|Σ of the intended model i of Fδ is the intended model of F .

The notions of reduct and expansion are standard in logic [4]. The Σ-reduct
i′ = i|Σ forgets the interpretation of the symbols not in Σ, in our case the
new symbols δ. Conversely, i is said to be a (Σ ∪ δ)-expansion of i′, that is, a
(Σ ∪ δ)-expansion is a (Σ ∪ δ)-interpretation that preserves the meaning of the
old Σ-symbols, and interprets the new δ arbitrarily.

In Definition 4, by b), the intended model i of an adequate extension is an
expansion of the old intended model, that is, adequacy entails that the meaning
of the old symbols is preserved.

If the axioms Dδ of an adequate extension are explicit definitions, we say that
they are adequate explicit definitions. Since they are important in our approach,
we briefly recall them.

An explicit definition of a new relation r has the form ∀x • r(x) ↔ R(x),
where x indicates a tuple of variables and (as usual) “•” extends the scope
of a quantifier to the longest subformula next to it. The explicit definition of
a new function f has the form ∀x • F (x, f(x)), where R(x) and F (x, y) are
formulas of the framework that contain free only the indicated variables. The
explicit definition of f has the proof obligation X � ∀x • ∃!y • F (x, y), where X
are the framework axioms (as usual, ∃!y means unique existence). R(x) is called
the definens (or defining formula) of r, and F (x, y) the definiens (or defining
formula) of f .

Explicit definitions have nice properties. They are purely declarative, in the
following sense: they define the new symbols purely in terms of the old ones,
that is, in a non-recursive way. This declarative character is reflected by the
following eliminability property, where Σ is the signature of the framework and
δ are the new explicitly defined symbols: the extension is conservative (i.e., no
new Σ-theorem is added) and every formula of Σ + δ is provably equivalent to
a corresponding formula of the old signature Σ. Moreover, if we start from a
sufficiently expressive kernel, most of the relevant relations and functions can be
explicitly defined. Finally, we can prove:

Proposition 1. If the definiens of an explicit definition is quantifier-free, then
the definition is adequate.

If the definiens is not quantifier-free, adequacy must be checked. To state the
adequacy of closed frameworks and of explicit definitions, we can apply proof
methods based on logic program synthesis [26,27] or constructive logic [38].

Example 3. The kernel NAT of Example 1 is sufficiently expressive in the fol-
lowing sense. Every recursively enumerable relation r can be introduced by an

Specifying Compositional Units for Correct Program Development 7

explicit definition.4 For example, we can define the ordering relations ≤ and <
by the explicit definitions:

D≤ : i ≤ j ↔ ∃k • i + k = j;
D< : i < j ↔ i ≤ j ∧ ¬i = j.

Since the outermost universal quantifiers are implicitly present, D≤ is the closed
formula ∀i, j • i ≤ j ↔ ∃k • i + k = j (similarly, D< is understood to be univer-
sally closed).

Since the definiens ∃k • i + k = j of ≤ is quantified, adequacy of D≤ must be
checked. It can be proved by logic program synthesis, as follows.

(a) We derive the following clauses in NAT + D≤:

P≤ : 0 ≤ i←
s(i) ≤ s(j)← i ≤ j.

(b) In NAT + D≤ we prove the only-if part of the completed definition [35] of
≤ in P≤ (the if part is guaranteed by a)).

(c) Finally, we prove that P≤ existentially terminates, i.e., for every ground atom
A, the goal ← A finitely fails or has at least one successful derivation (with
program P≤).

By (a), (b) and (c) we get ([27], Theorem 11) that the extension by D≤ is
adequate. By the way, adequacy entails that the new predicate ≤ is computable.
We do not have to check the adequacy of D<, because its definiens is quantifier
free. D< uses ≤. However, an explicit definition of < and a proof of its adequacy
can be given directly in NAT , by the eliminability of explicit definitions. Thus
we could define < first, prove its adequacy, and then define ≤ on top of <. That
is, the order of explicit definitions is not relevant.

We can explicitly define functions, for example the integer square root sqrt:

Dsqrt : sqrt(i) ∗ sqrt(i) ≤ i ∧ i < s(sqrt(i)) ∗ s(sqrt(i)).

The proof obligation ∀i • ∃!j • j ∗ j ≤ i ∧ i < s(j) ∗ s(j) can be proved in NAT
by induction. Adequacy follows from the fact that the definiens j ∗ j ≤ i ∧ i <
s(j) ∗ s(j) is quantifier free.

An open framework F(Π ⇒ ∆) = 〈Σ,X〉 represents an incomplete axioma-
tisation. It has a non-empty import list Π , containing the symbols left open by
the axioms, and a (possibly empty) disjoint export list ∆, containing the symbols
that are defined by the axioms, in terms of the open ones. The closed symbols
are the symbols of the signature that are not in Π ∪ ∆, and their meaning is
fixed in a unique way by the axioms. We distinguish three sets of axioms, where
ΣK is the sub-signature of the closed symbols:

4 Every recursively enumerable relation is Diophantine (Matijacevic theorem [37]).

8 Kung-Kiu Lau and Mario Ornaghi

– the kernel axioms XK = X|ΣK (. . . |ΣK is the subset of the axioms with
symbols from Σk); the kernel axioms axiomatise the closed symbols, that is,
FK = 〈ΣK ,XK〉 must be an adequate closed framework, that we call the
closed kernel ;

– the constraints XC = (X|(ΣK ∪ Π)) \ XK , which constrain the possible
interpretations of the open symbols Π ;

– and the definition axioms XD = X \ (XK ∪XC), which fix the meaning of
the defined symbols ∆, in terms of the open and closed symbols.

Example 4. The following open framework axiomatises lists with generic ele-
ments X and a generic total ordering � on X . From now on, in the examples,
the variables of sort X will begin with x, y, z, w, those of sort Nat with i, j, h, k,
and those of sort ListX with l, m, n, o.

Framework LIST (X, � ⇒ ListX, nil, ., @, nocc);
kernel: NAT ;
decls: X : sort;

ListX : sort;
� : [X, X];
nil : []→ ListX ;
. : [X, ListX]→ ListX ;

@(,) : [X, Nat, ListX];
nocc : [X, ListX]→ Nat;

defaxs: ListX : construct(nil, . : ListX);
@ : x@(0, l)↔ ∃y, m • l = y.m ∧ x = y;

x@(s(i), l)↔ ∃y, m • l = y.m ∧ x@(i, m);
nocc : nocc(x, nil) = 0;

x = y → nocc(x, y.l) = nocc(x, l) + 1;
¬x = y → nocc(x, y.l) = nocc(x, l);

constrs: � : TotalOrdering(�).

The signature ΣNat, the axioms XNat and the theorems TNat of the imported ker-
nel NAT are automatically included. In the definition axioms defaxs, nil and
“.” are the list constructors, as indicated by construct(nil, . : ListX), which con-
tains Clark’s equality theory and structural induction on constructors; x@(i, l)
means that the element x occurs at position i in the list l, where positions start
from 0; nocc(x, l) is the number of occurrences of the element x in the list l; by
the constraint axioms constrs, � is a total ordering relation.

To specify the basic operations on the ADT of lists, the closed kernel NAT
is not necessary. We have imported it for specification and reasoning purposes.
Indeed, by using natural numbers we can introduce @ and nocc. The resulting
language and axiomatic system give a rich starting framework, which allows us
to explicitly define the usual operations on lists and ordered lists, and to reason
about them (see Example 6).

Specifying Compositional Units for Correct Program Development 9

An open framework F has a class of not necessarily isomorphic intended
models, since XK ∪XC allows many (ΣK ∪Π)-interpretations, that we call pre-
models. The semantics considered here is a variant of the one presented in [30].
A pre-model is an expansion of the intended model of the kernel that satisfies
the constraints XC . For every pre-model p, the axioms of F fix a corresponding
intended p-model ip, defined as follows.

A p-model of F is a Σ-model m of X such that m|(ΣK ∪Π) = p, that is, m
coincides with p over the closed and open symbols. Since Π may contain open
sorts, we consider Π-reachable models, where Π-reachability is reachability in
an expansion containing a new constant for each element of each open sort.

Definition 5 (p-isoinitial Models). A p-model i is a p-isoinitial model of F
iff, for every p-model m, there is a unique isomorphic embedding i : i→ m such
that i is the identity over the open sorts.

Definition 6 (Adequate Open Frameworks and Intended Models). An
open framework F is adequate iff, for every pre-model p of F , there is a Π-
reachable p-isoinitial model ip, that we call the intended p-model of F .

m is an intended model of F iff there is a pre-model p of F such that m is
the intended p-model of F .

For every pre-model p, the intended p-model is unique up to isomorphism.
Intended models with non-isomorphic pre-models are, of course, non-isomorphic.
We consider closed frameworks as a limiting case, where the kernel coincides with
the whole framework and the unique intended model coincides with the unique
pre-model.

Example 5. LIST is an adequate open framework. In it, a pre-model p coincides
with N for the kernel signature ΣNat and interprets X as any set with a total
ordering �. The intended p-model of LIST interprets ListX as the set of the
finite lists with elements from X , and the other defined symbols in the way
already explained in Example 4.

Adequate open frameworks can be built incrementally, by adequate exten-
sions, where the intended models of an adequate extension F ′ of a framework
F are expansions of intended models of F .

Definition 7 (Adequate Extensions). A framework F ′ is an adequate ex-
tension of an adequate open framework F iff F ′ is an adequate open or closed
framework, the signature and the axioms of F ′ contain those of F , the kernel
signature of F ′ contains the kernel signature of F , and for every intended model
i′ of F ′, the reduct i′|Σ is an intended model of F .

In the limiting case, an adequate extension F ′ of an open framework F may
be a closed framework. In this case, we say that F ′ is an instance of F , and
the axioms that “instantiate” (i.e., close) the open symbols are called closure
axioms . A set of closure axioms is called a closure. Closures will be considered
in Section 3.1, together with other framework operations.

10 Kung-Kiu Lau and Mario Ornaghi

In general, the adequacy of an extension is not decidable, but we may have
different kinds of extensions, with different adequacy conditions. In particular,
we distinguish:

– Parameter extensions. In this case new parameters and/or new constraints
are added. Parameter extensions are adequate iff, adding new constraints,
consistency is preserved.

– Defined symbol extensions. In this case new defined symbols, together with
the corresponding definition axioms, are added. Adequate explicit definitions
are still useful for introducing new defined symbols, and adequacy can be
stated in a way similar to those mentioned before for closed framework ex-
tensions (by program synthesis or constructive logic [27,38]). Proposition 1
still holds.

– Kernel extensions. In this case the closed kernel is extended by new closed
symbols, as already shown for closed frameworks.

Example 6. The framework LIST (X, � ⇒ ListX, nil, ., @, nocc) can be ob-
tained by extending the framework LIST (X ⇒ ListX, nil, ., @, nocc), without
� and without constraint axioms, by the parameter � : [X, X] constrained by
TotalOrdering(�). The kernel NAT can be extended by explicitly defining the
most useful operations and predicates on natural numbers. The defined symbols
can be extended by the relevant operations on lists, by means of explicit defi-
nitions. For example, the definitions of list membership, length, concatenation
and permutation are:5

D∈ : x ∈ l↔ nocc(x, l) > 0
Dlen : ∀i • (∃x • x@(i, l))↔ i < len(l)
D| : ∀i, x • (i < len(l)→ (x@(i, l)↔ x@(i, l|m))) ∧

(len(l) ≤ i→ (x@(i, m)↔ x@(i + len(l), l|m)))
Dperm : perm(l, m)↔ ∀x • nocc(x, l) = nocc(x, m)

D∈ gives rise to an adequate extension, because its definiens is quantifier free.
The definiens of Dlen is ∀i • (∃x • x@(i, l))↔ i < k and the proof obligation re-
quires a proof of ∀l • ∃!k • ∀i • (∃x • x@(i, l))↔ i < k. Since the definiens is quan-
tified, adequacy must be checked (and can be proved), by constructive proofs or
by program synthesis. Adequacy must be checked (and can be proved) also for
D| and Dperm.

Using � : [X, X], we can also define operations on ordered lists, like l �L m
(lexicographic ordering on lists), ord(l) (l is an ordered list), and so on. Their
properties can be proved using the total ordering constraints. For example, we
can prove that the lexicographic ordering �L is, in turn, a total ordering.

2.2 Specifications

In a compositional unit K, specifications assume their proper meaning only in
the context of the framework F . In this section we define formally what we
5 In Dlen and D|, the universal quantifiers of the definiens have not been omitted.

Specifying Compositional Units for Correct Program Development 11

mean by specifications in F and we show some examples. We maintain a strict
distinction between specification frameworks and (program) specifications and,
to distinguish the function and relation symbols of the framework from those
computed by programs, the latter will be called (program) operations.

Definition 8 (Specifications and S-expansions). Let F(Π ⇒ ∆) = 〈Σ,X〉
be a framework. A specification Sω in (the context of) F is a set of closed
(Σ + ω)-formulas, that define a set of operations ω in terms of F .

An Sω-expansion of a model m of F is a (Σ + ω)-expansion m′ of m such
that m′ |= Sω.

That is, Sω can be interpreted as an expansion operator that associates with
every intended model of F the corresponding Sω-expansions, namely the expan-
sions that interpret the specified operations according to Sω.

Definition 9 (Strict Specifications). A specification Sω is strict in a frame-
work F , if, for every model m of F , there is only one Sω-expansion. It is non-
strict otherwise.

Now we list different kinds of strict and non-strict specifications considered
in [28], essentially based on explicit definitions. The specification formalism con-
sidered here is tailored to logic programs with definite clauses in a many-sorted
signature. Program semantics is based on minimum Herbrand models, where
program data (those used in programs) coincide with ground terms. We as-
sume that the signature ΣD of program data is pre-defined by the framework
F , and that, for every closed or defined sort s of ΣD, F contains the axioms
construct(c1, . . . , cn : s), where c1, . . . , cn are the constructors of s. They are the
unique operations of sort s that can be used in logic programs. This assump-
tion concerns Herbrand models of standard logic programs, where construct(. . .)
holds, but our treatment readily extends to the specification formalism for con-
straint logic programs by assuming that ΣD is the constraint signature, and is
pre-defined by the framework.

Since in logic programs only program predicates are not pre-defined, we have
to specify only them. There are different forms of specifications.

If-and-Only-if Specifications. An if-and-only-if specification in a framework
F is an explicit definition of a new predicate r:

Sr : ∀x • r(x)↔ R(x)

By the well known properties of explicit definitions, for every model m of the
framework F , there is only one Sr-expansion of m, that is, Sr is strict.

Example 7. In NAT we can specify, for example, the following predicates:

Sdiv : div(i, j, h, k)↔ i = j ∗ h + k ∧ k < j;
Sdivides : divides(i, j)↔ ∃h • div(j, i, h, 0);
Sprime : prime(i)↔ ∀j • divides(j, i)→ j = 1 ∨ j = i;

12 Kung-Kiu Lau and Mario Ornaghi

Super-and-sub Specifications. A super-and-sub specification in a framework
F is of the form

Sr : ∀x • (Rsub(x)→ r(x)) ∧ (r(x)→ Rsuper(x))

where Rsub(x) and Rsuper(x) are two formulas ofF such that F � ∀x • Rsub(x)→
Rsuper(x).

The implication ∀x • Rsub(x) → Rsuper(x) is satisfied by the models of F .
Therefore, in every intended model i, the relation Rsub in i, i.e., the set of values
x such that i |= Rsub(x), is a sub-relation of the relation Rsuper, and the specified
relation r is any relation that is a super-relation of Rsub but is a sub-relation of
Rsuper .

Conditional Specifications. A conditional specification of a new relation r in
a framework F has the form:

∀x, y • IC(x)→ (r(x, y)↔ R(x, y)) (1)

where IC(x) is the input condition, and R(x, y) is the input-output condition.
Both IC(x) and R(x, y) are formulas of F . (1) specifies r(x, y) only when the
input condition IC(x) is true, while nothing is required if the input condition
is false. That is, IC(x) states that r(x, y) is to be called only in contexts that
make it true. This fact allows us to assume IC(x) when reasoning about correct
reuse, as shown in Section 3.2.

(1) is equivalent to the following super-and-sub specification, which allows
us to apply the results of [34] in correctness proofs:

∀x, y • (IC(x) ∧R(x, y)→ r(x, y)) ∧ (r(x, y)→ ¬IC(x) ∨R(x, y))

Example 8. In the open framework LIST (X, �⇒ ListX, nil, ., @, nocc), we
have for example the following specification:

Ssort : sort(l, m)↔ perm(l, m) ∧ ord(m);
Smerge : ord(l) ∧ ord(m)→ (merge(l, m, o)↔ ord(o) ∧ perm(l|m, o));
Ssplit : (len(l) > 1 ∧ split(l, m, n)→ perm(l, m|n) ∧ len(m) < len(l)∧

len(n) < len(l)) ∧ (len(l) > 1→ ∃m, n • split(l, m, n));

Ssort is an if-and-only-if specification, Smerge is a conditional specification. By
the input condition, merge(l, m) is to be called only in contexts where the input
lists are ordered. If they are not, o is not required to be ordered. Ssplit is an ex-
ample of another form of non-strict specification (called a selector specification)
that we do not discuss here (see [28]).

2.3 Interface Specifications, Programs, and Correctness

Here we consider correctness of (logic) programs with respect to interface spec-
ifications. In Section 3.2, we will consider the role of interface specifications in
correct reuse. We start by introducing some terminology.

Specifying Compositional Units for Correct Program Development 13

The signature ΣP of a program P contains the declarations of its predicate,
constant and function symbols, and the sorts occurring in such declarations.
The data signature of P is the subsignature of its sort, constant and function
symbols. According to the previous section, the data signature belongs to the
framework signature. We will distinguish open and closed programs, as follows.

The defined predicates of a program P are those that occur in the head of at
least one clause of P , while the (possible) open predicates of P are those that
occur only in the body. A program P is open if its signature contains at least one
open sort or predicate. It is closed if no open symbol belongs to its signature.

A interface specification for an open program P is of the form Sπ ⇒ Sδ,
where Sπ are specifications of a set π of predicates that includes all the open
predicates of P , and Sδ are specifications of a set δ of predicates that are included
in the defined predicates of P . We will write P : Sπ ⇒ Sδ to indicate that P has
specification Sπ ⇒ Sδ. If P has no open predicates, then Sπ will be empty. In
this case, we write P :⇒ Sδ.

Example 9. In a compositional unit with open framework LIST , we can declare
the following open sorting program (where Ssplit, Smerge and Ssort are as shown
in Example 8):

Program Psort : Ssplit, Smerge ⇒ Ssort

{
sort(nil, nil)←

sort(x.nil, x.nil)←
sort(x.y.l, o)← split(x.y.l), m, n),

sort(m, m1), sort(n, n1),
merge(m1, n1, o).

}

Programs may be open independently from the framework, i.e., closed frame-
works may contain open programs. For example, in the closed framework NAT ,
we can declare:

Program Pprod : Ssum ⇒ Sprod

{
prod(i, 0, 0) ←
prod(i, s(j), h)← prod(i, j, k), sum(k, i, h). }
{

where:
Ssum : sum(x, y, z)↔ z = x + y;
Sprod : prod(x, y, z)↔ z = x · y.

Now we can define program correctness. We will first explain the correctness
of closed programs in closed frameworks, because it is simpler and more intuitive.
Then we introduce correctness of open programs.

14 Kung-Kiu Lau and Mario Ornaghi

Correctness of Closed Programs. A closed program P has only defined
predicates, and an interface specification of P is of the form ⇒ Sδ. For simplic-
ity, we will consider the case of interface specifications ⇒ Sr with one defined
predicate r (the extension to ⇒ Sr1 , . . . , Srk

, with k > 1, is immediate). We
define program correctness in a closed framework as follows:

Definition 10 (Correctness of Closed Programs). Let F be a closed frame-
work with intended model i. Let Sr be a specification of a predicate r, P be a
program that computes r, and h be the minimum Herbrand of P . P is correct
with respect to the interface specification ⇒ Sr iff the interpretation of r in h
coincides with the interpretation of r in one of the Sr-expansions of i.

For conciseness, we will say that P : ⇒ Sr is correct, to indicate that P is
correct with respect to ⇒ Sr.

For a strict specification Sr, there is only one Sr-expansion of i, that is, the
new symbol r defined by Sr has a unique interpretation in i, and one in h.
Correctness of P :⇒ Sr means that the two interpretations of r coincide, or, at
least, are isomorphic. This is illustrated in Figure 2.

Framework F

Pr

Ŝr

interpretation of r in

interpretation of r in
isoinitial model i of F

minimum Herbrand model h of Pr

Fig. 2. Strict specifications.

If Sr is not strict, then r has many interpretations with respect to i. Correct-
ness of P : ⇒ Sr in this case means that the interpretation of r in h coincides
with one of the interpretations of r with respect to i. This is illustrated in Fig-
ure 3.

Framework F

Pr

...
Sr

Framework F

interpretation of r in

interpretations of r in
isoinitial model i of F

minimum Herbrand model h of Pr

Fig. 3. Non-strict specifications.

Specifying Compositional Units for Correct Program Development 15

Steadfastness: Correctness of Open Programs. Now we consider open pro-
grams in open frameworks, and we discuss the associated notion of correctness.
An open program is correct if it behaves as expected in all the circumstances.
We called this property steadfastness [34].

The correctness relation between an interface specification Sπ ⇒ Sδ and an
open program P cannot be defined as in Definition 10, because open frameworks
may have many intended models and we cannot use minimum Herbrand models
as the semantics of open programs, since in the minimum Herbrand models,
open relations are assumed to be empty, and therefore cannot play the role
of parameters. So in [34] we introduced minimum j-models , together with the
notion of steadfastness , to serve as the basis for a model and proof theory of the
correctness of open programs.

Here we first recall the definition of steadfastness informally, and then define
correctness of open programs, and give its relevant properties. A pre-signature
for an open program P is a signature Ω that contains the data signature and the
open predicates of P , but not the defined predicates of P . A pre-interpretation
in Ω is an Ω-interpretation. That is, symbols of Ω are considered to be open,
and a pre-interpretation j interprets them arbitrarily. In contrast, the intended
meaning of the defined predicates of P is stated by its clauses, in terms of j.

Let P be a program with defined predicates δ. To define the intended mean-
ing of δ in a pre-interpretation j, we introduce j-models. A j-model of P is a
model m of P , such that m |Ω = j, i.e., m coincides with j over Ω. Since two
distinct j-models m and n differ only for the interpretation of δ, we can compare
them by looking at δ: we say that m is contained in n, written m ⊆δ n, iff the
interpretation of (the predicates of) δ in m is contained in that of δ in n. We
can show that a minimum j-model (with respect to ⊆δ) exists. The minimum
j-model of P will be indicated by jP , and it represents the interpretation of δ
stated by the program P , in the pre-interpretation j.

Using minimum j-models, steadfastness in an interpretation can be defined
as follows.

Definition 11 (Steadfastness). Let P be an open program, Ω be a pre-signa-
ture for P , and r be a predicate defined by P . P is steadfast for r in a (Ω + r)-
interpretation i if and only if the interpretation of r in its minimum i |Ω-model
coincides with the interpretation of r in i.

More intuitively, steadfastness in i for r means that the interpretation of r
in i coincides with the interpretation of r stated by P , when the open symbols
Ω are interpreted as in i (i.e., when the pre-interpretation is i |Ω). Consider for
example the open program P in the context of NAT :

r(x)← p(z, x)

where x and z are of sort N at. ΣNat∪{p : [N at,N at]} is a pre-signature for this
program. Consider the interpretation i1 where ΣNat is interpreted as in NAT ,
r(x) means “x is even”, and p(z, x) means “z +z = x”. If we interpret p as in i1,
we can easily see that the interpretation of r(x) in the corresponding minimum

16 Kung-Kiu Lau and Mario Ornaghi

model of P coincides with the interpretation of r(x) in i1, i.e., P is steadfast
in i1. Similarly, if we consider i2 that interprets p(z, x) as “z ∗ z = x”, to get
steadfastness i2 has to interpret r(x) as “x is a perfect square”.

Correctness is steadfastness in the expansions of the intended models stated
by the interface specification:

Definition 12 (Correctness of Open Programs). Let F be an open frame-
work, and P : Sπ ⇒ Sδ be an open program. P : Sπ ⇒ Sδ is correct in F
iff for every intended model i of F and every Sπ-expansion iπ of i, there is a
Sδ-expansion iπ,δ of iπ, such that P is steadfast in iπ,δ for the predicate symbols
of δ.

The intuitive meaning of the previous definition is the following: Σ + π is a
pre-signature for P , and iπ is a pre-interpretation that interprets the data signa-
ture according to F and the open symbols according to Sπ, i.e., iπ represents a
legal parameter passing. Steadfastness of P in iπ,δ means that the interpretation
of δ stated by P for the parameter passing iπ is correct with respect to Sδ.

The following important properties of correct reusability hold (see [34]):

Proposition 2 (Inheritance). Let F ′ be an adequate extension of an adequate
(open) framework F . If P : Sπ ⇒ Sδ is correct in F , then it is correct in F ′.

As we will show in Section 3, framework composition can be treated in
terms of extension. Therefore inheritance yields a first level of correct reusability,
namely reusability of correct programs through framework composition, exten-
sion and instantiation. This level of correct reusability would not be important,
however, if we could not guarantee the correctness of the composition of the
inherited open programs. This second, important level of correct reusability will
be called compositionality. In compositionality, interface specifications play a
central role, as shown by the following theorems:

Theorem 2 (Compositionality). If P : Sπ1 , Sδ2 ⇒ Sδ1 and Q : Sπ2 ⇒ Sδ2

are correct in a framework F and are not mutually recursive, then P ∪ Q :
Sπ1 , Sπ2 ⇒ Sδ1 , Sδ2 is correct in F .

As we can see, interface specifications indicate how programs can be com-
posed to correctly interact. Theorem 2 can be extended to mutually recursive
programs, but in this case we have to check that open termination [34] is pre-
served. By inheritance and compositionality we get reusability, as shown by the
following example.

Example 10. We can show that the open program P : Ssplit, Smerge ⇒ Ssort in
Example 9 is correct in the open framework LIST . This means that, in every
instance of LIST , P : Ssplit, Smerge ⇒ Ssort is always correct with respect
to the specification ⇒ Ssort, provided that it is composed with closed correct
programs Qmerge :⇒ Smerge and Qsplit :⇒ Ssplit.

This example shows that compositionality corresponds to a priori correctness
of open programs in a framework. It thus corresponds to correctness of open
modules in a library. It is to be contrasted with a posteriori correctness, i.e.,
correctness established by verification after program composition.

Specifying Compositional Units for Correct Program Development 17

2.4 Related Work

Specification frameworks are similar to Abstract Data Types (ADT’s). ADT’s
became popular in the 80’s and have been widely studied [47]. In general, they
are based on the initial algebra approach, that is, intended models are initial
models. Parametric ADT’s have also been studied. These are similar to our
open frameworks, even though they are technically defined in a different way.
A detailed treatment of algebraic ADT’s, including the parametric case, can be
found, for example, in [13].

The initial algebra approach is adequate for ADT specification, where the
purpose is to give the minimal signature and axioms that are needed to char-
acterise the desired data and operations. Initial models generalise the idea of
minimum Herbrand models, and always exist for algebraic ADT’s and consis-
tent Horn theories [21]. The existence of an initial model allows us to axiomatise
only positive knowledge and to use (consistently) negation as failure: a fact is
false if we do not have evidence of its truth. This allows for very compact ax-
iomatisations.

In contrast, our purpose is “knowledge representation”, that is, we are looking
for an expressive signature and a rich set of axioms, to obtain a framework that
represents our overall knowledge of a problem domain and allows us to reason
about it. Isoinitial semantics requires stronger axiomatisations, and better meets
our “richness requirement”, compared to initial semantics. It was introduced in
[5], with the purpose of giving a model-theoretic characterisation of computable
ADT’s.

Finally, our approach is different from the algebraic approach in the three-
level architecture of our compositional units, and in the role that frameworks
play in it. In this regard, we are closer to the two-tiered specification style of
Larch [20], where specifications have two components: the first one is written
in the Larch Shared Language LSL, and the second one in a Larch Interface
Language, which is oriented to the programming language and is used to specify
the interfaces between program components, i.e., the way they communicate.

We consider non-recursive definitions, like explicit or conditional definitions,
to be an important tool for both extending frameworks and specifying programs.
In this regard, our work is similar to [36]. At the program and specification levels,
our approach is in the tradition of logic program synthesis and correctness. Our
notion of correctness for closed programs is similar to the one introduced in
[22]. Correctness of open programs with respect to specifications similar to our
interface specifications is considered in [10]. A conditional specification is like a
pre-post-condition style of specification as in VDM [24], Z [45], and B [1], except
that it is declarative. Declarative conditional specifications for logic programs
were introduced in [8].

3 Operations on Compositional Units

In this section we consider compositional units as building blocks for program
development, that is, we focus on operations on compositional units that al-

18 Kung-Kiu Lau and Mario Ornaghi

low their correct reuse in the process of developing an application. This process
starts from pre-existing compositional units, and iteratively extends them either
directly, by inserting domain specific knowledge, or by reusing, i.e., incorporat-
ing, other compositional units. Reuse can, in turn, be factorised into composition
and extension, which are the basic operations considered in this section. Such
operations involve the framework, the specification and the program levels. We
will consider the different levels separately.

3.1 Framework Reuse

To compose two units C1 and C2, first we compose and/or extend their frame-
works F1 and F2 into a common extension F , and then use the specifications
and programs in this richer F . Thus, in general, the framework level is the first
level to be involved in operations on compositional units. Here we consider the
basic operations needed at this level.

Framework Morphisms. Operations like renaming or identifying different
symbols may be needed for framework reuse. This kind of operation is formalised
by framework morphisms. Before introducing framework morphisms, we briefly
recall signature and theory morphisms [19,13].

A signature morphism µ : Σ1 → Σ2 is a map from the symbols of Σ1 to those
of Σ2 that preserves the declarations. Σ2 extends Σ1, in the following sense:

– Σ2 contains the µ-image of Σ1;
– every Σ1-formula F translates into a Σ2-formula µ(F);
– instead of Σ1-reducts we have µ-reducts: the µ-reduct of a Σ2-interpretation

m is the Σ1-interpretation m|µ that interprets every symbol σ of Σ1 as m
interprets the image µ(σ).

A theory morphism µ : 〈Σ1,X1〉 → 〈Σ2,X2〉 is a signature morphism µ : Σ1 →
Σ2 such that µ(X1)∗ ⊆ X∗

2, where ∗ denotes the proof-theoretic closure. µ works
as a generalised extension, in the sense that Σ2 contains (the µ-image of) Σ1

and the theorems of X2 contain (the µ-translation of) those of X1.
Framework morphisms are defined as follows:

Definition 13 (Framework Morphism). Let F(Π ⇒ ∆) = 〈Σ,X〉 and
F ′(Π ′ ⇒ ∆′) = 〈Σ′,X′〉 be two frameworks. A framework morphism ε : F → F ′

is a theory morphism ε : 〈Σ,X〉 → 〈Σ′,X′〉 such that the kernel signature of F ′

contains the ε-image of the kernel signature of F .

F ′ can be considered as a generalised extension of F . We say that it is the
extension generated by the morphism ε : F → F ′. Let F be adequate. We say
that F ′ is an adequate extension of F if F ′ is adequate and, for every intended
model i′ of F ′, the ε-reduct i′|ε is an intended model of F .

Framework extensions considered in the previous section, that simply in-
troduce new symbols and axioms, are a particular case. They correspond to
inclusion morphisms ε that map each symbol σ into σ itself.

Specifying Compositional Units for Correct Program Development 19

Example 11. A (generalised) adequate extension of LIST is:

Framework LIST 1(� ⇒ ListNat, nil, ., @, nocc)
extends LIST ;
close: X by Nat;
rename: ListX by ListNat;

It is generated by the morphism ε defined by the clauses close and rename. ε
maps the sort symbol X into Nat, the sort symbol ListX into ListNat, and leaves
the other symbols unchanged. Of course, arities and sorts in relation, function
and constant declarations are translated by replacing X and ListX by Nat and
ListNat. For example, now we have nil : []→ ListNat and . : [Nat, ListNat]→
ListNat.

In LIST 1, ListNat is closed (its intended meaning is the set of finite lists of
natural numbers) and the only open symbol is � : [Nat, Nat]. A closed adequate
extension can be obtained by closing � by

D� : x � y ↔ x ≤ y

In this case, we have simply added the new axiom D�, that is, we have an
inclusion morphism of LIST 1 into a closed framework, that we will indicate by
LISTNAT .

The morphisms considered in this example are at the basis of the closure
operations that we consider next.

Closure. A closure is an extension that closes the meaning of some symbols.
Here, we consider closure by internalisation, as defined in [30]. As shown in [30],
internalisation can be used to implement constrained parameter passing, as well
as to introduce objects as the closures of suitable open frameworks that represent
classes.

Let F(Π ⇒ ∆) = 〈Σ,X〉 be an open framework. An internalisation of an
open symbol is one of the following operations:

– Sort closure. The closure: close S by s
renames the open sort S by a sort s of the signature ΣK of the closed kernel.
No axioms are added.

– Relation closure. The operation: close r by ∀x • r(x)↔ R(x)
closes r by the new closure axiom ∀x • r(x)↔ R(x). The declaration of r may
contain only sorts of ΣK , and the defining formula R(x) is a ΣK-formula.

– Function closure. The operation: close f by ∀x • F (x, f(x))
closes f by the new closure axiom ∀x • F (x, f(x)). The declaration of f may
contain only sorts of ΣK , and the defining formula F (x, y) is a ΣK-formula
such that XK � ∀x • ∃!y • F (x, y).

Let F(Π ⇒ ∆) = 〈Σ,X〉 be an open framework. A closure by internalisation
is an internalisation that closes all the open sorts by closed sorts and all the open

20 Kung-Kiu Lau and Mario Ornaghi

relation and function symbols by a set DΠ of closure axioms, and satisfies the
following constraint satisfaction condition:

XK ∪DΠ � XC (2)

It produces the frameworkF ′ = 〈Σ′, (X\XC)∪DΠ ,T∪XC〉 where Σ′ is obtained
by replacing in Σ each open sort s with the sort s′ closing s, DΠ are the closure
axioms of the open functions and relations, and, by (2), the constraints XC have
been deleted from the axioms and added to the theorems.

Example 12. LISTNAT of Example 11 is a closure of LIST . It has been ob-
tained by a sort closure and a relation closure, by the definition D�. Constraints
are satisfied because

XNat ∪D� � TotalOrdering(�)

Now the total ordering axioms TotalOrdering(�) are no longer constraints, but
theorems.

A different closure could be obtained, e.g., by closing � by the reverse order-
ing x � y ↔ y ≤ x.

A closure of a framework F should be an adequate closed extension of F .
We can prove:

Theorem 3 (Closure). Let F(Π ⇒ ∆) = 〈Σ,X〉 be an adequate framework,
and F ′ = 〈Σ′, (X \XC)∪DΠ ,T∪XC〉 be the result of a closure. Then F ′ is an
adequate closed extension of F iff F ′ is consistent and atomically complete.

The relation and function closures preserve consistency because DΠ are ex-
plicit definitions in the kernel and, by the constraint satisfaction condition, XC

become theorems. Thus consistency is preserved if sort closures preserve the
consistency of X \XC . A sufficient condition to preserve consistency is that no
cardinality restrictions are imposed on the open sorts, as is commonly the case
(like, e.g., the open sort X in generic lists).

Concerning atomic completeness, let K be the extension of the closed kernel
of F by the closure axioms DΠ . Atomic completeness may be not guaranteed
for two reasons: (a) K is not atomically complete because DΠ are not adequate
explicit definitions in the kernel, or (b) the atomic completeness of K is not suffi-
cient to obtain the atomic completeness for the defined symbols, because stronger
properties are required by the definition axioms. To avoid (a), DΠ must be ad-
equate explicit definitions in the kernel. With quantifier free defining formulas,
adequacy is guaranteed by Proposition 1. An example of (b) is the definition
axiom r(x) ↔ ∃y • p(x, y), where p is a parameter; in this case, K should prove
∃y • p(x, y) or ¬∃y • p(x, y) for every ground x, i.e., atomic completeness of K
does not suffice. However, in general it is reasonable to look for definition axioms
that close the defined symbols whenever the open ones become closed, i.e., case
(b) should be the exception. Thus, if we do not use quantified defining formulas,
closures by internalisation are, in general, adequate.

Specifying Compositional Units for Correct Program Development 21

Closure may also be performed incrementally, step by step. A partial closure
is called a specialisation, because it does not close all the open symbols. Besides
partial closure, we may have other kinds of specialisation. For example: adding
constraints, using open symbols in the defining formulas, mapping open sorts into
non-closed sorts, and so on. All these operations can be formalised by extension
morphisms, but we will omit relevant details.

Example 13. The framework LIST 1 of Example 11 is a specialisation of LIST ,
obtained by the partial closure of X .

Framework Composition. Framework composition essentially coincides with
framework union. The simplest case is disjoint union. However, it may happen
that we want to preserve a common part, for example natural numbers. Here
we consider the composition of two frameworks F1 and F2 that have a common
subframework G containing their closed kernel, and have disjoint signatures for
the symbols not in G. In this case, composition preserving G can be defined as
the operation +G that builds the composite F1 +G F2 simply by making the
union of signatures, open and closed symbols, and axioms. If F1 and F2 share
symbols not in G, then we rename such symbols, to make them different before
performing the union.

+G is syntactic composition. Its semantic counterpart is amalgamation. Two
intended models i1 of F1 and i2 of F2 are amalgamable if they coincide over
the common signature. Their amalgamation is the interpretation i1 + i2 that
coincides with i1 over the signature of F1 and with i2 over the signature of
F2 (the definition is consistent, because i1 and i2 coincide over the common
signature). The intended models of F1 +G F2 are the amalgamations of the pairs
of amalgamable intended models of F1 and F2.

This kind of composition has been formalised in ADT’s using pushouts (see
e.g., [13]), and the pushout approach also works for frameworks, and it allows
us to generalise the operation +G . We do not consider the general case here for
conciseness.

Example 14. Let BOOL be a framework defining booleans in the usual way. Lists
of booleans with open ordering � : [Bool, Bool] can be defined starting from the
disjoint union LIST + BOOL, as follows:

Framework LIST 2(� ⇒ ListBool, nil, .,@, nocc)
extends LIST + BOOL;
close: X by Bool;
rename: ListX by ListBool;

We can compose lists of booleans LIST 2 and lists of natural numbers LIST 1

(see Example 11). To avoid duplicating the kernel of natural numbers, we perform
the composition with common subframework NAT :

LIST 1 +NAT LIST 2

22 Kung-Kiu Lau and Mario Ornaghi

To distinguish the non-common symbols, the composition renames them. Since
we allow overloading, only sort and constant renaming may be needed. For
example, we have nil1 : [] → ListNat,] nil2 : [] → ListBool, overloaded
. : [Nat, ListNat]→ ListNat and . : [Nat, ListBool]→ ListBool, and so on.

3.2 Specification Reuse

Specifications are used in two ways. Before composition or extension, they are
used as a guide to search for possible compositional units that specify a desired
context and set of operations. For example, if we need list sorting, we look for
compositional units that contain the framework for lists with totally ordered
elements, a specification Ssort of a sort operation, and a program P : . . . ⇒
Ssort, After composition or extension, the compositional units guide program
composition, according to Theorem 2.

Reusability after composition or extension is enhanced by specification re-
duction, as considered in [15]. Indeed, after extension or composition, we have a
richer framework, where new properties have been added. It may happen that a
specification can be reduced to a new specification, that is, in the new context
the new specification can replace the old one.

Informally, an “old” specification S reduces to a “new” specification S′ if
correctness with respect to the new S′ entails correctness with respect to the old
S. Formally, we give the following definition:

Definition 14 (Specification Reduction). Let F be a framework, and Sω,
S′

ω′ be two sets of specifications in F . We say that Sω reduces to S′
ω′ iff ω ⊆ ω′

and F � S′
ω′ → Sω.

For two interface specifications Sπ1 ⇒ Sδ1 , Sπ2 ⇒ Sδ2 , we say that Sπ1 ⇒ Sδ1

reduces Sπ2 ⇒ Sδ2 iff Sπ2 reduces to Sπ1 and Sδ1 reduces to Sδ2 .

Reduction is transitive and reflexive. Its meaning is made clear by Theorem 4:

Theorem 4. Let F be a framework, and Sπ1 ⇒ Sδ1 and Sπ2 ⇒ Sδ2 be two
interface specifications. If Sπ1 ⇒ Sδ1 reduces to Sπ2 ⇒ Sδ2 in F , then every
program P that is correct with respect to Sπ2 ⇒ Sδ2 is also correct with respect
to Sπ1 ⇒ Sδ1 (in F).

Example 15. Let K be a compositional unit with open framework LIST , and
let Slhd be the strict specification Slhd : lhd(x, y) ↔ x � y. In the extension
LISTNAT of LIST , S′

lhd : lhd(x, y) ↔ x ≤ y reduces to Slhd (we prove
Slhd → S′

lhd by the closure axiom x � y ↔ x ≤ y). Thus Slhd ⇒ Smerge (where
Smerge is defined in Example 8) reduces to S′

lhd ⇒ Smerge, and we can use S′
lhd

when deriving correct merge programs. For example, we could write a correct
program Pmerge′ : S′

lhd ⇒ Smerge which avoids comparisons with 0, since 0
is the minimum natural number; Pmerge′ would correctly override a (possibly)
inherited Pmerge : Slhd ⇒ Smerge.

Specifying Compositional Units for Correct Program Development 23

In the reduction of conditional specifications [15], we can take into account
the call context. This is shown in the following example.

Example 16. In the open framework LIST we can give the following specifica-
tions:

S′
merge : l = x.nil ∧ ord(m)→ (merge(l, m, o)↔ ord(o) ∧ perm(x.m, o));

S′
split : split(x.l, m, n)↔ m = x.nil ∧ n = l.

Ssplit of Example 8 reduces to S′
split (S′

split → Ssplit can be proved in LIST).
Smerge of Example 8 reduces to S′

merge in a call context where the input con-
dition l = x.nil ∧ ord(m) of S′

merge holds for the lists l and m to be merged.
Indeed, in such a context, S′

merge corresponds to merge(x.nil, m, o)↔ ord(o) ∧
perm(x.m, o), Smerge to merge(x.nil, m, o) ↔ ord(o) ∧ perm(x.nil|m, o), and
they are equivalent. We will say that Smerge contextually reduces to S′

merge.
Contextual reduction implies contextual reuse, that is, Smerge correctly re-

duces to S′
merge only when the input condition of S′

merge is true. As a conse-
quence, we cannot replace Smerge by S′

merge in isolation, but we have to consider
the call context. In contrast, we can replace Ssplit by S′

split in isolation, because
the corresponding reduction is not contextual.

As we will see in Example 17, S′
merge and S′

split are tailored to the insertion
sort algorithm. In a similar way, we can specialise Smerge and Ssplit to obtain
specifications tailored to different sorting algorithms, like merge sort, quick sort,
and so on.

In general, it is useful to list proven reduction theorems in the specification
section of a compositional unit. Such a list would allow us to automatically search
for families of program compositions, giving rise to families of implementations.
It is for this reason that we have put RD1, ...RDk in Fig. 1.

3.3 Program Reuse

Like specifications, programs in compositional units can be used before and after
unit composition.

We use programs before composition when we look for existing compositional
units containing specific algorithms. Otherwise, reuse is after unit composition,
when we use the inherited programs to solve the problem in question. The op-
eration that allows us to reuse the inherited programs is program composition.
It is strongly guided by specifications. Specification reduction is important for
program reusability, since it allows us to use the richer knowledge obtained af-
ter framework composition and extension to solve the puzzle of composing the
inherited open programs into a correct solution of the problem at hand.

Example 17. Let K be a compositional unit with framework LIST , and let us
assume that it already contains the correct program Pinsert : Slhd ⇒ Sinsert,
where Pinsert implements the usual algorithm for inserting an element into its

24 Kung-Kiu Lau and Mario Ornaghi

correct position in an ordered list, Slhd is the specification shown in Example
15, and Sinsert is:

Sinsert : ord(l)→ (insert(x, l, m)↔ (ord(m) ∧ perm(x.l, m)).

We show how reductions of Example 16 can be used to solve the puzzle of
obtaining a correct sorting program Qsort : Slhd ⇒ Ssort. If we compose Pinsert

with the correct one-clause programs

Psplit :⇒ S′
split split(x.l, x.nil, l)←

Plink : Sinsert ⇒ S′
merge merge(x.nil, l, o)← insert(x, l, o)

we get a correct program Qaux : Slhd ⇒ S′
split, S

′
merge. By the specification re-

ductions of Example 16, the interface specification S′
split, S

′
merge ⇒ Ssort contex-

tually reduces to Ssplit, Smerge ⇒ Ssort. Thus, the program Psort : Ssplit, Smerge

⇒ Ssort of Example 9 is also correct with respect to S′
split, S

′
merge ⇒ Ssort, be-

cause the input condition of S′
merge is satisfied in the call context of merge, as

required. By composing Psort and Qaux, we get a correct Qsort : Slhd ⇒ Ssort.
Qsort can be closed in the instances that close lhd. For example, Slhd reduces

to S′
lhd in a compositional unit with frameworkLISTNAT , as shown in Example

15. Suppose that our compositional unit already contains a correct program
Pleq :⇒ Sleq . If we compose it with the correct one-clause program

Plhd : Sleq ⇒ S′
lhd lhd(x, y)← leq(x, y)

we get a closed correct program Qlhd :⇒ Slhd. By specification reduction we get
that Qlhd :⇒ S′

lhd is also correct. Then the closed program Qlhd∪Qsort :⇒ Ssort

is correct in LISTNAT .

3.4 Related Work

At the framework level, our approach to modularity and reuse is in the tradition
of algebraic ADT’s [2,13,47]. We can apply the techniques developed there, based
on theory morphisms. Our specification frameworks should not be confused with
the specification frames introduced in [25]. The latter, like institutions [19], are
general frames for the composition and reuse of formal theories. With respect to
modularity and compositionality, our frameworks with open symbols and defined
symbols are similar, for example, to modules with import and export interfaces,
as introduced in [14].

In [25], a distinction between parameterised specifications and parameterised
data types is introduced, following [42]. In [42], programs and specifications
are considered as different entities, involved in different phases and different
methodological aspects of program development, and a distinction between pa-
rameterised specifications and specifications of parameterised programs is in-
troduced. In this, [42] is very close to our general view, but our approach is
different. Our three-level architecture of compositional units is closer to Larch
[20]. Like Larch, our specifications state precisely how open programs interact,

Specifying Compositional Units for Correct Program Development 25

and allow us to compose them correctly. However, unlike Larch, we have a further
specification level, which is intermediate between the framework level and the
interface specification level. This yields a further level of correct reuse, through
the specification reduction theorems.

With regard to modularity in logic programming, there are approaches based
on ideas similar to our j-models (see [7]), while the approach proposed in [39]
relates to specification frames [25]. However, all these approaches do not distin-
guish between specifications and programs. A distinction between programs and
specifications is made in [40], where modular Prolog programs (as proposed in
[44]) are derived from first-order specifications (based on Extended ML [43]).
However, in [40], the role of specifications is different from ours, and there is no
counterpart of specification frameworks.

Finally, in the area of object-oriented analysis and design, component-based
development methods [12,3] have emerged, where components and reuse are two
of the main aspects of the software development process. In this area, a soft-
ware component is a unit of composition with contractually specified interfaces
and context dependencies only [46]. Our compositional units broadly fit this
characterisation, considering interface specifications Sπ ⇒ Sδ as interfaces, and
specifications and their reducibility relation in the context of the framework as
context dependencies.

4 Conclusion

In this paper we have essentially collected our previous work on program spec-
ification and synthesis, and we have organised it by introducing compositional
units, which are a more complete and refined version of correct schemas [16].
Then we have illustrated the basic operations for extending and correctly reusing
(composing) compositional units.

A compositional unit is a unit of reuse that contains both a formalisation of
the problem domain, at the framework level, and a collection of open programs,
correct with respect to their specifications, at the specification and program
levels. The framework level specifies, by the constraint axioms, when and how a
compositional unit can be correctly reused. The specification and program levels
support program reuse and development. The examples of Section 3 have been
mainly devoted to illustrating the role of specifications in the correct reuse of
compositional units for program development. In particular, specifications are
a guide for program composition, and specification reduction allows us to deal
with the problem of adapting the inherited open programs to the specific context
of reuse.

In this paper, we have not considered program synthesis, because we con-
centrated on specifications and their role in the reuse of compositional units
and correct open programs. However, there is a strong relationship to logic pro-
gram synthesis [11], and indeed our research started in this area. An interesting
fact is the possibility of using logic program synthesis as a way for expanding
frameworks in an adequate way [27].

26 Kung-Kiu Lau and Mario Ornaghi

The distinct levels for specifications and programs distinguish our approach.
At these levels, we have integrated our research on steadfast open programs and
specifications. As we have shown, specifications and steadfast programs yield a
further level of reuse, through specification reduction and program composition.
We believe that this is an important feature of our approach, especially in the
context of so-called software components [46]. Our future work will be devoted
to the study of the applicability of our approach to the development of correct
component-based software.

On the one hand, we want to develop the approach further, based on logic
programs, along the following two lines: (a) We will extend our approach to
other kinds of logic programs. For constraint logic programs and those normal
programs that have one intended model, the extension of our results is almost
immediate. (b) We will study methods for deriving steadfast programs from their
interface specifications, based on our compositional units and on the results
of [34] and the ideas exposed in [16]. To this end, tools would be necessary
for developing an interactive environment where we can define and compose
specification frameworks, specifications and programs, and use a proof assistant
for developing the necessary proofs. We are looking at logical frameworks like
Isabelle [23] as possible candidates.

On the other hand, we want to consider the extension of our approach to
different programming paradigms. This can be done in two ways. The first choice
is to define, on top of specification frameworks, different specification formalisms,
oriented to different program languages. Such formalisms would provide different
interface specification languages, in a way similar to Larch [20]. The second
choice is to use our compositional units as meta-level declarative specifications
of systems implemented in possibly imperative programming languages.

So far, we have considered only the second choice. We began a study of
object-oriented systems, with the aim of testing the versatility of our model and,
hopefully, of obtaining a formalisation of object-oriented compositional units
that could be used as software components. In [32], we introduced a static model
of object-oriented systems, suitable for formalising states and queries. Our static
approach shares similarities with [6,36], and allows us to formalise UML class
and object diagrams [41], queries and OCL constraints [9]. The introduction of
time in our object-oriented systems is work in progress.

Our final goal is to obtain a methodology for the specification and the de-
velopment of correct component-based software, where programs are developed
together with the formal proof of their correctness. This methodology should
allow the development of correct compositional units to be used as software
components, that is, units of composition that can be deployed independently
and are subject to composition by third parties [46].

Acknowledgements

We are very grateful to the referees for their valuable suggestions and comments.
This paper has been radically improved as a result of their efforts.

Specifying Compositional Units for Correct Program Development 27

References

1. J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Founda-
tions of Systems Specifications. Springer, 1999.

3. C. Atkinson et al. Component-based Product Line Engineering with UML. Addison-
Wesley, 2001.

4. J. Barwise, editor. Handbook of Mathematical Logic. North Holland, 1977.
5. A. Bertoni, G. Mauri, and P. Miglioli. On the power of model theory in specifying

abstract data types and in capturing their recursiveness. Fundamenta Informaticae,
VI(2):127–170, 1983.

6. R.H. Bourdeau and B. H.C. Cheng. A formal semantics for object model diagrams.
IEEE Trans. Soft. Eng., 21(10):799–821, 1995.

7. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. J. Logic
Programming, 19,20:443–502, 1994. Special issue: Ten years of logic programming.

8. K.L. Clark. Predicate Logic as a Computational Formalism. Report 79/59, Imperial
College of Science and Technology, University of London, 1979.

9. S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The Ams-
terdam manifesto on OCL. In T. Clark and J. Warmer, editors, Object Modeling
with the OCL: The Rationale behind the Object Constraint Language, LNCS 2263,
pages 115–149. Springer, 2002.

10. Y. Deville. Logic Programming. Systematic Program Development. Addison-
Wesley, 1990.

11. Y. Deville and K.-K. Lau. Logic program synthesis. J. Logic Programming,
19,20:321–350, 1994. Special Issue: Ten Years of Logic Programming.

12. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML:
The Catalysis Approach. Addison-Wesley, 1999.

13. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer-Verlag,
1987.

14. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Springer-Verlag,
1989.

15. P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In N. Fuchs,
editor, Proc. LOPSTR 97, Lecture Notes in Computer Science 1463, pages 124–
143. Springer-Verlag, 1998.

16. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of
correct schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–
127, July 2000.

17. J.H. Gallier. Logic for Computer Science: Foundations for Automatic Theorem
Proving. Harper and Row, 1986.

18. C. Ghezzi, M. Jazayeri, and D.Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, second edition, 2003.

19. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. J. ACM, 39(1):95–146, 1992.

20. J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

21. W. Hodges. Logical Features of Horn Clauses. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 1 :449–503, Oxford University Press, 1993.

22. C.J. Hogger. Derivation of Logic Programs. J. ACM, 28(2):372–392, 1981.

28 Kung-Kiu Lau and Mario Ornaghi

23. Isabelle: www.cl.cam.ac.uk/Research/HVG/Isabelle
24. C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, second

edition, 1990.
25. R.M. Jimenez, F. Orejas, and H. Ehrig. Compositionality and Compatibility of

Parametrization and Parameter Passing in Specification Languages. Math. Struct.
in Computer Science, 5:283–314, 1995.

26. C. Kreitz, K.-K. Lau, and M. Ornaghi. Formal reasoning about modules, reuse and
their correctness. In D.M. Gabbay and H.J. Ohlbach, editors, Proc. Int. Conf. on
Formal and Applied Practical Reasoning, Lecture Notes in Artificial Intelligence
1085, pages 384–399. Springer-Verlag, 1996.

27. K.-K. Lau and M. Ornaghi. On specification frameworks and deductive synthesis of
logic programs. In L. Fribourg and F. Turini, editors, Proc. LOPSTR 94 and META
94, Lecture Notes in Computer Science 883, pages 104–121. Springer-Verlag, 1994.

28. K.-K. Lau and M. Ornaghi. Forms of logic specifications: A preliminary study. In
J. Gallagher, editor, Proc. LOPSTR 96, Lecture Notes in Computer Science 1207,
pages 295–312. Springer-Verlag, 1997.

29. K.-K. Lau and M. Ornaghi. The relationship between logic programs and speci-
fications — the subset example revisited. J. Logic Programming, 30(3):239–257,
March 1997.

30. K.-K. Lau and M. Ornaghi. OOD frameworks in component-based software devel-
opment in computational logic. In P. Flener, editor, Proc. LOPSTR 98, Lecture
Notes in Computer Science 1559, pages 101–123. Springer-Verlag, 1999.

31. K.-K. Lau and M. Ornaghi. Isoinitial semantics for logic programs. In J.W. Lloyd et
al , editor, Proc. 1st Int. Conf. on Computational Logic, Lecture Notes in Artificial
Intelligence 1861, pages 223–238. Springer-Verlag, 2000.

32. K.-K. Lau and M. Ornaghi. Correct object-oriented systems in computational
logic. In A. Pettorossi, editor, Proc. LOPSTR 01, Lecture Notes in Computer
Science 2372, pages 168–190. Springer-Verlag, 2002.

33. K.-K. Lau and M. Ornaghi. Specifying object-oriented systems in computational
logic. In M. Bruynooghe, editor, Pre-Proceedings of LOPSTR 03, pages 49–64,
2003. Report CW 365, Dept. of Computer Science, Katholieke Universiteit Leuven,
Belgium.

34. K.-K. Lau, M. Ornaghi, and S.-Å. Tärnlund. Steadfast logic programs. J. Logic
Programming, 38(3):259–294, March 1999.

35. J.W. Lloyd. Foundations of Logic Programming. 2nd edn., Springer-Verlag, 1987.
36. T. Maibaum. Conservative extensions, interpretations between theories and all

that. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT ’97: Theory and
Practice of Software Developement, pages 40–67. Springer-Verlag, 1997. LNCS
1214.

37. Yu.V. Matijacevic. Recursively enumerable sets are Diophantine. Dokl. Akad.
Nauk SSSR, 191:279–282, 1970.

38. P. Miglioli, U.Moscato, and M. Ornaghi. Abstract parametric classes and abstract
data types defined by classical and constructive logical methods. J. Symbolic Com-
putation, 18:41–81, 1994.

39. P. Miglioli, U.Moscato, and M. Ornaghi. An algebraic framework for the defini-
tion of compositional semantics of normal logic programs. The Journal of Logic
Programming, 40:89–123, 1999.

40. M.G. Read and E.A. Kazmierczak. Formal program development in modular Pro-
log: A case study. In T.P. Clement and K.-K. Lau, editors, Proc. LOPSTR 91,
pages 69–93. Springer-Verlag, 1992.

Specifying Compositional Units for Correct Program Development 29

41. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1999.

42. D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: parametrisation revisited. Acta Informatica,
29(8):689–736, 1992.

43. D. Sannella and A. Tarlecki. Extended ML: past, present and future. In Proc.
7th workshop on specification of abstract data types, LNCS 534, pages 297–322.
Springer-Verlag, 1991.

44. D. Sannella and L.A. Wallen. A calculus for the construction of mdular prolog
programs. In IEEE 4th Symposium on Logic Programming, IEEE, 1987.

45. J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second edition,
1992.

46. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, second edition, 2002.

47. M. Wirsing. Algebraic specification. In J. Van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 675–788. Elsevier, 1990.

	Introduction
	Compositional Units
	Operations on Compositional Units
	Conclusion

