
28th International Conference
on Software Engineering

Tutorial H11

Software Component Models

Kung-Kiu Lau, the University of Manchester, UK

Schedule

2:00–3:30 Introduction

Category 1: JavaBeans

Category 2: EJB, COM, .NET, CCM, web services

3:30–4:00 Break

4:00–5:30 Category 3: Koala, SOFA, KobrA

Category 4: ADLs, UML 2.0, PECOS, Pin, Fractal

Disclaimers:
We’re not presenting user manuals!
Material continually being updated

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 1

Introduction

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 2

Software Component Models

A software component model defines:

� what components are

– syntax of components

– semantics of components

� how to compose components

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 3

Current Component Definitions

� Szyperski:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is
subject to composition by third parties.”

� Meyer:

“A component is a software element (modular unit) satisfying the

following conditions:
1. It can be used by other software elements, its ‘clients’.

2. It possesses an official usage description, which is sufficient
for a client author to use it.

3. It is not tied to any fixed set of clients.”

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 4

Current Component Definitions (Continued)
� Heineman and Council

“A [component is a] software element that conforms to a
component model and can be independently deployed and

composed without modification according to a composition
standard.”

Comparison wrt component models:

Definition Based on CM Defines CM

Szyperski No No

Meyer No No

Heineman and Council Yes No

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 5

Current Software Component Models

Components Composition

Name
Interface

Code

Semantics or ??
provided services
required services

Typical � objects � method calls

examples � architectural units � ADL connectors

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 6

Categories based on Component Syntax

Object−oriented Programming Languages

Programming Languages with IDL mappings

Architecture Description Languages

Component Syntax Models

JavaBeans, EJB

ADLs, UML2.0, KobrA, Koala, SOFA,
PECOS, Pin

COM, .NET, CCM, web services, Fractal

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 7

Categories based on Component Semantics

Classes

Objects

Component Semantics

Architectural Units

Models

ADLs, UML2.0, KobrA, Koala, SOFA, PECOS, Pin

JavaBeans, EJB

COM, .NET, CCM, web services, Fractal

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 8

An Idealised Component Life Cycle

A

B

C

D

BC

Design Deployment

AssemblerBuilder Repository

C

B

A

Deployment

RTE

InsA

InsB

InsD

InsBC

A

B

D

BC

deployment phase
composition operator

component (binary)

Run−time

component (source)
design phase
composition operator

component
instance

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 9

An Idealised Component Life Cycle (Continued)

This life cycle reflects CBSE desiderata:

components pre-exist repository

components produced & builder & assembler
used independently (+ repository)

components can be copied design & deployment
and instantiated + run-time phases

composites can be made and composites
used for further composition in repository

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 10

Categories based on Composition

RTE

InsA

InsB

RTE

InsA

InsB

RTE

InsA

InsB

A

B

AssemblerBuilder Repository

A

B

A

B

A

B

Builder Repository

A

B

(JavaBeans)
Category 1

(EJB, COM, .NET, CCM, web services)

Builder Repository

A

B

A

AB

RTE

InsAB

(Koala, SOFA, KobrA)
Category 3

Builder

A

B

(ADLs, UML2.0, PECOS, Pin, Fractal)

Category 2

Category 4

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 11

Category 1
JavaBeans

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 12

JavaBeans: Components

In JavaBeans, a component is a bean, which is just any Java class
that has:

� methods

� events

� properties

A bean is intended to be constructed and manipulated in a visual
builder tool.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 13

JavaBeans: Builder, Repository, Assembler

Individual beans are constructed as Java classes in a JDK, and
deposited in the ToolBox of the BDK.

� JDK is the builder for Java beans

� ToolBox of the BDK is the repository (No composition)

� Beanbox is the assembler (Composition of bean instances)

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

A = BeanA (JAR file)
B = BeanB (JAR file)

InsA = BeanA instance
InsB = BeanB instance

JVMJDK
= Adaptor object

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 14

JavaBeans: Composition

In deployment phase, bean instances can be composed via event
delegation

SourceBean TargetBean

EventAdaptor

Event
Generate

Method
Target

Target Method
Call

NotifiedEvent
Notify
Event

Trigger
Target Method

BeanBox

� a bean ‘composes’ with another bean by sending a message
through delegation of events

� BeanBox automatically generates, compiles, and loads event
adaptor classes for logistics of events

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 15

JavaBeans: Summary

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

A = BeanA (JAR file)
B = BeanB (JAR file)

InsA = BeanA instance
InsB = BeanB instance

JVMJDK
= Adaptor object

SourceBean TargetBean

EventAdaptor

Event
Generate

Method
Target

Target Method
Call

NotifiedEvent
Notify
Event

Trigger
Target Method

BeanBox

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 16

JavaBeans: Example

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

JVMJDK

A = MessageBeanA (JAR file)
B = MessageBeanB (JAR file)

Bean A = MessageBeanA instance
Bean B = MessageBeanB instance

= Adaptor object

Consider a simple bean MessageBean that displays a message
when it is notified of the event ‘mousePressed’ by another bean:

� It is a Java class that has a method for displaying a message

� It has mouse events such as ‘mousePressed’

� It displays a message that is a property which can be set by the
programmer

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 17

JavaBeans: Example (Continued)

Beans A (yellow) & B (blue) Choosing source event in B

(Bean B is selected)

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 18

JavaBeans: Example (Continued)

Bean B is linked to Bean A Bean A displays message

by choosing target event in Bean A when mouse pressed in Bean B

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 19

Category 2
EJB, COM, .NET, CCM, web services

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 20

Enterprise JavaBeans (EJB): Components

In EJB, a component is a an enterprise Java bean with two Java
interfaces:

Enterprise
Bean

EJB Container

J2EE ServerClient Machine

Container
Enterprise

Bean

Database

Client
Application

Client Application

� an enterprise Java bean is a Java class in an EJB container on a
J2EE server

� an EJB container uses the interfaces to manage and execute the
Java class and its instances.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 21

Enterprise JavaBeans (EJB): Components (Continued)

For an EJB:

� its Java class defines the methods of the bean

� its interfaces expose the capabilities of the bean and provide all
the methods needed for (remote) client applications to access
the bean (over a network)

– its home interface represents the life-cycle methods of the
bean such as create, destroy and locate a bean instance

– its remote interface represents the tasks performed by the
bean

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 22

Enterprise JavaBeans (EJB): Components (Continued)

There are 3 kinds of EJBs:

� Entity beans

Entity beans model business data; they are Java objects that
cache database information.

� Session beans

Session beans model business processes; they are Java objects
that act as agents performing tasks.

� Message-driven beans

Message-driven beans model message-related business
processes; they are Java objects that act as message listeners.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 23

EJB: Builder, Repository

� JDK or Eclipse is the builder for EJB (Composition of beans)

� An EJB container is the repository

� There is no assembler

EJB containerEJB container

A = EJBA (EJB JAR file)
B = EJBB (EJB JAR file)

InsA = EJBA instance
InsB = EJBB instance

Eclipse

A

B

Builder Repository

A

B

RTE

InsA

InsB
= Method calls

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 24

EJB: Composition

In design phase, enterprise beans are composed by method and
event delegation

...

ClientApplicationC

methodN

method1

...

ClientApplicationA

method1

methodN

...

ClientApplicationB

method1

methodN

DataBase

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1

methodM

methodN

EJB Container

J2EE Server

method1

methodM

methodN

method1

methodM

methodN

method1

methodM

methodN

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 25

EJB: Summary

EJB containerEJB container

A = EJBA (EJB JAR file)
B = EJBB (EJB JAR file)

InsA = EJBA instance
InsB = EJBB instance

Eclipse

A

B

Builder Repository

A

B

RTE

InsA

InsB
= Method calls

...

ClientApplicationC

methodN

method1

...

ClientApplicationA

method1

methodN

...

ClientApplicationB

method1

methodN

DataBase

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1

methodM

methodN

EJB Container

J2EE Server

method1

methodM

methodN

method1

methodM

methodN

method1

methodM

methodN

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 26

EJB: Example

Consider a book store which wishes to maintain a database of its
book stock.

The table of books in the database can be represented as an entity
bean BookBean that consists of one class and two interfaces:

� BookBean is the Java class that defines the methods

� BookHome is the home interface

� Book is the remote interface

Each instance of BookBean represents a row of the table of books in
a database.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 27

EJB: Example (Continued)

BookHome

+create(isbn : String) : Book

+findByPrimaryKey(isbn : String) : Book

Book

+getBookName() : String
+setBookName(bookname : String) : void
+getAuthor() : String
+setAuthor(author : String) : void
+getPublisher() : String
+setPublisher(publisher : String) : void
+getPrice() : double
+setPrice(price : double) : void

+isbn : String
+bookname : String
+author : String
+publisher : String
+price : double
−ctx : EntityContext

+ejbCreate(isbn : String) : String
+ejbPostCreate(isbn : String) : void
+getBookName() : String
+setBookName(bookname : String) : void
+getAuthor() : String
+setAuthor(author : String) : void
+getPublisher() : String
+setPublisher(publisher : String) : void
+getPrice() : double
+setPrice(price : double) : void
+setEntityContext(ctx : EntityContext) : void
+unsetEnityContext() : void
+ejbActiviate() : void
+ejbPassivate() : void
+ejbLoad() : void
+ejbStore() : void
+ejbRemove() : void

BookBean

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 28

EJB: Example (Continued)

To construct the book store application, we need a session bean
BookStoreBean that consists of one class, two interfaces (and a
helper class):

� BookStoreBean is the Java class that defines the methods

� BookStoreHome is the home interface

� BookStore is the remote interface

� (Books is the helper class)

BookStoreBean is used to add details of a set of books into the table
of books in the database.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 29

EJB: Example (Continued)

+create() : BookStore
BookStoreHome

BookStore

+addBook(books : Books[]) : void

BookStoreBean
−c : SessionContext
+addBook(boos : Books[]) : void

+ejbRemove() : void

+setSessionContext(c:SessionContext):void
+ejbCreate() : void
+ejbActivate() : void
+ejbPassivate() : void

+toString() : String
+price : double
+publisher : String
+author : String
+bookname : String
+isbn : String

Books

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 30

EJB: Example (Continued)

The book store application is assembled from the BookBean and the
BookStoreBean.

delegate
Books

BookStore

BookStoreHome

Book

BookHome

BookStoreBean

BookBean
BookClient

BookStoreClient

J2EE server

EJB container

RTE

InsA

InsB

EJB containerEJB container

A = BookBean (EJB JAR file)
B = BookStoreBean (EJB JAR file)

InsA = BookBean instance
InsB = BookStoreBean instance

A

B

Builder Repository

A

B
= Method calls

Eclipse

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 31

Component Object Model (COM): Components

In Microsoft COM, a component is a unit of compiled code on a COM
server.

Component

IUnknown

Ifun1

Ifun2

� Services in a component are invoked via pointers to the
functions that implement them

� For each service provided there is an interface

(a COM component can implement multiple interfaces)

� COM interfaces are specified in Microsoft IDL

� Every component must implement an IUnknown interface

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 32

COM: Builder, Repository

COM components are constructed in a programming environment
such as Microsoft Visual Studio .NET

� The programming environment is the builder

� The COM server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming

A = COMA
B = COMB
InsA = COMA instance
InsB = COMB instance

= Method calls

environment
COM

Server
COM

Server

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 33

COM: Composition

In design phase, COM components are composed by method calls
via interface pointers

IUnknown

Component1 Component2
Client

Reference

IUnknown

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 34

COM: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming

A = COMA
B = COMB
InsA = COMA instance
InsB = COMB instance

= Method calls

environment
COM

Server
COM

Server

IUnknown

Component1 Component2
Client

Reference

IUnknown

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 35

COM: Example

Consider a spell checker system that comprises a checker
component and a dictionary component.

import "unknwn.idl";
[object, uuid(CAB357AE−1204−4783−AC3F−A7E4CA19EF6C)]
interface ISpellCheck : IUnknown {

[uuid(0EE7AE7−A357−4a04−B6D6−CE4DFD5CCAAF)]
library SpellcheckerLib {

[out, retval] BOOL *isCorrect);
HRESULT CheckSpelling([in, string] char *word,

[uuid(49FA65CD−8CF6−4876−8443−37A75A267A7D)]
coclass CSpellCheck {

interface ISpellCheck;
};

}

}

the method implemented by

Checker component interface −− ISpellCheck

ISpellCheck interface specifies

Checker component

UUID of Checker component

CLSID of CSpellCheck

the ISpellCheck interface
CSpellCheck class implements

IID of ISpellCheck

A “library” is an interface glued with a coclass, e.g. the “library” of
ISpellCheck and CSpellCheck makes the whole component

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 36

COM: Example (Continued)

import "unknwn.idl";
[object, uuid(D66AB784−75C8−4f52−8EB2−C5BE9796ABEF)]
interface IUseCustomDictionary : IUnknown {

 }
[uuid(1C381680−CF29−46b1−8060−1237C36EA6C7)]

HRESULT UseCustomDictionary([out, retval] vector <string>* dict);

library CustomdictionaryLib {
[uuid(C51815AF−CB06−4028−956C−C5F3E5781780)]
coclass CCustomDictionary {

interface IUseCustomDictionary;
}

};

Dictionary component interface −− IUseCustomDictionary

CCustomDictionary class implements

UUID of Dictionary component
IUseCustomDictionary interface

by Dictionary component
specifies the method implemented

the IUseCustomDictionary interface

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 37

COM: Example (Continued)

In design phase, the spell checker system is assembled through
method calls via interface pointers.

STDMETHODIMP_(ULONG) CSpellCheckImpl :: AddRef(void) {

}

#include <string.h>

CSpellCheckImpl :: CSpellCheckImpl() { }
CSpellCheckImpl :: ~CSpellCheckImpl() { }

}

}

STDMETHODIMP_(ULONG) CSpellCheckImpl :: Release(void) {

CCustomDictionary* pc = 0;
pc = new CCustomDictionaryImpl();
IUseCustomDictionary* pi = 0;
HRESULT hr;
hr = pc −> QueryInterface(IID_IUseCustomDictionary, (void**) &pi);

if(FAILED(hr)) return ERROR;
pi −> UseCustomDictionary(&m_dictionary);

}

STDMETHODIMP CSpellCheckImpl :: CheckSpelling(...) {

STDMETHODIMP CSpellCheckImpl :: QueryInterface(...) {

Checker component implementation

}

}

#include <fstream>

CCustomDictionaryImpl :: CCustomDictionaryImpl() { }
CCustomDictionaryImpl :: ~CCustomDictionaryImpl() { }

}

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: AddRef(void) {

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: Release(void) {

*p = dictionary;
return NOERROR;
}

STDMETHODIMP CCustomDictionaryImpl :: QueryInterface(...) {

STDMETHODIMP CCustomDictionaryImpl :: UseCustomDictionary(...) {

Dictionary component implementation

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 38

.NET Component Model: Components

In Microsoft .NET, a component is an assembly that is a binary unit
supported by Common Language Runtime (CLR)

Metadata
IL code

� A .NET component is made up of metadata and code in
Intermediate Language (IL)

� The metadata contains the description of assembly, types and
attributes

� The IL code can be executed in CLR

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 39

.NET: Builder, Repository

.NET components are constructed in a programming environment
such as Microsoft Visual Studio .NET

� The programming environment is the builder

� The Windows server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

Windows Windows
ServerServer

A = NETA
B = NETB
InsA = NETA instance
InsB = NETB instance

Environment

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 40

.NET: Composition

In the design phase, .NET components are composed by method
calls through references via metadata

Metadata
IL code

Metadata
IL code

Metadata
IL code

Assembly 1 Assembly 2 Assembly 3

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 41

.NET: Example

Consider a banking system with an ATM component, which serves two
instances Bank1 and Bank2 of a Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);

Metadata
(attributes)

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 42

.NET: Example (Continued)

The banking system is assembled from the ATM component and two
instances of Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 43

.NET: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

Windows Windows
ServerServer

A = NETA
B = NETB
InsA = NETA instance
InsB = NETB instance

Environment

Metadata
IL code

Metadata
IL code

Metadata
IL code

Assembly 1 Assembly 2 Assembly 3

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 44

CORBA Component Model (CCM): Components

In CCM, a component is a CORBA meta-type hosted by a CCM
container on a CCM platform such as OpenCCM.

event sink

event source

facet

receptacle

� A CORBA meta-type is an extension and specialisation of a
CORBA Object

� Component interfaces are made up of ports

CCM supports 4 kinds of ports: Facets (provided services),
Receptacles (required services), Event Sources and Sinks.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 45

CORBA Component Model (CCM): Components (Continued)
� Component types are specific, named collections of features that

can be described in OMG IDL 3

� CORBA components have homes that are component factories
to manage a component instance life cycle

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 46

CCM: Builder, Repository

CORBA components are constructed in a programming environment
such as Open Production Tool Chain and deposited into a CCM
container hosted and managed by a CCM platform such as
OpenCCM.

� The programming environment is the builder

� The CCM container is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

= Method calls
Programming
environment

A = CCA
B = CCB
InsA = CCA instance
InsB = CCB instance

CCM
Container

CCM
Container

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 47

CCM: Composition

In design phase, CORBA components are assembled by method
and event delegations

in such a way that

� facets match receptacles

� event sources match event sinks

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 48

CCM: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

= Method calls
Programming
environment

A = CCA
B = CCB
InsA = CCA instance
InsB = CCB instance

CCM
Container

CCM
Container

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 49

CCM: Example

Consider a simple bank system implemented by ATM,
BankConsortium, Bank1 and Bank2 components (in OMG IDL 3):

 string getBankID(string cardno);
 void deposit(string cardno);
void withdraw(string cardno);
void checkBalance(string cardno);

}

IsCustomer, NotCustomer
};

public string cardno;
public BankState customerinfo;

};

};

component

};

attribute string atmid;
uses Bank getBankID;
consumes AccountInfo customer;

manages instances

interface

enum

eventtype

home
factory

event sink
receptacle

Bank {

ATM {

BankState {

ATMhome manages ATM {
new(in string atmid);

AccountInfo {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 50

CCM: Example (Continued)

event source

attribute string bankid;
provides Bank deposit;
provides Bank withdraw;
provides Bank checkBalance;

};

facet

component

provides Bank getBankID;
attribute string bankconsortiumid;

};
publishes AccountInfo customer;

uses Bank deposit;
uses Bank withdraw;
provides Bank checkBalance;

component

};

};
factory

home
factory new(in string bankid);

home

Bank {

BankConsortium {

BankConhome manages BankConsortium {
new(in string bankconsortiumid);

Bankhome manages Bank {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 51

CCM: Example (Continued)

The bank system is assembled from the ATM, BankConsortium,
Bank1 and Bank2 components.

Bank1

BankConsortiumATM

Bank2

The composition of CORBA components is specified in a
Component Assembly Descriptor (an XML file)

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 52

CCM: Example (Continued)

</componentfile>
<filearchive name = "BankConsortium.csd">
<componnetfile id = "BankConsortium component">

</componentfile>

<componnetfile id = "Bank component">
<filearchive name = "Bank.csd">

<componnetfile id = "ATM component">
<componentfiles>

<filearchive name = "ATM.csd">
</componentfile>

</componentfiles>

<componentfileref idref = "ATM Component"/>
<componentinstantiation id = "atm">
<registerwithnaming name = "ATMHome"/>

<homereplacement id = "ATMHome">

</homereplacement>

<partitioning>

</homereplacement>

<homereplacement id = "BankConsortiumHome">
<componentfileref idref = "BankConsortium Component"/>
<componentinstantiation id = "bankconsortium">
<registerwithnaming name = "BankConsortiumHome"/>

<homereplacement id = "BankHome">
<componentfileref idref = "Bank Component"/>
<componentinstantiation id = "bank1">

</homereplacement>
<registerwithnaming name = "BankHome"/>
<componentinstantiation id = "bank2">

</partitioning>

<component assembly id = "banksys">
<description> bank assembly descriptor</description>

</component assembly>

<connections>
..
.

</connections>

<!DOCTYPE component assembly BANKSYSTEM "componentassembly.dtd">
<?xml version = "1.0"?>

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 53

CCM: Example (Continued)

<providesport>
<providesidentifier>getBankID</providesidentifier>

<providesidentifier>deposit</providesidentifier>
<providesidentifier>withdraw</providesidentifier>
<providesidentifier>checkBalance</providesidentifier>

<componentinstantiationref idref = "bankcon"/>

<componentinstantiationref idref = "bank"/>
</providesport>

<connectinterface>
<usesport>

<usesidentifier>deposit</usesidentifier>
<usesidentifier>withdraw</usesidentifier>
<usesidentifier>checkBalance</usesidentifier>

</usesport>

<componentinstantiationref idref = "atm"/>

<componentinstantiationref idref = "bankcon"/>

</connectinterface>
<connectevent>

<publishesport>

<usesidentifier>getBankID</usesidentifier>

<publishesidentifier>customer</publishesidentifier>
<componentinstantiationref idref = "bankcon"/>

</publishesport>
<consumesport>

<consumesidentifier>customer</consumesidentifier>
<componentinstantiationref idref = "atm"/>

</consumesport>
</connectevent>

<connections>

</connections>

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 54

Web Services: Components

In Web Services, a component is a service that is a resource that
represents a capability of performing some tasks

Service Code

WSDL

� A Web Service contains an interface in WSDL (Web Service
Description Language) and a binary implementation

� The WSDL interface describes the functionalities that the web
service can provide and are published in UDDI (Universal
Description Discovery and Integration)

� The service code is the implementation that performs the task

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 55

Web Services: Builder, Repository

Web services are constructed in a programming environment, e.g.
Eclipse for Java

� The programming environment is the builder

� The server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

ServerServer

A = ServiceA
B = ServiceB
InsA = ServiceA instance
InsB = ServiceB instance

Environment

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 56

Web Services: Composition

In the design phase, Web services are composed by method calls
through SOAP messages

Service Code

WSDL

Service Code

WSDL

Service Code

WSDL

Service 1 Service 2 Service 3
SOAP SOAP

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 57

Web Services: Example

Consider a banking system with an ATM service and two Bank
services

...

...

...

......

...

...

...

...

...

 Password CusPass = new Password();
 CardNo ACardNo = new CardNo();

public class Bank1{

public String Deposit(CardNo ACardNo,
Password CusPass) {

}}

 CardNo ACardNo = new CardNo();

Password CusPass = new Password();

public class ATM{

public String LocateBank(CardNo ACardNo,
Password CusPass) {

if(B1) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank1, ...);

elsif(B2) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank2, ...);

}
}

 CardNo ACardNo = new CardNo();
 Password CusPass = new Password();

public class Bank2{

public String Deposit(CardNo ACardNo,
Password CusPass) {

} }

The ATM service has SOAP messages to the Bank services
hard-coded into its service code.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 58

Web Services: Example (Continued)

In the design phase, the banking system is assembled from the ATM
service and two Bank services

...

...

...

...

...

......

...

 CardNo ACardNo = new CardNo();

Password CusPass = new Password();

public class ATM{

public String LocateBank(CardNo ACardNo,
Password CusPass) {

if(B1) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank1, ...);

elsif(B2) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank2, ...);

}
}

...

...

 Password CusPass = new Password();
 CardNo ACardNo = new CardNo();

public class Bank1{

public String Deposit(CardNo ACardNo,
Password CusPass) {

}}

 CardNo ACardNo = new CardNo();
 Password CusPass = new Password();

public class Bank2{

public String Deposit(CardNo ACardNo,
Password CusPass) {

} }

SOAP

SOAP
message

message

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 59

Web Services: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

ServerServer

A = ServiceA
B = ServiceB
InsA = ServiceA instance
InsB = ServiceB instance

Environment

Service Code

WSDL

Service Code

WSDL

Service Code

WSDL

Service 1 Service 2 Service 3
SOAP SOAP

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 60

Category 3
Koala, SOFA, KobrA

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 61

Koala: Components

In Koala � a component is a unit of design which has a specification
and an implementation.

� Semantically, components are units of computation and control
(and data) connected together in an architecture.

� Syntactically, components are defined in an ADL-like language
(Koala).

Components are definition files only (no implementation).

� C[K]omponent Organizer And Linking Assistant

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 62

Koala: Builder, Repository

� The builder is a Koala programming environment

� KoalaModel Workspace (a file system) provides the repository
(Composition of definition files)

� There is no assembler

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

A = Component A’s definition files
B = Component B’s definition files

AB = Component AB’s definition file
InsAB = Component AB’s binary file

= Method calls

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 63

Koala: Composition

In design phase, Koala components are composed by method calls
through connectors.

m

At run-time, Koala components are compiled into a programming
language and executed in the run-time environment of that language.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 64

Koala: Summary

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

A = Component A’s definition files
B = Component B’s definition files

AB = Component AB’s definition file
InsAB = Component AB’s binary file

= Method calls

m

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 65

Koala: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

 int count(void);
 }

interface ICount {

 provides Icount cp;

 connects cp = c_impl;
 contains module c_impl present;

}

Countdown component

 int count(int x);
 }

interface ICount {

interface ISignal {

}

 requires ICount dr;
 provides ISignal dp;
 contains module d_impl present;
 connects dr = d_impl;
 d_impl = dp;
 }

Display component

component Display {

component Countdown {

void display(int signal);

Koala IDL

Koala CDL

Koala IDL

Koala CDL

� The interfaces are specified in Koala IDL

� The component definitions are in Koala CDL

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 66

Koala: Example (Continued)

In design phase, the Stopwatch device is constructed by composing
a Countdown component (new) with a Display component (from the
repository)

Display

Stopwatch

Countdown

The definition file for Stopwatch is assembled from Countdown and
Display

}

Stopwatch configuration

connects d.dr = c.cp;

component Stopwatch {
contains component Countdown c;
contains component Display d;

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 67

Koala: Example (Continued)

In deployment phase, the definition files of Stopwatch, Countdown
and Display are compiled by the Koala compiler to C header files.

Then the programmer has to

� write C files (to implement the components)

� compile these with the header files to binary C code for
Stopwatch.

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

B = Display definition files
A = Countdown definition files

InsAB = Stopwatch binary file
AB = Stopwatch definition file

= Method calls

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 68

SOFA: Components

In SOFA � a component is a unit of design which has a specification
and an implementation, and is specified by its frame and
architecture.

� The frame defines provides and requires interfaces, and
properties of the component

� The architecture describes the structure of the component

� SOFA components are defined in an ADL-like language — SOFA
Component Definition Language (CDL).

� SOFtware Appliances

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 69

SOFA: Builder, Repository

SOFA components are constructed in SOFAnode and deposited into
the Template Repository.

� SOFAnode is the builder

� The Template Repository is the repository

� There is no assembler

InsAB

A

B

Builder Repository

A

AB

Template
Repository

A = SOFAA
B = SOFAB
AB = SOFAAB
InsAB = SOFAAB instance

= Connectors

RTE

SOFAnodeSOFAnode

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 70

SOFA: Composition

In design phase, SOFA components are composed by method calls
through connectors.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 71

SOFA: Summary

InsAB

A

B

Builder Repository

A

AB

Template
Repository

A = SOFAA
B = SOFAB
AB = SOFAAB
InsAB = SOFAAB instance

= Connectors

RTE

SOFAnodeSOFAnode

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 72

SOFA: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

 int count(void);
 };

interface CountInterface {

Countdown component

frame Countdown {
 provides:

 CountInterface Count;
};

architecture CUNI Countdown
version "1.0" primitive;

architecture CUNI Display
version "1.0" primitive;

Display component

 int count(int x);

void display(int signal);

interface CountInterface {

interface SignalInterface {

frame Display {
 requires:

 CountInterface Count;
 provides:

 };

};

 };
 SignalInterface Signal;

The components are specified in SOFA CDL.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 73

In design phase, the Stopwatch device is implemented by
constructing a new Countdown component and composing it with a
Display component from the repository.

DisplayCountdown

Stopwatch Architecture

The definition file for Stopwatch device is assembled from the
Countdown and Display components.

system CUNI Stopwatch version "1.0" {

};
bind aDisplay.Count to aCountdown.count using CSProcCall;
inst Display aDisplay;
inst Countdown aCountdown;

Stopwatch device

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 74

KobrA: Components

In KobrA � a component is a UML component. Every KobrA
component has a specification and an implementation

� The specification describes what a component does and thus it
is the interface of the component

� The implementation describes how it does it

� Komponenten-basierte Anwendungsentwicklung (component-based application
development)

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 75

KobrA: Builder, Repository

KobrA components can be constructed in a visual builder tool such
as Visual UML and deposited into a file system.

� The visual builder tool is the builder

� The file system is the repository

� There is no assembler

InsAB

A

B

Builder Repository

A

AB

RTE

Implementation
Language RTE

A = KobrAA
B = KobrAB
AB = KobrAAB
InsAB = KobrAAB instance

= method calls

Builder tool
UML Visual File

System

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 76

KobrA: Composition

In the design phase, KobrA components are composed by direct
method calls.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 77

KobrA: Summary

InsAB

A

B

Builder Repository

A

AB

RTE

Implementation
Language RTE

A = KobrAA
B = KobrAB
AB = KobrAAB
InsAB = KobrAAB instance

= method calls

Builder tool
UML Visual File

System

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 78

KobrA: Example

Consider a book store that maintains a database of its book stock
and sells its books by an Automatic Teller Machine (ATM).

subject
BookStore

noOfBooks : Integer := 0

addBooks(Book[] blist)
addBook(Book b)

viewBooks()
deletBook(Book b)
findBook(Book b)

The specification of the BookStore component is a UML class
diagram that specifies what the BookStore component does.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 79

KobrA: Example (Continued)

In design phase, the book store system is implemented by
constructing a new ATM component and composing it with
BookStore and Book components from the repository.

Komponent

subject
BookStore

Book
ATM

findBook(Book b)

purchaseBook(Book b)

1 1 1 *

The book store system is assembled from the ATM, BookStore and
Book components by direct method calls.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 80

Category 4
ADLs, UML 2.0, PECOS, Pin, Fractal

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 81

Architecture Description Languages (ADLs):
Components

In ADLs, a component is an architectural unit that represents a
primary computational element and data store of a system.

� Interfaces are defined by a set of ports

� Each port identifies a point of interaction between the
component and its environment

� A component may have multiple interfaces by using different
types of ports

� Connectors connect components via their ports

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 82

ADLs: Builder

� The builder is the ADL tool if any (Composition of architectural
units by connectors)

� There is no repository

� There is no assembler

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B’ = Implementation of B
A’ = Implementation of A

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

A = Component A
B = Component B
B1 = Component B1
B2 = Component B2

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 83

ADLs: Composition

In design phase, components are

� identified and defined

� assembled by connectors into a system design

The design has to be implemented (somehow) in a chosen
programming language.

At run-time, the implemented system is executed in the run-time
environment of that programming language.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 84

ADLs: Summary

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B’ = Implementation of B
A’ = Implementation of A

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

A = Component A
B = Component B
B1 = Component B1
B2 = Component B2

Acme/ArchJava Java

B1

B2

B1’

B2’
A B A’ B’

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 85

ADLs: Example

Consider a simple bank system consisting of an ATM component, a
BankConsortium component, and 2 Bank components Bank1 and
Bank2.

Component ATM = {

}
Port send;

Component BankConsortium = {

}

Port receive;
Port send;

ATM component BankConsortium component

Component Bank1 = {
Port receive;
Property bankid : String =

"Bank 1";

Component Bank2 = {
Port receive;
Property bankid : String =

"Bank 2";
}

Bank1 component Bank2 component
}

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 86

ADLs: Example (Continued)

In design phase, the architecture for the whole system is designed

ATM

B2

B1
BC

using the above components and the following connectors:

 }

Connector ATMtoBankCon = {
 Role request;
 Role produce;

 }

 Role request;
 Role produce;

Connector BankContoB1 = {

 }

 Role request;
 Role produce;

Connector BankContoB2 = {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 87

ADLs: Example (Continued)

Port receive;

};

Component Bank2 = {

Property bankid : String = "Bank2";
Port receive;

Component Bank1 = {

Property bankid : String = "Bank1";
};

System BankSys = {

Connector ATMtoBankCon = {

};

Role request;
Role produce;

Attachments {

};

Port receive;
Port send;

Port send;
Component BankConsortium = {Component ATM = {

}

BankConsortium.send to BankContoB2.request;

};

Connector BankContoB1 = {
Role request;
Role produce;

};

Role request;
Role produce;

};

}

BankContoB1.produce to Bank1.receive;

BankContoB2.produce to Bank2.receive;

ATMtoBankCon.produce to BankConsortium.receive;
BankConsortium.send to BankContoB1.request;

ATM.send to ATMtoBankCon.request;

Connector BankContoB2 = {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 88

ADLs: Example (Continued)

The design has to be implemented in some programming language.

At run-time, the implementation is executed in the run-time
environment of that language.

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B = BankConsortium component B’ = Implementation of B
A = ATM component A’ = Implementation of A

B1 = Bank component 1
B2 = Bank component 2

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

Acme/ArchJava Java

B1

B2
BCATM BC’

B1’

B2’
ATM’

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 89

UML 2.0 Component Model: Components

In UML 2.0, a component is a modular unit of a system with
well-defined interfaces that is replaceable within its environment.

provided service
required service

� A component defines its behaviour by required and provided
interfaces (ports);

� Services of components are encapsulated through their required
and provided interfaces.

Components are represented in UML 2.0.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 90

UML 2.0: Connectors

UML components are composed by UML connectors:

� delegation connectors

� assembly connectors

Composites are assembled by assembly connectors

Systems are assembled by delegation and assembly connectors

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 91

UML 2.0: Builder

UML components can be constructed in a visual builder tool such as
Visual UML.

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation

A = UMLA
B = UMLB
InsA = UMLA instance
InsB = UMLB instance

= connectors
Visual Builder

Tool

� The visual builder tool is the builder

� There is no repository

� There is no assembler

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 92

UML 2.0: Composition

In design phase, the architecture for the whole system is designed.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 93

UML 2.0: Summary

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation

A = UMLA
B = UMLB
InsA = UMLA instance
InsB = UMLB instance

= connectors
Visual Builder

Tool

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 94

UML 2.0: Example

Consider a simple bank system that is implemented by ATM,
BankConsortium, Bank1 and Bank2 components.

component

provided interfaces

required interfaces

BankConsortium

CheckBankID

GetCardNo
Withdraw
Deposit

CheckBalance

Withdraw
Deposit

CheckBalance

component

provided interfaces

Bank2

Withdraw
Deposit

CheckBalance

component

provided interfaces

Bank1

provided interfaces

GetCardNo
required interfaces

CheckBankID

component

ATM

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 95

UML 2.0: Example (Continued)

In design phase, the architecture for the whole system is designed.

Bank1

Bank2

ATM BankConsortium

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 96

PECOS: Components

In PECOS � a component is a unit of design which has a specification
and an implementation.

� Every component has a name, a number of property bundles, a
set of ports, and behaviour

� Ports are interfaces of components

PECOS components are specified in the CoCo (Component
Composition) language.

� PErvasive COmponent Systems

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 97

PECOS: Builder

Components in PECOS are constructed in a programming
environment such as Eclipse.

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation

A = PECOSA
B = PECOSB
InsA = PECOSA instance
InsB = PECOSB instance

= connectors
Programming
Enviroment

� The programming environment is the builder

� There is no repository

� There is no assembler

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 98

PECOS: Composition

In the design phase, components are composed by linking their ports
with connectors.

Implementation of PECOS components is usually done in Java or
C++, and so the run-time environment in the deployment phase is
that for Java or C++.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 99

PECOS: Summary

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation

A = PECOSA
B = PECOSB
InsA = PECOSA instance
InsB = PECOSB instance

= connectors
Programming
Enviroment

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 100

PECOS: Example

Consider a device that is assembled from Clock, Display, EventLoop
and DigitalDisplay components.

component Clock { component Display {

output long msecs; input long time;

} }

active component EventLoop { component DigitalDisplay {

output bool started; input long time_in_msecs;

} input bool can_draw;

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 101

PECOS: Example (Continued)

In the design phase, the architecture for the device is designed:

Digital
Display

Display
time

Clock

 (aperiodic)
(active component)

EventLoop

msecs

started can_draw

time_in_msecs

(active component, period = 1000 msecs)
Device

active component Device {

Clock clock; Display display; DigitalDisplay digitalDisplay;

EventLoop eventLoop;

connector time(clock.msecs, display.time,

digitalDisplay.time_in_msecs);

connector eventLoop_started (eventLoop.started,

digitalDisplay.can_draw);

}

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 102

Pin: Components

In Pin, a component is an architectural unit that specifies a
stimulus-response behaviour by a set of ports (pins).

� A component is represented by a set of sink pins and source
pins together with the component’s behaviour.

Components are defined in CCL (Construction and Composition
Language).

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 103

Pin: Builder

Pin components can be constructed in the CCL programming
environment.

Builder

A

B InsB

InsA

RTE

= connectors

A = PinA
B = PinB
InsA = PinA instance
InsB = PinB instance

Pin Programming Pin RTE
Environment

� The CCL programming environment is the builder

� There is no repository

� There is no assembler

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 104

Pin: Composition

In design phase, components are composed by connectors that link
the source pins of one component to the sink pins of another.

In deployment phase, implementations are usually generated by the
CCL processor and components are executed in the Pin run-time
environment.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 105

Pin: Summary

Builder

A

B InsB

InsA

RTE

= connectors

A = PinA
B = PinB
InsA = PinA instance
InsB = PinB instance

Pin Programming Pin RTE
Environment

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 106

Pin: Example

Consider a simple component AComp that is specified with both
structural and behavioural aspects in CCL.

}

ready −> work {
start −> ready { }

threaded react mission (receive, send, publish) {
source publish();

sink asynch receive();
source unicast send();

trigger ^receive();
action ^send();
}

}

work −> log {

}

trigger ^send();
action ^publish();

log −> ready {
trigger ^publish();
action ^receive();

}

component AComp() {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 107

Pin: Example (Continued)

In design phase, components comp1 and comp2 of type AComp are
composed by connectors that link comp1’s source pin (send) to
comp2’s sink pin (receive) to an assembly – AComposite.

assume {

}
AComp comp1(), comp2();

comp1:publish ~> compositesend;
comp2:publish ~> compositesend;

}

threaded react sending(send) {

compositesend:receive ~> comp1:receive;
comp1:send ~> comp2:receive;

threaded react received(receive) {
 start −> ready {};
 ready −> work {;

 action ^receive;
}

 work −> ready {};
}

 start −> ready {};
 ready −> work {;

 action ^send;
}

 work −> ready {};
}

}

service Receive() {

service Send() {

 E: Send compositesend();
 E: Receive compositereceive();

 source unicast receive();

 sink asynch send();

environment E {

assembly AComposite() (E) {

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 108

Fractal: Components

In Fractal, a component is a run-time entity that behaves like an
object.

A Fractal component comprises a content and a controller.

controller

content

� The content contains its interfaces and implementation

� The controller defines the control behaviour associated with the
component

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 109

Fractal: Components (Continued)

Interface Definition Languages (e.g. OMG IDL) are used to define
generic interfaces that can be implemented by components in
specific programming languages.

Current Fractal API is extended and modified from Java API with
JavaBeans-like introspection facilities.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 110

Fractal: Builder

Fractal components are constructed in a programming environment
with Fractal APIs.

Builder

A

B InsB

InsA

RTE

Programming
= connectors

A = FractalA
B = FractalB
InsA = FractalA instance
InsB = FractalB instance

Environment
Java Virtual

Machine

� The programming environment is the builder

� There is no repository

� There is no assembler

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 111

Fractal: Composition

In design phase, Fractal components are composed by method calls
through connectors.

The Java Virtual Machine serves as the run-time environment for
Fractal components.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 112

Fractal: Summary

Builder

A

B InsB

InsA

RTE

Programming
= connectors

A = FractalA
B = FractalB
InsA = FractalA instance
InsB = FractalB instance

Environment
Java Virtual

Machine

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 113

Fractal: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

 }

 }

 }

 }

Display component

void display ();

private Count count;
public void display () {

 count.count();
 }

 }
 return new String[] {"c"};

 if (disstr.equals("c")) {
 return count;

 }
 return null;

 if (disstr.equals("c")) {
 count = (Count)countobj;

 }

 if (disstr.equals("c")) {
 count = null;

 } }

public interface Signal{

public class Display implements Signal, BindingController{

public String[] listFc (){

public Object lookupFc (final string disstr){

public void bindFc (final string disstr, final Object countobj){

public void unbindFc (final string disstr){

 }
 System.out.print(i);
 for (int i = total; i > 0; i−−) {
public void count () {
private int total = 0;

 }
 void setTotal (int total);
 int getTotal ();

 } void count ();

 }

 return total;
 }

 this.total = total;
 }

 }

Countdown component

public interface Count{

public interface ControlTotal extends AttributeController{

public class Countdown implements Count, ControlTotal{

public int getTotal (){

public void setTotal (final int total){

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 114

Fractal: Example (Continued)

The Stopwatch device is implemented by constructing and
composing Countdown and Display.

C
o

u
n

t

c

C
o

u
n

t

c s s

S
ig

n
al

Countdown Display

S
ig

n
al

The instances of Countdown and Display are composed by method
calls.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 115

Fractal: Example (Continued)

ComponentType deviceType = tf.createFcType(new InterfaceType[] {
 tf.createFcItfType("s", "Signal", false, false, false);
ComponentType displayType = tf.createFcType(new InterfaceType[] {
 tf.createFcltType("s", "Signal", false, false, false),

ComponentType countdownType = tf.createFcType(new InterfaceType[] {

 tf.createFcltType("total−controller", "ControlTotal", false, false, false)});

 tf.createFcltType("c", "Count", true, false, false)});

 tf.createFcltType("c", "Count", false, false, false),

Component boot = Fractal.getBootstrapComponent();
TypeFactory tf = (TypeFactory)boot.getFcInterface("type−factory");

((BindingController)deviceTmpl.getFcInterface("binding−controller")).bindFc("s", displayTmpl.getFcInterface("s"));
((BindingController)displayTmpl.getFcInterface("binding−controller")).bindFc("c", countdownTmpl.getFcInterface("c"));

ControlTotal ct = (ControlTotal)countdownTmpl.getFcInterface("total−controller");
ct.setTotal(100);

ContentController cc = (ContentController)deviceTmpl.getFcInterface("content−controller");
cc.addFcSubComponent(displayTmpl);
cc.addFcSubComponent(countdownTmpl);

GenericFactory cf = (GenericFactory)boot.getFcInterface("generic−factory");

Component deviceTmpl = cf.newFcInstance(deviceType, "deviceTemplate",

Component displayTmpl = cf.newFcInstance(displayType, "displayTemplate",

Component countdownTmpl = cf.newFcInstance(countdownType, "countdownTemplate",

 new Object[] {"composite", "Device"});

 new Object[] {"primitive", "Display"});

 new Object[] {"parametricPrimitive", "Countdown"});

Component stopwatchdevice = ((Factory)deviceTmpl.getFcInterface("factory")).newFcInstance();
(LifeCycleController)stopwatchdevice.getFcInterface("lifecycle−controller")).startFc();
((Signal)stopwatchdevice.getFcInterface("s").display();

Stopwatch Device
Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 116

A Taxonomy based on Composition

Category

1
2
3
4

JavaBeans

Models

ADLs, UML2.0, PECOS, Pin, Fractal

Characteristics

Koala, SOFA, KobrA

DR RR CS DC CP

In design phase composite components can be deposited in the repository
Composition is possible in design phase
In design phase components can be retrieved from the repository
In design phase new components can be deposited in a repositoryDR

RR
CS
DC

Composition is possible in deployment phaseCP

EJB, COM, .NET, CCM, web services

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 117

Conclusion

� Best fit: Category 3 (Koala, KobrA, SOFA)

(product lines, repositories, composites, units of designs)

� Worse fit: Category 4 (ADLs)

(design only)

� Middle of the road: Categories 1 & 2

(repositories, binaries)

� No component model with composition in both design and
deployment phases

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 118

