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Introduction
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Software Component Models

A software component model defines:

� what components are

– syntax of components

– semantics of components

� how to compose components
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Current Component Definitions

� Szyperski:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A

software component can be deployed independently and is
subject to composition by third parties.”

� Meyer:

“A component is a software element (modular unit) satisfying the

following conditions:
1. It can be used by other software elements, its ‘clients’.

2. It possesses an official usage description, which is sufficient
for a client author to use it.

3. It is not tied to any fixed set of clients.”
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Current Component Definitions (Continued)
� Heineman and Council

“A [component is a] software element that conforms to a
component model and can be independently deployed and

composed without modification according to a composition
standard.”

Comparison wrt component models:

Definition Based on CM Defines CM

Szyperski No No

Meyer No No

Heineman and Council Yes No
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Current Software Component Models

Components Composition

Name
Interface

Code

Semantics or ??
provided services
required services

Typical � objects � method calls

examples � architectural units � ADL connectors
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Categories based on Component Syntax

Object−oriented Programming Languages

Programming Languages with IDL mappings

Architecture Description Languages

Component Syntax Models

JavaBeans, EJB

ADLs, UML2.0, KobrA, Koala, SOFA,
PECOS, Pin

COM, .NET, CCM, web services, Fractal
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Categories based on Component Semantics

Classes

Objects

Component Semantics

Architectural Units

Models

ADLs, UML2.0, KobrA, Koala, SOFA, PECOS, Pin

JavaBeans, EJB

COM, .NET, CCM, web services, Fractal

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 8



An Idealised Component Life Cycle

A

B

C

D

BC

Design Deployment

AssemblerBuilder Repository

C

B

A

Deployment

RTE

InsA

InsB

InsD

InsBC

A

B

D

BC

deployment phase
composition operator

component (binary)

Run−time

component (source)
design phase
composition operator

component
instance
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An Idealised Component Life Cycle (Continued)

This life cycle reflects CBSE desiderata:

components pre-exist repository

components produced & builder & assembler
used independently (+ repository)

components can be copied design & deployment
and instantiated + run-time phases

composites can be made and composites
used for further composition in repository
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Categories based on Composition

RTE

InsA

InsB

RTE

InsA

InsB

RTE

InsA

InsB

A

B

AssemblerBuilder Repository

A

B

A

B

A

B

Builder Repository

A

B

(JavaBeans)
Category 1

(EJB, COM, .NET, CCM, web services)

Builder Repository

A

B

A

AB

RTE

InsAB

(Koala, SOFA, KobrA)
Category 3

Builder

A

B

(ADLs, UML2.0, PECOS, Pin, Fractal)

Category 2

Category 4
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Category 1
JavaBeans
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JavaBeans: Components

In JavaBeans, a component is a bean, which is just any Java class
that has:

� methods

� events

� properties

A bean is intended to be constructed and manipulated in a visual
builder tool.
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JavaBeans: Builder, Repository, Assembler

Individual beans are constructed as Java classes in a JDK, and
deposited in the ToolBox of the BDK.

� JDK is the builder for Java beans

� ToolBox of the BDK is the repository (No composition)

� Beanbox is the assembler (Composition of bean instances)

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

A = BeanA (JAR file)
B = BeanB (JAR file)

InsA = BeanA instance
InsB = BeanB instance

JVMJDK
= Adaptor object
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JavaBeans: Composition

In deployment phase, bean instances can be composed via event
delegation

SourceBean TargetBean

EventAdaptor

Event
Generate

Method
Target

Target Method
Call

NotifiedEvent
Notify
Event

Trigger
Target Method

BeanBox

� a bean ‘composes’ with another bean by sending a message
through delegation of events

� BeanBox automatically generates, compiles, and loads event
adaptor classes for logistics of events
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JavaBeans: Summary

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

A = BeanA (JAR file)
B = BeanB (JAR file)

InsA = BeanA instance
InsB = BeanB instance

JVMJDK
= Adaptor object

SourceBean TargetBean

EventAdaptor

Event
Generate

Method
Target

Target Method
Call

NotifiedEvent
Notify
Event

Trigger
Target Method

BeanBox
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JavaBeans: Example

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

RTE

A

B

InsA

InsB

JVMJDK

A = MessageBeanA (JAR file)
B = MessageBeanB (JAR file)

Bean A = MessageBeanA instance
Bean B = MessageBeanB instance

= Adaptor object

Consider a simple bean MessageBean that displays a message
when it is notified of the event ‘mousePressed’ by another bean:

� It is a Java class that has a method for displaying a message

� It has mouse events such as ‘mousePressed’

� It displays a message that is a property which can be set by the
programmer
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JavaBeans: Example (Continued)

Beans A (yellow) & B (blue) Choosing source event in B

(Bean B is selected)
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JavaBeans: Example (Continued)

Bean B is linked to Bean A Bean A displays message

by choosing target event in Bean A when mouse pressed in Bean B
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Category 2
EJB, COM, .NET, CCM, web services
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Enterprise JavaBeans (EJB): Components

In EJB, a component is a an enterprise Java bean with two Java
interfaces:

Enterprise
Bean

EJB Container

J2EE ServerClient Machine

Container
Enterprise

Bean

Database

Client
Application

Client  Application

� an enterprise Java bean is a Java class in an EJB container on a
J2EE server

� an EJB container uses the interfaces to manage and execute the
Java class and its instances.
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Enterprise JavaBeans (EJB): Components (Continued)

For an EJB:

� its Java class defines the methods of the bean

� its interfaces expose the capabilities of the bean and provide all
the methods needed for (remote) client applications to access
the bean (over a network)

– its home interface represents the life-cycle methods of the
bean such as create, destroy and locate a bean instance

– its remote interface represents the tasks performed by the
bean
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Enterprise JavaBeans (EJB): Components (Continued)

There are 3 kinds of EJBs:

� Entity beans

Entity beans model business data; they are Java objects that
cache database information.

� Session beans

Session beans model business processes; they are Java objects
that act as agents performing tasks.

� Message-driven beans

Message-driven beans model message-related business
processes; they are Java objects that act as message listeners.
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EJB: Builder, Repository

� JDK or Eclipse is the builder for EJB (Composition of beans)

� An EJB container is the repository

� There is no assembler

EJB containerEJB container

A = EJBA (EJB JAR file)
B = EJBB (EJB JAR file)

InsA = EJBA instance
InsB = EJBB instance

Eclipse

A

B

Builder Repository

A

B

RTE

InsA

InsB
= Method calls
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EJB: Composition

In design phase, enterprise beans are composed by method and
event delegation

...

ClientApplicationC

methodN

method1

...

ClientApplicationA

method1

methodN

...

ClientApplicationB

method1

methodN

DataBase

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1

methodM

methodN

EJB Container

J2EE Server

method1

methodM

methodN

method1

methodM

methodN

method1

methodM

methodN
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EJB: Summary

EJB containerEJB container

A = EJBA (EJB JAR file)
B = EJBB (EJB JAR file)

InsA = EJBA instance
InsB = EJBB instance

Eclipse

A

B

Builder Repository

A

B

RTE

InsA

InsB
= Method calls

...

ClientApplicationC

methodN

method1

...

ClientApplicationA

method1

methodN

...

ClientApplicationB

method1

methodN

DataBase

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1

methodM

methodN

EJB Container

J2EE Server

method1

methodM

methodN

method1

methodM

methodN

method1

methodM

methodN
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EJB: Example

Consider a book store which wishes to maintain a database of its
book stock.

The table of books in the database can be represented as an entity
bean BookBean that consists of one class and two interfaces:

� BookBean is the Java class that defines the methods

� BookHome is the home interface

� Book is the remote interface

Each instance of BookBean represents a row of the table of books in
a database.
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EJB: Example (Continued)

BookHome

+create(isbn : String) : Book

+findByPrimaryKey(isbn : String) : Book

Book

+getBookName() : String
+setBookName(bookname : String) : void
+getAuthor() : String
+setAuthor(author : String) : void
+getPublisher() : String
+setPublisher(publisher : String) : void
+getPrice() : double
+setPrice(price : double) : void

+isbn : String
+bookname : String
+author : String
+publisher : String
+price : double
−ctx : EntityContext

+ejbCreate(isbn : String) : String
+ejbPostCreate(isbn : String) : void
+getBookName() : String
+setBookName(bookname : String) : void
+getAuthor() : String
+setAuthor(author : String) : void
+getPublisher() : String
+setPublisher(publisher : String) : void
+getPrice() : double
+setPrice(price : double) : void
+setEntityContext(ctx : EntityContext) : void
+unsetEnityContext() : void
+ejbActiviate() : void
+ejbPassivate() : void
+ejbLoad() : void
+ejbStore() : void
+ejbRemove() : void

BookBean
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EJB: Example (Continued)

To construct the book store application, we need a session bean
BookStoreBean that consists of one class, two interfaces (and a
helper class):

� BookStoreBean is the Java class that defines the methods

� BookStoreHome is the home interface

� BookStore is the remote interface

� (Books is the helper class)

BookStoreBean is used to add details of a set of books into the table
of books in the database.
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EJB: Example (Continued)

+create() : BookStore
BookStoreHome

BookStore

+addBook(books : Books[]) : void

BookStoreBean
−c : SessionContext
+addBook(boos : Books[]) : void

+ejbRemove() : void

+setSessionContext(c:SessionContext):void
+ejbCreate() : void
+ejbActivate() : void
+ejbPassivate() : void

+toString() : String
+price : double
+publisher : String
+author : String
+bookname : String
+isbn : String

Books
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EJB: Example (Continued)

The book store application is assembled from the BookBean and the
BookStoreBean.

delegate
Books

BookStore

BookStoreHome

Book

BookHome

BookStoreBean

BookBean
BookClient

BookStoreClient

J2EE server

EJB container

RTE

InsA

InsB

EJB containerEJB container

A = BookBean (EJB JAR file)
B = BookStoreBean (EJB JAR file)

InsA = BookBean instance
InsB = BookStoreBean instance

A

B

Builder Repository

A

B
= Method calls

Eclipse
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Component Object Model (COM): Components

In Microsoft COM, a component is a unit of compiled code on a COM
server.

Component

IUnknown

Ifun1

Ifun2

� Services in a component are invoked via pointers to the
functions that implement them

� For each service provided there is an interface

(a COM component can implement multiple interfaces)

� COM interfaces are specified in Microsoft IDL

� Every component must implement an IUnknown interface
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COM: Builder, Repository

COM components are constructed in a programming environment
such as Microsoft Visual Studio .NET

� The programming environment is the builder

� The COM server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming

A = COMA
B = COMB
InsA = COMA instance
InsB = COMB instance

= Method calls

environment
COM

Server
COM

Server
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COM: Composition

In design phase, COM components are composed by method calls
via interface pointers

IUnknown

Component1 Component2
Client

Reference

IUnknown
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COM: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming

A = COMA
B = COMB
InsA = COMA instance
InsB = COMB instance

= Method calls

environment
COM

Server
COM

Server

IUnknown

Component1 Component2
Client

Reference

IUnknown
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COM: Example

Consider a spell checker system that comprises a checker
component and a dictionary component.

import "unknwn.idl";
[object, uuid(CAB357AE−1204−4783−AC3F−A7E4CA19EF6C)]
interface ISpellCheck : IUnknown {

[uuid(0EE7AE7−A357−4a04−B6D6−CE4DFD5CCAAF)]
library SpellcheckerLib {

[out, retval] BOOL *isCorrect);
HRESULT CheckSpelling([in, string] char *word,

[uuid(49FA65CD−8CF6−4876−8443−37A75A267A7D)]
coclass CSpellCheck {

interface ISpellCheck;
};

}

}

the method implemented by

Checker component interface −− ISpellCheck

ISpellCheck interface specifies

Checker component

UUID of Checker component

CLSID of CSpellCheck

the ISpellCheck interface
CSpellCheck class implements

IID of ISpellCheck

A “library” is an interface glued with a coclass, e.g. the “library” of
ISpellCheck and CSpellCheck makes the whole component
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COM: Example (Continued)

import "unknwn.idl";
[object, uuid(D66AB784−75C8−4f52−8EB2−C5BE9796ABEF)]
interface IUseCustomDictionary : IUnknown {

  }
[uuid(1C381680−CF29−46b1−8060−1237C36EA6C7)]

HRESULT UseCustomDictionary([out, retval] vector <string>* dict);

library CustomdictionaryLib {
[uuid(C51815AF−CB06−4028−956C−C5F3E5781780)]
coclass CCustomDictionary {

interface IUseCustomDictionary;
}

};

Dictionary component interface −− IUseCustomDictionary

CCustomDictionary class implements

UUID of Dictionary component
IUseCustomDictionary interface

by Dictionary component
specifies the method implemented

the IUseCustomDictionary interface
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COM: Example (Continued)

In design phase, the spell checker system is assembled through
method calls via interface pointers.

STDMETHODIMP_(ULONG) CSpellCheckImpl :: AddRef(void) {

}

#include <string.h>

CSpellCheckImpl :: CSpellCheckImpl() { }
CSpellCheckImpl :: ~CSpellCheckImpl() { }

}

}

STDMETHODIMP_(ULONG) CSpellCheckImpl :: Release(void) {

CCustomDictionary* pc = 0;
pc = new CCustomDictionaryImpl();
IUseCustomDictionary* pi = 0;
HRESULT hr;
hr = pc −> QueryInterface(IID_IUseCustomDictionary, (void**) &pi);

if(FAILED(hr)) return ERROR;
pi −> UseCustomDictionary(&m_dictionary);

}

STDMETHODIMP CSpellCheckImpl :: CheckSpelling(...) {

STDMETHODIMP CSpellCheckImpl :: QueryInterface(...) {

Checker component implementation

}

}

#include <fstream>

CCustomDictionaryImpl :: CCustomDictionaryImpl() { }
CCustomDictionaryImpl :: ~CCustomDictionaryImpl() { }

}

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: AddRef(void) {

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: Release(void) {

*p = dictionary;
return NOERROR;
}

STDMETHODIMP CCustomDictionaryImpl :: QueryInterface(...) {

STDMETHODIMP CCustomDictionaryImpl :: UseCustomDictionary(...) {

Dictionary component implementation
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.NET Component Model: Components

In Microsoft .NET, a component is an assembly that is a binary unit
supported by Common Language Runtime (CLR)

Metadata
IL code

� A .NET component is made up of metadata and code in
Intermediate Language (IL)

� The metadata contains the description of assembly, types and
attributes

� The IL code can be executed in CLR
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.NET: Builder, Repository

.NET components are constructed in a programming environment
such as Microsoft Visual Studio .NET

� The programming environment is the builder

� The Windows server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

Windows Windows
ServerServer

A = NETA
B = NETB
InsA = NETA instance
InsB = NETB instance

Environment
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.NET: Composition

In the design phase, .NET components are composed by method
calls through references via metadata

Metadata
IL code

Metadata
IL code

Metadata
IL code

Assembly 1 Assembly 2 Assembly 3
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.NET: Example

Consider a banking system with an ATM component, which serves two
instances Bank1 and Bank2 of a Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);

Metadata
(attributes)
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.NET: Example (Continued)

The banking system is assembled from the ATM component and two
instances of Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);
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.NET: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

Windows Windows
ServerServer

A = NETA
B = NETB
InsA = NETA instance
InsB = NETB instance

Environment

Metadata
IL code

Metadata
IL code

Metadata
IL code

Assembly 1 Assembly 2 Assembly 3
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CORBA Component Model (CCM): Components

In CCM, a component is a CORBA meta-type hosted by a CCM
container on a CCM platform such as OpenCCM.

event sink

event source

facet

receptacle

� A CORBA meta-type is an extension and specialisation of a
CORBA Object

� Component interfaces are made up of ports

CCM supports 4 kinds of ports: Facets (provided services),
Receptacles (required services), Event Sources and Sinks.
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CORBA Component Model (CCM): Components (Continued)
� Component types are specific, named collections of features that

can be described in OMG IDL 3

� CORBA components have homes that are component factories
to manage a component instance life cycle
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CCM: Builder, Repository

CORBA components are constructed in a programming environment
such as Open Production Tool Chain and deposited into a CCM
container hosted and managed by a CCM platform such as
OpenCCM.

� The programming environment is the builder

� The CCM container is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

= Method calls
Programming
environment

A = CCA
B = CCB
InsA = CCA instance
InsB = CCB instance

CCM
Container

CCM
Container
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CCM: Composition

In design phase, CORBA components are assembled by method
and event delegations

in such a way that

� facets match receptacles

� event sources match event sinks
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CCM: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

= Method calls
Programming
environment

A = CCA
B = CCB
InsA = CCA instance
InsB = CCB instance

CCM
Container

CCM
Container
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CCM: Example

Consider a simple bank system implemented by ATM,
BankConsortium, Bank1 and Bank2 components (in OMG IDL 3):

 string getBankID(string cardno);
 void deposit(string cardno);
void withdraw(string cardno);
void checkBalance(string cardno);

}

IsCustomer, NotCustomer
};

public string cardno;
public BankState customerinfo;

};

};

component

};

attribute string atmid;
uses Bank getBankID;
consumes AccountInfo customer;

manages instances

interface

enum

eventtype

home
factory

event sink
receptacle

Bank  { 

ATM  {

BankState  {

ATMhome  manages  ATM  {
new(in string atmid);

AccountInfo  {
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CCM: Example (Continued)

event source

attribute string bankid;
provides Bank deposit;
provides Bank withdraw;
provides Bank checkBalance;

};

facet

component

provides Bank getBankID;
attribute string bankconsortiumid;

};
publishes AccountInfo customer;

uses Bank deposit;
uses Bank withdraw;
provides Bank checkBalance;

component

};

};
factory

home
factory new(in string bankid);

home

Bank  {

BankConsortium  {

BankConhome manages BankConsortium {
new(in string bankconsortiumid);

Bankhome manages Bank {
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CCM: Example (Continued)

The bank system is assembled from the ATM, BankConsortium,
Bank1 and Bank2 components.

Bank1

BankConsortiumATM

Bank2

The composition of CORBA components is specified in a
Component Assembly Descriptor (an XML file)
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CCM: Example (Continued)

</componentfile>
<filearchive name = "BankConsortium.csd">
<componnetfile id = "BankConsortium component">

</componentfile>

<componnetfile id = "Bank component">
<filearchive name = "Bank.csd">

<componnetfile id = "ATM component">
<componentfiles>

<filearchive name = "ATM.csd">
</componentfile>

</componentfiles>

<componentfileref idref = "ATM Component"/>
<componentinstantiation id = "atm">
<registerwithnaming name = "ATMHome"/>

<homereplacement id = "ATMHome">

</homereplacement>

<partitioning>

</homereplacement>

<homereplacement id = "BankConsortiumHome">
<componentfileref idref = "BankConsortium Component"/>
<componentinstantiation id = "bankconsortium">
<registerwithnaming name = "BankConsortiumHome"/>

<homereplacement id = "BankHome">
<componentfileref idref = "Bank Component"/>
<componentinstantiation id = "bank1">

</homereplacement>
<registerwithnaming name = "BankHome"/>
<componentinstantiation id = "bank2">

</partitioning>

<component assembly id = "banksys">
<description> bank assembly descriptor</description>

</component assembly>

<connections>
..
.

</connections>

<!DOCTYPE component assembly BANKSYSTEM "componentassembly.dtd">
<?xml version = "1.0"?>
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CCM: Example (Continued)

<providesport>
<providesidentifier>getBankID</providesidentifier>

<providesidentifier>deposit</providesidentifier>
<providesidentifier>withdraw</providesidentifier>
<providesidentifier>checkBalance</providesidentifier>

<componentinstantiationref idref = "bankcon"/>

<componentinstantiationref idref = "bank"/>
</providesport>

<connectinterface>
<usesport>

<usesidentifier>deposit</usesidentifier>
<usesidentifier>withdraw</usesidentifier>
<usesidentifier>checkBalance</usesidentifier>

</usesport>

<componentinstantiationref idref = "atm"/>

<componentinstantiationref idref = "bankcon"/>

</connectinterface>
<connectevent>

<publishesport>

<usesidentifier>getBankID</usesidentifier>

<publishesidentifier>customer</publishesidentifier>
<componentinstantiationref idref = "bankcon"/>

</publishesport>
<consumesport>

<consumesidentifier>customer</consumesidentifier>
<componentinstantiationref idref = "atm"/>

</consumesport>
</connectevent>

<connections>

</connections>
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Web Services: Components

In Web Services, a component is a service that is a resource that
represents a capability of performing some tasks

Service Code

WSDL

� A Web Service contains an interface in WSDL (Web Service
Description Language) and a binary implementation

� The WSDL interface describes the functionalities that the web
service can provide and are published in UDDI (Universal
Description Discovery and Integration)

� The service code is the implementation that performs the task
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Web Services: Builder, Repository

Web services are constructed in a programming environment, e.g.
Eclipse for Java

� The programming environment is the builder

� The server is the repository

� There is no assembler

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

ServerServer

A = ServiceA
B = ServiceB
InsA = ServiceA instance
InsB = ServiceB instance

Environment
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Web Services: Composition

In the design phase, Web services are composed by method calls
through SOAP messages

Service Code

WSDL

Service Code

WSDL

Service Code

WSDL

Service 1 Service 2 Service 3
SOAP SOAP
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Web Services: Example

Consider a banking system with an ATM service and two Bank
services

...

...

...

......

...

...

...

...

...

      Password CusPass = new Password();
      CardNo ACardNo = new CardNo();

public class Bank1 ..........{

public String Deposit(CardNo ACardNo,
Password CusPass) {

}}

      
      CardNo ACardNo = new CardNo();

Password CusPass = new Password();

public class ATM ..........{

public String LocateBank(CardNo ACardNo,
Password CusPass) {

if(B1) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank1, ...);

elsif(B2) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank2, ...);

}
}

      CardNo ACardNo = new CardNo();
      Password CusPass = new Password();

public class Bank2 ..........{

public String Deposit(CardNo ACardNo,
Password CusPass) {

} }

The ATM service has SOAP messages to the Bank services
hard-coded into its service code.
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Web Services: Example (Continued)

In the design phase, the banking system is assembled from the ATM
service and two Bank services

...

...

...

...

...

......

...

      
      CardNo ACardNo = new CardNo();

Password CusPass = new Password();

public class ATM ..........{

public String LocateBank(CardNo ACardNo,
Password CusPass) {

if(B1) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank1, ...);

elsif(B2) then

getServiceLocation(....,
http://localhost:8080/axis/services/Bank2, ...);

}
}

...

...

      Password CusPass = new Password();
      CardNo ACardNo = new CardNo();

public class Bank1 ..........{

public String Deposit(CardNo ACardNo,
Password CusPass) {

}}

      CardNo ACardNo = new CardNo();
      Password CusPass = new Password();

public class Bank2 ..........{

public String Deposit(CardNo ACardNo,
Password CusPass) {

} }

SOAP

SOAP
message

message
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Web Services: Summary

A

B

Builder Repository

A

B InsB

InsA

RTE

Programming
= Method calls

ServerServer

A = ServiceA
B = ServiceB
InsA = ServiceA instance
InsB = ServiceB instance

Environment

Service Code

WSDL

Service Code

WSDL

Service Code

WSDL

Service 1 Service 2 Service 3
SOAP SOAP
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Category 3
Koala, SOFA, KobrA
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Koala: Components

In Koala � a component is a unit of design which has a specification
and an implementation.

� Semantically, components are units of computation and control
(and data) connected together in an architecture.

� Syntactically, components are defined in an ADL-like language
(Koala).

Components are definition files only (no implementation).

� C[K]omponent Organizer And Linking Assistant
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Koala: Builder, Repository

� The builder is a Koala programming environment

� KoalaModel Workspace (a file system) provides the repository
(Composition of definition files)

� There is no assembler

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

A = Component A’s definition files
B = Component B’s definition files

AB = Component AB’s definition file
InsAB = Component AB’s binary file

= Method calls
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Koala: Composition

In design phase, Koala components are composed by method calls
through connectors.

m

At run-time, Koala components are compiled into a programming
language and executed in the run-time environment of that language.
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Koala: Summary

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

A = Component A’s definition files
B = Component B’s definition files

AB = Component AB’s definition file
InsAB = Component AB’s binary file

= Method calls

m
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Koala: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

        int count(void);
    }

interface ICount {

         provides Icount cp;

         connects cp = c_impl;
         contains module c_impl present;

}

Countdown component

        int count(int x);
    }

interface ICount {

interface ISignal {

}

          requires ICount dr;
          provides ISignal dp;
          contains module d_impl present;
          connects dr = d_impl;
                          d_impl = dp;
      }

Display component

component Display {

component Countdown {

void display(int signal);

Koala IDL

Koala CDL

Koala IDL

Koala CDL

� The interfaces are specified in Koala IDL

� The component definitions are in Koala CDL
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Koala: Example (Continued)

In design phase, the Stopwatch device is constructed by composing
a Countdown component (new) with a Display component (from the
repository)

Display

Stopwatch

Countdown

The definition file for Stopwatch is assembled from Countdown and
Display

}

Stopwatch configuration

connects d.dr = c.cp;

component Stopwatch {
contains component Countdown c;
contains component Display d;
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Koala: Example (Continued)

In deployment phase, the definition files of Stopwatch, Countdown
and Display are compiled by the Koala compiler to C header files.

Then the programmer has to

� write C files (to implement the components)

� compile these with the header files to binary C code for
Stopwatch.

Builder Repository

A

B

A

AB

RTE

InsAB

WorkSpace

B = Display definition files
A = Countdown definition files

InsAB = Stopwatch binary file
AB = Stopwatch definition file

= Method calls
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SOFA: Components

In SOFA � a component is a unit of design which has a specification
and an implementation, and is specified by its frame and
architecture.

� The frame defines provides and requires interfaces, and
properties of the component

� The architecture describes the structure of the component

� SOFA components are defined in an ADL-like language — SOFA
Component Definition Language (CDL).

� SOFtware Appliances
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SOFA: Builder, Repository

SOFA components are constructed in SOFAnode and deposited into
the Template Repository.

� SOFAnode is the builder

� The Template Repository is the repository

� There is no assembler

InsAB

A

B

Builder Repository

A

AB

Template
Repository

A = SOFAA
B = SOFAB
AB = SOFAAB
InsAB = SOFAAB instance

= Connectors

RTE

SOFAnodeSOFAnode
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SOFA: Composition

In design phase, SOFA components are composed by method calls
through connectors.
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SOFA: Summary

InsAB

A

B

Builder Repository

A

AB

Template
Repository

A = SOFAA
B = SOFAB
AB = SOFAAB
InsAB = SOFAAB instance

= Connectors

RTE

SOFAnodeSOFAnode
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SOFA: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

        int count(void);
    };

interface CountInterface {

Countdown component

frame Countdown {
         provides:

         CountInterface Count;
};

architecture CUNI Countdown
version "1.0" primitive;

architecture CUNI Display
version "1.0" primitive;

Display component

        int count(int x);

void display(int signal);

interface CountInterface {

interface SignalInterface {

frame Display {
          requires:

          CountInterface Count;
          provides:

    };

};

      };
          SignalInterface Signal;

The components are specified in SOFA CDL.
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In design phase, the Stopwatch device is implemented by
constructing a new Countdown component and composing it with a
Display component from the repository.

DisplayCountdown

Stopwatch Architecture

The definition file for Stopwatch device is assembled from the
Countdown and Display components.

system CUNI Stopwatch version "1.0" {

};
bind aDisplay.Count to aCountdown.count using CSProcCall;
inst Display aDisplay;
inst Countdown aCountdown;

Stopwatch device
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KobrA: Components

In KobrA � a component is a UML component. Every KobrA
component has a specification and an implementation

� The specification describes what a component does and thus it
is the interface of the component

� The implementation describes how it does it

� Komponenten-basierte Anwendungsentwicklung (component-based application
development)
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KobrA: Builder, Repository

KobrA components can be constructed in a visual builder tool such
as Visual UML and deposited into a file system.

� The visual builder tool is the builder

� The file system is the repository

� There is no assembler

InsAB

A

B

Builder Repository

A

AB

RTE

Implementation
Language RTE

A = KobrAA
B = KobrAB
AB = KobrAAB
InsAB = KobrAAB instance

= method calls

Builder tool
UML Visual File

System
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KobrA: Composition

In the design phase, KobrA components are composed by direct
method calls.
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KobrA: Summary

InsAB

A

B

Builder Repository

A

AB

RTE

Implementation
Language RTE

A = KobrAA
B = KobrAB
AB = KobrAAB
InsAB = KobrAAB instance

= method calls

Builder tool
UML Visual File

System
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KobrA: Example

Consider a book store that maintains a database of its book stock
and sells its books by an Automatic Teller Machine (ATM).

subject
BookStore

noOfBooks : Integer := 0

addBooks(Book[] blist)
addBook(Book b)

viewBooks()
deletBook(Book b)
findBook(Book b)

The specification of the BookStore component is a UML class
diagram that specifies what the BookStore component does.
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KobrA: Example (Continued)

In design phase, the book store system is implemented by
constructing a new ATM component and composing it with
BookStore and Book components from the repository.

Komponent

subject
BookStore

Book
ATM

findBook(Book b)

purchaseBook(Book b)

1 1 1 *

The book store system is assembled from the ATM, BookStore and
Book components by direct method calls.
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Category 4
ADLs, UML 2.0, PECOS, Pin, Fractal
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Architecture Description Languages (ADLs):
Components

In ADLs, a component is an architectural unit that represents a
primary computational element and data store of a system.

� Interfaces are defined by a set of ports

� Each port identifies a point of interaction between the
component and its environment

� A component may have multiple interfaces by using different
types of ports

� Connectors connect components via their ports
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ADLs: Builder

� The builder is the ADL tool if any (Composition of architectural
units by connectors)

� There is no repository

� There is no assembler

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B’ = Implementation of B
A’ = Implementation of A

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

A = Component A
B = Component B
B1 = Component B1
B2 = Component B2
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ADLs: Composition

In design phase, components are

� identified and defined

� assembled by connectors into a system design

The design has to be implemented (somehow) in a chosen
programming language.

At run-time, the implemented system is executed in the run-time
environment of that programming language.
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ADLs: Summary

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B’ = Implementation of B
A’ = Implementation of A

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

A = Component A
B = Component B
B1 = Component B1
B2 = Component B2

Acme/ArchJava Java

B1

B2

B1’

B2’
A B A’ B’
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ADLs: Example

Consider a simple bank system consisting of an ATM component, a
BankConsortium component, and 2 Bank components Bank1 and
Bank2.

Component ATM = {

}
Port  send; 

Component BankConsortium = {

}

Port  receive; 
Port  send; 

ATM component BankConsortium component

Component Bank1 = {
Port  receive; 
Property  bankid : String = 

"Bank 1";

Component Bank2 = {
Port  receive; 
Property  bankid : String = 

"Bank 2";
}

Bank1 component Bank2 component
}
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ADLs: Example (Continued)

In design phase, the architecture for the whole system is designed

ATM

B2

B1
BC

using the above components and the following connectors:

  }

Connector ATMtoBankCon = {
                           Role  request;
                           Role  produce;

  }

                           Role  request;
                           Role  produce;

Connector BankContoB1 = {

  }

                           Role  request;
                           Role  produce;

Connector BankContoB2 = {
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ADLs: Example (Continued)

Port  receive;

};

Component Bank2 = {

Property  bankid : String = "Bank2";
Port  receive;

Component Bank1 = {

Property  bankid : String = "Bank1";
};

System BankSys = {

Connector ATMtoBankCon = {

};

Role  request;
Role  produce;

Attachments {

};

Port  receive;
Port  send;

Port  send;
Component BankConsortium = {Component ATM = {

}

BankConsortium.send to BankContoB2.request;

};

Connector BankContoB1 = {
Role  request;
Role  produce;

};

Role  request;
Role  produce;

};

}

BankContoB1.produce to Bank1.receive;

BankContoB2.produce to Bank2.receive;

ATMtoBankCon.produce to BankConsortium.receive;
BankConsortium.send to BankContoB1.request;

ATM.send to ATMtoBankCon.request;

Connector BankContoB2 = {
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ADLs: Example (Continued)

The design has to be implemented in some programming language.

At run-time, the implementation is executed in the run-time
environment of that language.

Builder

B B2B1 C

A
C

C

A’

B’ B2’B1’C’

C’

C’

RTE

B = BankConsortium component B’ = Implementation of B
A = ATM component A’ = Implementation of A

B1 = Bank component 1
B2 = Bank component 2

B1’ = Implementation of B1
B2’ = Implementaion of B2
C’ = Connector implementationC = Connector

Acme/ArchJava Java

B1

B2
BCATM BC’

B1’

B2’
ATM’
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UML 2.0 Component Model: Components

In UML 2.0, a component is a modular unit of a system with
well-defined interfaces that is replaceable within its environment.

provided service
required service

� A component defines its behaviour by required and provided
interfaces (ports);

� Services of components are encapsulated through their required
and provided interfaces.

Components are represented in UML 2.0.
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UML 2.0: Connectors

UML components are composed by UML connectors:

� delegation connectors

� assembly connectors

Composites are assembled by assembly connectors

Systems are assembled by delegation and assembly connectors
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UML 2.0: Builder

UML components can be constructed in a visual builder tool such as
Visual UML.

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation 

A = UMLA
B = UMLB
InsA = UMLA instance
InsB = UMLB instance

= connectors
Visual Builder

Tool

� The visual builder tool is the builder

� There is no repository

� There is no assembler

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 92



UML 2.0: Composition

In design phase, the architecture for the whole system is designed.
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UML 2.0: Summary

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation 

A = UMLA
B = UMLB
InsA = UMLA instance
InsB = UMLB instance

= connectors
Visual Builder

Tool
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UML 2.0: Example

Consider a simple bank system that is implemented by ATM,
BankConsortium, Bank1 and Bank2 components.

component

provided interfaces

required interfaces

BankConsortium

CheckBankID

GetCardNo
Withdraw
Deposit

CheckBalance

Withdraw
Deposit

CheckBalance

component

provided interfaces

Bank2

Withdraw
Deposit

CheckBalance

component

provided interfaces

Bank1

provided interfaces

GetCardNo
required interfaces

CheckBankID

component

ATM
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UML 2.0: Example (Continued)

In design phase, the architecture for the whole system is designed.

Bank1

Bank2

ATM BankConsortium
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PECOS: Components

In PECOS � a component is a unit of design which has a specification
and an implementation.

� Every component has a name, a number of property bundles, a
set of ports, and behaviour

� Ports are interfaces of components

PECOS components are specified in the CoCo (Component
Composition) language.

� PErvasive COmponent Systems
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PECOS: Builder

Components in PECOS are constructed in a programming
environment such as Eclipse.

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation 

A = PECOSA
B = PECOSB
InsA = PECOSA instance
InsB = PECOSB instance

= connectors
Programming
Enviroment

� The programming environment is the builder

� There is no repository

� There is no assembler
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PECOS: Composition

In the design phase, components are composed by linking their ports
with connectors.

Implementation of PECOS components is usually done in Java or
C++, and so the run-time environment in the deployment phase is
that for Java or C++.
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PECOS: Summary

Builder

A

B InsB

InsA

RTE

Language RTE
Implementation 

A = PECOSA
B = PECOSB
InsA = PECOSA instance
InsB = PECOSB instance

= connectors
Programming
Enviroment
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PECOS: Example

Consider a device that is assembled from Clock, Display, EventLoop
and DigitalDisplay components.

component Clock { component Display {

output long msecs; input long time;

} }

active component EventLoop { component DigitalDisplay {

output bool started; input long time_in_msecs;

} input bool can_draw;
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PECOS: Example (Continued)

In the design phase, the architecture for the device is designed:

Digital
Display

Display
time

Clock

      (aperiodic)
(active component)

EventLoop

msecs

started can_draw

time_in_msecs

(active component, period = 1000 msecs)
Device

active component Device {

Clock clock; Display display; DigitalDisplay digitalDisplay;

EventLoop eventLoop;

connector time(clock.msecs, display.time,

digitalDisplay.time_in_msecs);

connector eventLoop_started (eventLoop.started,

digitalDisplay.can_draw);

}
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Pin: Components

In Pin, a component is an architectural unit that specifies a
stimulus-response behaviour by a set of ports (pins).

� A component is represented by a set of sink pins and source
pins together with the component’s behaviour.

Components are defined in CCL (Construction and Composition
Language).
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Pin: Builder

Pin components can be constructed in the CCL programming
environment.

Builder

A

B InsB

InsA

RTE

= connectors

A = PinA
B = PinB
InsA = PinA instance
InsB = PinB instance

Pin Programming Pin RTE
Environment

� The CCL programming environment is the builder

� There is no repository

� There is no assembler
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Pin: Composition

In design phase, components are composed by connectors that link
the source pins of one component to the sink pins of another.

In deployment phase, implementations are usually generated by the
CCL processor and components are executed in the Pin run-time
environment.
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Pin: Summary

Builder

A

B InsB

InsA

RTE

= connectors

A = PinA
B = PinB
InsA = PinA instance
InsB = PinB instance

Pin Programming Pin RTE
Environment
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Pin: Example

Consider a simple component AComp that is specified with both
structural and behavioural aspects in CCL.

}

ready −> work {
start −> ready { }

threaded  react  mission (receive, send, publish) {
source  publish();

sink  asynch  receive();
source  unicast  send();

trigger  ^receive();
action  ^send();
}

}

work −> log {

}

trigger  ^send();
action  ^publish();

log −> ready {
trigger  ^publish();
action  ^receive();

}

component  AComp()  {
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Pin: Example (Continued)

In design phase, components comp1 and comp2 of type AComp are
composed by connectors that link comp1’s source pin (send) to
comp2’s sink pin (receive) to an assembly – AComposite.

assume  {

}
AComp  comp1(), comp2();

comp1:publish ~> compositesend;
comp2:publish ~> compositesend;

}

threaded react sending(send) {

    

    

compositesend:receive ~> comp1:receive;
comp1:send ~> comp2:receive;

threaded react received(receive) {
    start −> ready {};
    ready −> work {;

    action   ^receive;
}

    work −> ready {};
}

    start −> ready {};
    ready −> work {;

    action   ^send;
}

    work −> ready {};
}

}

service  Receive()  {

service  Send()  {

        E:  Send  compositesend();
        E:  Receive  compositereceive();

    source  unicast  receive();

    sink  asynch  send();

environment E  {

assembly  AComposite() (E)  {
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Fractal: Components

In Fractal, a component is a run-time entity that behaves like an
object.

A Fractal component comprises a content and a controller.

controller

content

� The content contains its interfaces and implementation

� The controller defines the control behaviour associated with the
component
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Fractal: Components (Continued)

Interface Definition Languages (e.g. OMG IDL) are used to define
generic interfaces that can be implemented by components in
specific programming languages.

Current Fractal API is extended and modified from Java API with
JavaBeans-like introspection facilities.
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Fractal: Builder

Fractal components are constructed in a programming environment
with Fractal APIs.

Builder

A

B InsB

InsA

RTE

Programming
= connectors

A = FractalA
B = FractalB
InsA = FractalA instance
InsB = FractalB instance

Environment
Java Virtual

Machine

� The programming environment is the builder

� There is no repository

� There is no assembler
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Fractal: Composition

In design phase, Fractal components are composed by method calls
through connectors.

The Java Virtual Machine serves as the run-time environment for
Fractal components.
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Fractal: Summary
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Fractal: Example

Consider a Stopwatch device that comprises a Countdown
component and a Display component.

  }

  }

   }

  }

Display component

void  display ();

private  Count  count;
public  void  display () {

       count.count();
  }

  }
       return  new String[] {"c"};

       if (disstr.equals("c")) {
       return  count;

  }
       return  null;

       if (disstr.equals("c")) {
       count = (Count)countobj;

  }

       if (disstr.equals("c")) {
       count = null;

  }  }

public interface Signal{

public class Display implements Signal, BindingController{

public String[] listFc (){

public Object lookupFc (final string disstr){

public void bindFc (final string disstr, final Object countobj){

public void unbindFc (final string disstr){

      }
       System.out.print(i);
    for (int i = total; i > 0; i−−) {
public  void  count () {
private  int  total = 0;

   }
        void  setTotal (int total);
        int  getTotal ();

   }        void  count ();

  }

       return  total;
  }

       this.total = total;
  }

  }

Countdown component

public interface Count{

public interface ControlTotal extends AttributeController{

public class Countdown implements Count, ControlTotal{

public int getTotal (){

public void setTotal (final int total){
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Fractal: Example (Continued)

The Stopwatch device is implemented by constructing and
composing Countdown and Display.
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The instances of Countdown and Display are composed by method
calls.

Tutorial H11 Software Component Models c� 2006 Kung-Kiu Lau 115



Fractal: Example (Continued)

ComponentType  deviceType = tf.createFcType(new InterfaceType[] {
   tf.createFcItfType("s", "Signal", false, false, false);
ComponentType  displayType = tf.createFcType(new InterfaceType[] {
   tf.createFcltType("s", "Signal", false, false, false), 

ComponentType  countdownType = tf.createFcType(new InterfaceType[] {

   tf.createFcltType("total−controller", "ControlTotal", false, false, false)});

   tf.createFcltType("c", "Count", true, false, false)});

   tf.createFcltType("c", "Count", false, false, false), 

Component  boot = Fractal.getBootstrapComponent();
TypeFactory  tf = (TypeFactory)boot.getFcInterface("type−factory");

((BindingController)deviceTmpl.getFcInterface("binding−controller")).bindFc("s", displayTmpl.getFcInterface("s"));
((BindingController)displayTmpl.getFcInterface("binding−controller")).bindFc("c", countdownTmpl.getFcInterface("c"));

ControlTotal ct = (ControlTotal)countdownTmpl.getFcInterface("total−controller"); 
ct.setTotal(100);

ContentController cc = (ContentController)deviceTmpl.getFcInterface("content−controller");
cc.addFcSubComponent(displayTmpl);
cc.addFcSubComponent(countdownTmpl);

GenericFactory  cf = (GenericFactory)boot.getFcInterface("generic−factory");

Component deviceTmpl = cf.newFcInstance(deviceType, "deviceTemplate",

Component displayTmpl = cf.newFcInstance(displayType, "displayTemplate",

Component countdownTmpl = cf.newFcInstance(countdownType, "countdownTemplate",

  new Object[] {"composite", "Device"});

  new Object[] {"primitive", "Display"});

  new Object[] {"parametricPrimitive", "Countdown"});

Component stopwatchdevice = ((Factory)deviceTmpl.getFcInterface("factory")).newFcInstance();
(LifeCycleController)stopwatchdevice.getFcInterface("lifecycle−controller")).startFc();
((Signal)stopwatchdevice.getFcInterface("s").display();

Stopwatch Device
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A Taxonomy based on Composition

Category

1
2
3
4

JavaBeans

Models

ADLs, UML2.0, PECOS, Pin, Fractal 

Characteristics

Koala, SOFA, KobrA

DR RR CS DC CP

In design phase composite components can be deposited in the repository
Composition is possible in design phase
In design phase components can be retrieved from the repository
In design phase new components can be deposited in a repositoryDR

RR
CS
DC

Composition is possible in deployment phaseCP

EJB, COM, .NET, CCM, web services
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Conclusion

� Best fit: Category 3 (Koala, KobrA, SOFA)

(product lines, repositories, composites, units of designs)

� Worse fit: Category 4 (ADLs)

(design only)

� Middle of the road: Categories 1 & 2

(repositories, binaries)

� No component model with composition in both design and
deployment phases
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