
Workflow Variability for Autonomic IoT Systems
Damian Arellanes and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract—Autonomic IoT systems require variable behaviour
at runtime to adapt to different system contexts. Building suitable
models that span both design-time and runtime is thus essential
for such systems. However, existing approaches separate the
variability model from the behavioural model, leading to syn-
chronization issues such as the need for dynamic reconfiguration
and dependency management. Some approaches define a fixed
number of behaviour variants and are therefore unsuitable for
highly variable contexts. This paper extends the semantics of
the DX-MAN service model so as to combine variability with
behaviour. The model allows the design of composite services
that define an infinite number of workflow variants which can
be chosen at runtime without any reconfiguration mechanism.
We describe the autonomic capabilities of our model by using a
case study in the domain of smart homes.

Index Terms—Internet of Things, autonomic systems, DX-
MAN, exogenous connectors, algebraic service composition, work-
flow variability, models@runtime, smart homes, self-adaptive

I. INTRODUCTION

The Internet of Things is an emerging paradigm that
envisions the interconnection of everything through novel
distributed services which are combined into complex work-
flows using service composition mechanisms. Workflows
represent IoT systems composed of billions of services with
an overwhelming number of interactions. Thus, it becomes
infeasible to manually manage such systems as the scale and
complexity increases.

Autonomicity is a crucial desideratum for the management of
complex large-scale IoT systems operating in highly dynamic
environments. It is a property that allows adapting behaviour
at runtime to different contexts with minimal or no human
intervention. Autonomicity thus requires workflow variability
for the definition of alternative system behaviours.

Although relatively trivial in static IoT systems, changing
behaviour at runtime in highly variable environments is a
complex and challenging task. For that reason, variability-
based autonomicity has been an active research topic for
software engineering in the last decade [1], [2]. Although
there are many proposals for managing variability, they fail at
incorporating variability in behavioural elements (i.e., in the
solution space) while avoiding the cumbersome time-consuming
task of dynamic reconfiguration [1].

This paper extends the semantics of the DX-MAN ser-
vice model [3], [4], [5], [6] with autonomic capabilities for
IoT systems. The semantics allows adapting workflows at
runtime to different contexts without requiring any dynamic
reconfiguration mechanism. Our contribution is thus two-fold:

(i) a model that combines variability with behaviour in the
solution space, while providing an infinite number of workflow
variants for composite IoT services; and (ii) an approach that
avoids dynamic reconfiguration (by using non-deployable and
executable only workflows).

The rest of the paper is structured as follows. Sect. II
describes the main constructs of the DX-MAN model. Sect. III
presents the mechanism to realize workflow variability. Sect.
IV describes the autonomicity dimension of the model. Sect.
V presents a case study to show autonomicity in a case study.
Sect. VI describes the related work. Finally, Sect. VII presents
the conclusions and the future work.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where
services and exogenous connectors are first-class entities. An
exogenous connector is a deployable entity that executes
multiple workflows with explicit control flow [7]. A service
S is a stateless distributed software unit with a well defined
interface, which can be either atomic (A) or composite (C):

S := A|C (1)

A service defines a workflow space W which is a non-empty
(finite or infinite) set, where each w ∈ W is a workflow variant
that represents an alternative service behaviour. The workflow
space constitutes the service interface, and is semantically
equivalent to a service S:

S ≡ W = {w1, w2, . . .} (2)

A. Atomic Services
An atomic service A is a tuple 〈IC,O〉 consisting of an

invocation connector IC and a non-empty finite set O of j
primitive operations (Fig. 1). It is formed by connecting an
invocation connector with a computation unit.

Sa

w1w2

wj

WIC =
{

{
op2
op1

opj

w1 w2 wj
Atomic 
service
Computation
UnitU
Operation
Invocation 
Connector

op1 op2 opj

Waaa Atomic
Work�ow 
Space

Work�ow Space

Fig. 1. A DX-MAN atomic service defines j workflows: |W | = j.

A computation unit is not allowed to call other computation
units, and is the place where j service operations are imple-
mented using well-known technologies such as REST. To satisfy



an external request, an invocation connector is responsible for
executing a workflow in W .

Fig. 1 shows that an atomic service Sa ∈ A defines an atomic
workflow space Wa s.t. |Wa| = j and each wi∈[1,j] ∈ Wa is
a workflow invoking an operation opi∈[1,j] ∈ O. The atomic
workflow space Wa is the interface of Sa.

B. Algebraic Composition

Our notion of algebraic service composition is inspired by
algebra where functions are hierarchically composed into a
new function of the same type. The resulting function can be
further composed with other functions, yielding a more complex
one. Algebraic service composition is then the operation by
which a composition connector composes k services into a
more complex service. The result is a (hierarchical) composite
service whose interface is constructed from the sub-service
interfaces. Formally, a composite service is a tuple 〈CC,W〉
consisting of:

• a composition connector CC that invokes multiple work-
flows defined by the composite service, and

• a non-empty finite W set which is a family of non-empty
(finite of infinite) sets of sub-workflow spaces s.t. each
Wi ∈ W, i = 1, . . . , k is a workflow space of either an
atomic sub-service or a composite sub-service.

A composite service is a variation point which defines a
new non-empty (finite or infinite) workflow space W using
the sub-workflow spaces W via algebraic references (Fig. 2).
W serves as the composite service interface, and is available
to more complex composites.

Composition
Connector

Composite
Service

Algebraic
Reference

Invocation 
Connector

Atomic 
service

Computation
Unit

Composite
Work�ow
Space

Atomic
Work�ow 
Space

Operation

WwaICwa =

{
wclotheswdishes

{

washClothes
washDishes

Oven

WovICov =
{wcook{

cookMeals
O�ers O�ers

Wwa
Wov

Smart
Home PARhome O�ers

Wrobot

WashingServ

Whome

WrtICrt =

{
wrightwleft

{

right
left

FrontWheel

WwhICwh =
{wgo{

go
Spin
Composite

O�ers O�ers

O�ers
Wspin

Wrt
Wwh
Wspin

Available

Vacuum
Robot SEQrobotbbb O�ers

Wrobot

RotatingServ

Available (W     ) home

(W     ) robot

Fig. 2. Algebraic Composition for a Smart Home.

Fig. 2 depicts a two-level DX-MAN composition for a smart
home with four atomic services (i.e., WashingServ, Oven, Ro-
tatingServ and FrontWheel) and three composite services (i.e.,
SpinComposite, VacuumRobot and SmartHome). The services
are described in Sect. III. For the sake of clarity, we omit the
internal structure of SpinComposite, but we show its interface:
the composite workflow space Wspin. The interfaces of Wash-
ingServ, Oven, RotatingServ and FrontWheel are the atomic

workflow spaces Wwa = {wclothes, wdishes}, Wov = {wcook},
Wrt = {wright, wleft} and Wwh = {wgo}, respectively. The
services RotatingServ, FrontWheel and SpinComposite are
composed into VacuumRobot (using the composition connector
SEQrobot, see Fig. 3). Thus, the interfaces Wrt, Wwh and
Wspin are available in VacuumRobot which, in turn, defines the
composite workflow space Wrobot. Then, WashingServ, Oven
and VacuumRobot are composed into the top-level composite
SmartHome (using the composition connector PARhome, see
Fig. 6). So, SmartHome has available the interfaces Wwa, Wov

and Wrobot, and yields the composite workflow space Whome.

C. Workflow Selection
A composition connector CC is a variability operator that

defines the alternative behaviours of a composite service. It is
a function that defines a workflow space W , given a family of
sub-workflow spaces W:

CC : W �→ W (3)

A composition connector has access to atomic sub-workflow
spaces, but not to composite sub-workflow spaces. This is
because a composite sub-service is a black box whose behaviour
is unknown. Hence, a composition connector operates on n
elements to define sequential, branching or parallel workflows
for a composite c ∈ C. The total number of elements n is the
sum of the cardinality of atomic sub-workflow spaces and the
number of composite sub-services:

n =

|Wc|∑
i=1

{ |W i
c | sic ∈ A
1 sic ∈ C

(4)

where Wc ∈ W is the set of sub-workflow spaces of the
composite c, n ≥ |Wc| and W i

c ∈ Wc is the workflow space
of a sub-service Si

c.
At design-time, an abstract workflow tree is automatically

created for a composite service, as a result of composition. It
represents the hierarchical control flow structure of a composite
service, where n leaves are atomic workflows, composite
workflow spaces or any combination thereof (e.g., Fig. 3).
The leaves are also referred to as the elements of a workflow
tree. The edges represent customizable control flow parameters
(e.g., execution order or conditions) which are determined
by the composition connector being used. In our current
implementation, abstract workflow trees are JSON objects.

A concrete workflow tree enables the selection of a workflow
variant at runtime. It particularly sets specific values for the
customizable control flow parameters of an abstract workflow
tree, in order to select the elements (i.e., atomic workflows
or composite workflow spaces) to include in a workflow out
of n possibilities (e.g., Fig. 4). In our current implementation,
concrete workflow trees are also JSON objects.

III. COMPOSITION CONNECTORS AS VARIABILITY
OPERATORS

This section describes some of the composition connectors
currently supported by DX-MAN, namely sequencer and
parallelizer. Exclusive and inclusive branching is also supported
but we do not describe it due to space constraints.



A. Sequencer

A sequencer connector SEQ uses the Kleene star operation
to allow the repetition of n elements, resulting in infinite
sequences. It then defines an infinite workflow space for
a composite service s.t. each wi ∈ W, i = 1, . . . ,∞ is a
sequential workflow. A sequencer is a function defined as:

SEQ : W �→ W (5)

where |W | = ∞.
1) Example: A vacuum robot cleans a room in a smart

home with a VacuumRobot service (Fig. 3) which relies on
two atomic services and one composite service. The atomic
service RotatingServ provides two operations for turning the
robot to the left and right, respectively. The atomic service
FrontWheel offers the operation go to move the robot one unit
forward. There is also a SpinComposite service to spin the
robot 360◦ for cleaning the dirtiest areas of the room. For
clarity, the internals of SpinComposite are omitted.

Atomic 
service
Computation
Unit

Composite
Service

Algebraic
Reference

Invocation 
Connector

Atomic
Work�ow
Space

Operation

Composite
Work�ow 
Space

Sequencer
Connector

WrtICrt =

{
wrightwleft

{

right
left

FrontWheel

WwhICwh =
{wgo{

go
Spin
Composite

O�ers O�ers

O�ers
Wspin

Wrt
Wwh
Wspin

Available

Vacuum
Robot SEQrobotbbb O�ers

Wrobot

RotatingServ

wrobot1 wrobot4wrobot3wrobot2 wrobot5
Wrobot

Wspin

Wspin

Wspin

Co
m

po
si

te
 s

er
vi

ce
W

or
k�

ow
 S

pa
ce wright

wgo

wleft

wright wleft

wleft

wgo wleft wleft

wgo

Ab
st

ra
ct

 
W

or
k�

ow
Tr

ee

wright wleft wgo
[orderList] [orderList] [orderList] [orderList]

Wspin

SEQrobotbbb

(W     ) robot

Fig. 3. A sequencer defines ∞ workflows for a composite service: |W | = ∞.
In this example, there are ∞ sequential workflows for Vacuum Robot.

The sequencer connector SEQrobot composes RotatingSer-
vice, FrontWheel and SpinComposite into VacuumRobot, re-
sulting in the infinite workflow space Wrobot. Fig. 3 illustrates
some workflow variants for VacuumRobot. For instance, wrobot4

indicates that the atomic workflow wleft is executed before the
composite workflow space Wspin which, in turn, is executed
before the atomic workflow wgo. Note that Wspin cannot be
accessed by VacuumRobot since the SpinComposite sub-service
is a black box taking any behaviour. Instead, only atomic
workflow spaces (i.e., Wrt and Wwh) are accessible.

2) Workflow Selection: An abstract workflow tree of a
sequencer requires the specification of the execution order
for n elements. An execution order is a non-negative integer
defining the position of an element in a workflow. As a

sequencer allows repetition, an element requires an order list
[order1, order2, . . .], as shown by Figs. 4 and 5. Elements with
no order lists are not included in a workflow and, to ensure
consistent sequences, an order cannot appear in multiple lists.

Fig. 4 shows an example of a concrete workflow tree for
choosing the sequential workflow wrobot3 for the composite
VacuumRobot. The element wright is left out as it does not
have any order list. Fig. 5 illustrates another example for
the selection of the sequential workflow wrobot1 which now
excludes the composite workflow space Wspin.

=
[1,3]

wright wleft wgo Wspin

SEQrobotbbb

[0] [2]

wleft

wleft

wgo [0]
[1]
[2]

[3]

Wspin

Fig. 4. Concrete workflow tree for choosing the sequential workflow wrobot3

for the V acuumRobot composite.

=SEQrobotbbb

wright wleft wgo
[2] [1][0]

[0]
[1]
[2]

wright

wgo

wleftWspin

Fig. 5. Concrete workflow tree for choosing the sequential workflow wrobot1

for the V acuumRobot composite.

B. Parallelizer
A parallelizer connector PAR allows the execution of

multiple elements in parallel. As it supports element repetition,
it defines ∞ parallel workflows for a composite service s.t. each
wi ∈ W, i = 1, . . . ,∞ is a workflow executing all the elements
in parallel. Formally, a parallelizer is a function defined as:

PAR : W �→ W (6)

where |W | = ∞.
1) Example: Fig. 6 shows the SmartHome composite which

does the daily chores for a user. The atomic service Wash-
ingServ provides the operations washClothes and washDishes
for washing clothes and washing dishes, respectively. The
atomic service Oven offers the operation cookMeals for cooking
breakfast, lunch and dinner in a specific day. The composite
VacuumRobot (see Fig. 3) is also available for SmartHome. For
clarity, we omit the internals of VacuumRobot and we only
show the respective interface.

A parallelizer connector PARhome composes WashingServ,
Oven and VacuumRobot into SmartHome, resulting in the
workflow space Whome of infinite parallel workflows. Some
workflow variants are shown in Fig. 6. For instance, whome2

executes the atomic workflows wclothes and wcook in parallel.
whome4 is another variant that leverages the repetition support
for executing three tasks of the atomic workflow wcook. This is
useful for cooking three meals for three people simultaneously.



Oe
rs

Av
as

i
l

bA
C�

bo
mA

pp

wclothes wdishes wcook Wrobot

PARhome

|tasks#| |tasks#| |tasks#| |tasks#|

Whome

Algebraic
Reference

Atomic 
service
Computation
Unit

Composite
Service
Invocation 
Connector

Atomic
Work�ow 
Space

Operation

Composite
Work�ow 
Space

Parallelizer

l
bA

C�
bo

it
 v

ap

whome1

wclothes wdishes wcook Wrobot wclothes wcook

wcook wclothes wcook wcook

whome4

wclothes

whome2 whome3

whome5

WwaICwa =

{
wclotheswdishes

{

washClothes
washDishes

Oven

WovICov =
{wcook{

cookMeals
Vacuum
Robot

c �pAr c �pAr

c �pAr

Wwa
Wov

Smart
Home PARhome c �pAr

Wrobot

WashingServ

Wb
k

 b
rw

sp
ir

pA
Sw

ap

Whome

Wrobot

wcook wcook wcook

Wrobot

wdishes

OSvwTveTp(W     ) home

Fig. 6. A parallelizer defines ∞ workflows for a composite service: |W | = ∞.
In this example, there are ∞ parallel workflows for SmartHome.

2) Workflow Selection: The abstract workflow tree of a
parallelizer allows the selection of elements to include in
a parallel workflow, and there are n elements that can be
selected with repetition allowed. Each element requires the
specification of a natural number that represents the number of
tasks for that particular element, and elements with no tasks
are excluded from the workflow being constructed. A task
basically represents the number of times an element is repeated
in a parallel workflow. So, at runtime it is an invocation thread.

Fig. 7 shows a concrete workflow tree for choosing the
variant whome5. It defines three tasks for the atomic workflow
wcook, one task for the atomic workflow wclothes and another
one for the atomic workflow wdishes. This means that the smart
home washes dishes, prepares three meals and washes clothes
at the same time. The composite workflow space Wrobot is
excluded from whome5. Fig. 8 shows another concrete workflow
tree for choosing whome3 which only includes the composite
workflow space Wrobot and the atomic workflow wclothes.

=wclothes wdishes wcook Wrobot

PARhome

|1| |1| |3|

wcook wclothes wcook wcook wdishes

Fig. 7. Concrete workflow tree for choosing the parallel workflow whome5

for the SmartHome composite.

=wclothes wdishes wcook Wrobot

PARhome

|1| |1|

wclothesWrobot

Fig. 8. Concrete workflow tree for choosing the parallel workflow whome3

for the SmartHome composite.

IV. EMERGENT BEHAVIOUR OF DX-MAN COMPOSITIONS
USING FEEDBACK CONTROL LOOPS

This section describes the mechanism that enables an
autonomous selection of workflow variants at runtime in
composite services.

In DX-MAN, workflow spaces represent the adaptation space
of a composite service, since they provide a wide range of
workflow variants, each representing a different behaviour.
Unlike existing approaches, DX-MAN does not require to link
the variability model with the behavioural model, as those
dimensions are mixed in the semantics of a composite service.

The selection of workflow variants (i.e., changing behaviour)
takes place at runtime whenever the context changes. This is
done by building the concrete workflow tree that best adapts
to the current context. For this, we use Monitoring, Analysis,
Planning, Execution and Knowledge (MAPE-K) which endow
composite services with autonomicity. MAPE-K is a feedback
control loop consisting of multiple sensors, a monitor, an
analyzer, a planner, an executor, an effector and a knowledge
base. Fig. 9 shows that a MAPE-K loop manages a composite
service and collects information from the external context (e.g.,
the surrounding environment or user preferences). Remarkably,
autonomicity is an orthogonal dimension to control, data and
computation in the DX-MAN model [6].

Sensors E�ector

Monitor

nso

Analyzer Planner

ExecutorKnowledge
Base

MAPE-K ect
External
Context
External
Context

Managed Element

K

Composition
Connector
Composite
Service

Fig. 9. MAPE-K for DX-MAN.

The MAPE-K components are able to read and update the
knowledge base which stores relevant information for realizing
autonomic behaviour. By default, the knowledge base stores
the abstract workflow tree for the managed composite service.

The monitor uses sensor data to build a context model for the
external environment, which is used by the analyzer to decide
if a new behaviour is required. If so, the planner determines
the best workflow variant for the current context state, resulting
in a plan that is passed to the executor which transforms it
into a concrete workflow tree matching the structure of the
abstract workflow tree. Finally, the executor uses the effector
to change the behaviour of the managed composite service, by
executing the chosen concrete workflow tree. In our current



implementation, the context model, the context state, plans
and workflow trees are JSON documents. We do not show the
source code due to space constraints, but JSON samples are
available at https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

At runtime, control blocks in a composition connector. Once
a MAPE-K determines the “best” workflow for a managed
composite service, the executor resumes the workflow execution
by passing a concrete workflow tree to the connector of the
managed composite.

As every composite service is managed by a different MAPE-
K loop, any composite at any level in the hierarchy is able to
change its behaviour at runtime independently. This inevitably
requires ensuring consistency for the current workflow execu-
tion. Fortunately, dynamic workflow deployment is not required
since DX-MAN workflows are executable only. Whenever a
new workflow is required, the effector kills the thread of the
current workflow execution, thereby instantly stopping the sub-
workflows being executed by the managed composite. A new
thread is then created for the execution of the new workflow.

Workflow selection may potentially happen simultaneously at
multiple levels in the hierarchy. So, continuously changing sub-
workflows leads to an emergent behaviour of the whole system.
MAPE-K loops are continuously operating, even though control
flow has not yet reached the managed composition connector.
However, they can only change the composite service behaviour,
by executing a concrete workflow tree, when control flow has
passed through or is blocked in the managed connector.

A running IoT system is practically a complex workflow
consisting of sub-workflows s.t. each sub-workflow represents
a composite service behaviour. This is precisely due to the
hierarchical structure of a DX-MAN composition. By contrast,
MAPE-K loops are not structured hierarchically as they
never interact. Instead, they only select a workflow for the
managed composite service (at any level in the hierarchy)
and they execute new workflows (when control is blocked in
the managed composition connector) or replace an existing
workflow with a “better one” (when control has already passed
through).

V. CASE STUDY: SMART HOME

This section presents a case study in the domain of end-user
smart homes where the external context (e.g., user presence)
is always changing and users are always willing a quick
workflow selection. Existing approaches for variability-based
autonomicity (see Sec. VI) are not suitable for smart homes.
This is because they need time for changing behaviour due to
dynamic reconfiguration and/or provide a limited number of
variants (potentially unsuitable for some contexts). We leverage
the capabilities of DX-MAN to avoid dynamic reconfiguration
and provide a wide range of workflow variants. The DX-MAN
composition for our case study is basically the SmartHome
composite described in Sect. II and depicted in Fig. 2. Although
every composite service has its own MAPE-K loop, this section
just focuses on the autonomicity of the SmartHome composite.

The SmartHome composite does chores in parallel for a
user, while minimizing energy consumption and maximizing

tidiness. Its behaviour changes once a day and depends on
user preferences, changes in the external environment, and non-
functional properties of SmartHome elements. Table I shows
the annotated non-functional properties for wclothes, wdishes,
wcook and Wrobot. The userPresence property takes a binary
value to indicate whether the element should be executed
when the user is at home (i.e., One) or away (i.e., Zero). The
energy property defines the average discrete amount of energy
(in Watts per hour) required for the execution of an element.
The tidiness property determines the discrete level of tidiness
resulting from the execution of a specific element. The sum
of tidiness values must be equal to One. It is important to
note that the non-functional properties we assume can be much
more complex in other case studies.

Element UserPresence(u) Energy(e) Tidiness(t)
wclothes 0 500.0 0.25
wdishes 0 350.0 0.25
wcook 1 1300.0 0.10
Wrobot 0 150.0 0.40

TABLE I
NON-FUNCTIONAL PROPERTIES FOR THE ELEMENTS OF SmartHome.

The userPresence values depend on a user-defined rule which
indicate to hoover and wash when the user is away, so as to
avoid accidents and noise disturbances. Thus, only wcook has
a userpresence of 1.

A workflow variant wi ∈ Whome includes v elements s.t.
v ≤ n, and its properties are computed using Equations 7, 8
and 9. The userPresence u(wi) is an average s.t. each ux

i , x =
1, . . . , v is the userPresence value of an element x of wi. The
energy consumption e(wi) is a sum s.t. each exi , x = 1, . . . , v
is the energy consumption of an element x of wi. Similarly, the
level of tidiness t(wi) is a sum s.t. each txi , x = 1, . . . , v is the
tidiness value of an element x of wi. Thus, the workflow variant
wi with all the elements of SmartHome (i.e., v = n), provides
the highest tidiness and the highest energy consumption.

u(wi) =

v∑
x=1

ux
i

v
(7)

e(wi) =

v∑
x=1

exi (8)

t(wi) =

v∑
x=1

txi (9)

The external context φ changes daily and is modeled by
setting the user presence u(φ), the current energy cost c(φ)
(in dollars per Watt-hour) and a threshold τ(φ) which defines
the maximum amount (in dollars) the user is willing to spend
for energy (in a given day). We particularly define utility
functions to express the quantitative level of satisfaction of
workflow variants for the current context [8]. Overall, the
objective is to minimize energy cost and maximize tidiness.
The utility functions range from [0,1] where 0 reflects the
worst satisfability and 1 means the opposite.



Equation 10 is the utility function f1 that computes the
suitability of a workflow variant wi ∈ Whome for the user
presence. Equation 10 describes a piecewise utility function f2
that determines how well wi minimizes energy costs. Finally,
Equation 12 is the utility function f3 that computes the
contribution to tidiness of wi.

f1(wi, φ) = 1− | u(φ)− u(wi) | (10)

f2(wi, φ) =

{
1− e(wi)·c(φ)

τ(φ) e(wi) · c(φ) < τ(φ)

0 e(wi) · c(φ) ≥ τ(φ)

(11)

f3(wi) = t(wi) (12)

Equation 13 computes the overall utility U(wi, φ) of a
workflow variant wi ∈ Whome for the current context φ. The
weights ω1, ω2 and ω3 define the preference of taking into
account user presence, the priority of considering the energy
cost and the preference for a tidy environment, respectively.
They are continuous values in [0, 1] s.t. a higher value indicates
a higher preference. For our experiments, ω1 = ω2 = ω3 = 1.

U(wi, φ) =
ω1 · f1(wi, φ) + ω2 · f2(wi, φ) + ω3 · f3(wi)

ω1 + ω2 + ω3
(13)

The behaviour of the SmartHome composite is controlled by
a MAPE-K loop which has three sensors collecting information
from the external context φ, namely user presence, current
energy costs (from the energy supplier) and a threshold value
(continuously changed by the user). In addition to the abstract
workflow tree of SmartHome, the knowledge base includes the
aforementioned utility functions, as well as context values and
selected workflows from previous days. It also contains the
values of the non-functional properties presented in Table I.

The monitor operates once a day to build a relationship
between context properties and sensor values. Some examples
of context models are presented in Table II. The analyzer
receives a context model as an event, and triggers an Event-
Condition-Action (ECA) rule. A new plan is needed if the
current context is different from the previous day; otherwise,
the plan from the previous day is executed (without planning).

Day ( ) UserPresence(u ) EnergyCost(e ) Threshold(� )

0 0.00014 0.2
1 0.00007 0.6
1 0.00012 0.3
0 0.00013 0.5

� �
1
2
3
4

��

TABLE II
POSSIBLE CONTEXT MODELS.

As the size of Whome is infinite (Fig. 6), evaluating all
workflow variants is infeasible. For that reason, we propose a
planner with a metaheuristic to find the most optimal workflow
for a given context. For clarity, we reduce the space search
by omitting element repetition for every wi ∈ Whome. So,
elements of chosen workflow variants have one task only. As
SmartHome has four elements (i.e., wclothes, wdishes, wcook

and Wrobot), Whome has 24 − 1 workflow variants. Although

|Whome| is relatively small, we use a genetic algorithm to show
what a planner would do for larger workflow spaces.

A chromosome represents a workflow variant with four
boolean genes.1 Fig. 10 shows that the order of genes is manda-
tory as each gene represents an element of the SmartHome
composite, where a gene Zero means that the element is
not selected, whilst a gene One entails that the element has
one task. For instance, the chromosome 0101 represents a
workflow variant for executing wdishes and Wrobot in parallel.
A population is thus a set of workflow variants representing
possible solutions for the current context φ. Each variant is
evaluated by the utility function presented in Equation 13.

wclothes wdishes wcook Wrobot

PARhome

|1|

0 1 0 1
|1|

Day ( ) Concrete Work�ow Tree

1

2

� Chromosome Behaviour

1 1 1 1

wdishes Wrobot
Utility=0.77

wclothes wdishes wcook Wrobot
Utility=0.66 wclothes wdishes wcook Wrobot

PARhome

|1| |1||1||1|

Fig. 10. Possible behaviours for the SmartHome composite.

After two workflow variants are selected in a generation,
a one-point crossover operator is used. The crossover point
is randomly selected and replaces the gene of one variant
with the gene of another one. The result is two children
representing two new workflow variants for the next generation.
To increase diversity, we introduce mutation by randomly
selecting a gene and flipping it from zero to one, or viceversa.
For our implementation, we use the NSGA-II algorithm and
the MOEA framework. Our source code is available at https:
//gitlab.cs.man.ac.uk/mbaxrda2/dxman. As this is a relatively
small problem, the parameters of the genetic algorithm are
as follows: population size is 8, crossover probability is 0.5,
mutation probability is 0.2 and number of iterations is 20.

The result of the planner is a chromosome representing the
optimal parallel workflow for the current context. The executor
then creates a concrete workflow tree that fits the plan. Fig. 10
shows the behaviours of SmartHome for adapting to the context
of days 1 and 2 (described in Table II). We only show two
behaviours due to space constraints. To change the behaviour
of the SmartHome composite, the effector passes the respective
concrete workflow tree to the parallelizer PARhome at runtime.

VI. RELATED WORK

The related work is classified into two categories of workflow
variability: solution space variability and Models@Runtime.

1For infinite workflow spaces, we could consider a chromosome where each
gene is a non-negative integer in [0,∞].



A. Solution Space Variability

The solution space captures variability at the level of
composition constructs of either component models or process
languages. In particular, components models define variation
points using parametric variability or enumerative variability.
Parametric variability [9] defines a fixed number of behaviour
variants at the implementation-level (i.e., one workflow with
multiple branching structures). Dynamic reconfiguration is
needed to change a composition structure at runtime.

Only FX-MAN [10] enumerates variants in the solution
space. However, it does not support service composition, needs
variation generators on top of compositions, and does not
address workflow variability and runtime workflow selection.

Approaches extending Process Modeling Languages allow
the definition of control flow constructs as variation points
whose variants are realized via model transformations [2]. Most
of them [11], [12], [13] support control flow variability only
at conceptual level as they operate on non-executable models.
Only few approaches [14], [15] support control flow variability
via executable models (e.g., YAWL or BPEL). However, they
operate on a flat workflow by adding, removing or replacing
business process fragments via reconfiguration rules [16].

Other approaches [17] introduce parametric variability in
business processes. However, they also need dynamic binding
at runtime and variants are manually fixed at design-time.

B. Models@Runtime

Dynamic Software Product Lines (DSPL) change behaviour
at runtime when context changes, by using models@runtime
to causally connect a variability model (typically a feature
model [18]) with a behavioural model (typically architectural
units). To change behaviour, they bind variation points at
runtime by selecting (i.e., activating or deactivating) features
that best adapt to the current context. Thus, a set of features
represents a behaviour variant, which is transformed into a
software architecture using a transformation mechanism [19].
Undoubtedly, such a mechanism increases the overhead for
changing behaviour at runtime. Moreover, DSPL requires
dynamic reconfiguration [18], [1] of the running composition,
as it separates variability from behaviour.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the DX-MAN model semantics by
mixing variability with behaviour in composite services.
Composition connectors are variability operators that define
workflow spaces with infinite workflow variants (i.e., alternative
composite service behaviours). Thus, composite services define
an infinite number of Turing machines in the design phase.

A MAPE-K loop selects the composite service behaviour
(i.e., the workflow variant) that best adapts to the current
context. As workflows are non-deployable and executable
only, the executor changes a composite service behaviour
by executing the selected variant instead of dynamically
reconfiguring the whole workflow. Composition connectors are
the actual deployable entities which coordinate the execution of

multiple workflows. Hence, the same deployment configuration
is used for multiple workflow executions.

We evaluated DX-MAN autonomicity in the context of smart
homes. The results indicate that DX-MAN is a promising model
for autonomic IoT systems. Nevertheless, there are open issues.

DX-MAN currently enables control flow variability, making
it suitable for operations that do not require data, e.g., door
closing. We plan to introduce data flow variability by leveraging
the separation of autonomicity, control, data and computation.

DX-MAN is suitable for closed environments only where
the designer understands the deployment environment. We are
currently investigating novel ways to dynamically evolve a DX-
MAN composition, so as to enable workflow space emergence
at runtime. Evolution is indeed another important characteristic
of autonomic IoT systems, in addition to workflow variability.

REFERENCES

[1] G. H. Alférez and V. Pelechano, “Achieving autonomic Web service com-
positions with models at runtime,” Computers & Electrical Engineering,
vol. 63, pp. 332–352, 2017.

[2] M. L. Rosa et al., “Business Process Variability Modeling: A Survey,”
ACM Comput. Surv., vol. 50, no. 1, pp. 1–45, 2017.

[3] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in IEEE SOCA, 2017, pp. 125–132.

[4] D. Arellanes and K.-K. Lau, “Algebraic Service Composition for User-
Centric IoT Applications,” in ICIOT 2018, ser. Lect. Notes Comp. Sci.
Springer Int. Pub., 2018, pp. 56–69.

[5] D. Arellanes and K.-K. Lau, “D-XMAN: A Platform For Total Compo-
sitionality in Service-Oriented Architectures,” in IEEE SC2, 2017, pp.
283–286.

[6] D. Arellanes and K.-K. Lau, “Decentralized Data Flows in Algebraic
Service Compositions for the Scalability of IoT Systems,” in IEEE
WF-IoT, 2019, pp. 677–683.

[7] D. Arellanes and K.-K. Lau, “Analysis and Classification of Service
Interactions for the Scalability of the Internet of Things,” in IEEE ICIOT,
2018, pp. 80–87.

[8] K. Kakousis et al., “Optimizing the Utility Function-Based Self-adaptive
Behavior of Context-Aware Systems Using User Feedback,” in On the
Move to Meaningful Internet Systems: OTM 2008, ser. Lect. Notes in
Comp. Sci. Springer Berlin Heidelberg, 2008, pp. 657–674.

[9] A. Haber et al., “Hierarchical Variability Modeling for Software
Architectures,” in SPLC, 2011, pp. 150–159.

[10] C. Qian and K. Lau, “Enumerative Variability in Software Product
Families,” in International Conference on Computational Science and
Computational Intelligence (CSCI), 2017, pp. 957–962.

[11] M. La Rosa et al., “Configurable multi-perspective business process
models,” Information Systems, vol. 36, no. 2, pp. 313–340, 2011.

[12] I. Reinhartz-Berger et al., “Extending the Adaptability of Reference
Models,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 40, no. 5, pp. 1045–1056, 2010.

[13] A. Hallerbach et al., “Capturing Variability in Business Process Models:
The Provop Approach,” J. Softw. Maint. Evol., vol. 22, no. 6-7, pp.
519–546, 2010.

[14] F. Gottschalk et al., “Configurable workflow models,” Int. J. Coop. Info.
Syst., vol. 17, no. 2, pp. 177–221, 2008.

[15] A. Kumar and W. Yao, “Design and management of flexible process
variants using templates and rules,” Computers in Industry, vol. 63, no. 2,
pp. 112–130, 2012.

[16] R. Cognini et al., “Business process flexibility - a systematic literature
review with a software systems perspective,” Inf Syst Front, vol. 20,
no. 2, pp. 343–371, 2018.

[17] M. Koning et al., “VxBPEL: Supporting variability for Web services
in BPEL,” Information and Software Technology, vol. 51, no. 2, pp.
258–269, 2009.

[18] B. Morin et al., “Models@ Run.time to Support Dynamic Adaptation,”
Computer, vol. 42, no. 10, pp. 44–51, 2009.

[19] I. Schaefer et al., “Delta-Oriented Programming of Software Product
Lines,” in Software Product Lines: Going Beyond, ser. Lect. Notes in
Comp. Sci. Springer Berlin Heidelberg, 2010, pp. 77–91.


