
From Formal Methods to Software Components:
Back to the Future?

Kung-Kiu Lau(B)

School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK

kung-kiu.lau@manchester.ac.uk

Abstract. Looking back at the past, I believe Formal Methods and
Component-based Software Engineering have missed opportunities to
synergise. Looking forward to the future, I believe even more strongly
that this synergy will be crucial for developing Software Engineering
techniques that tackle scale and complexity. In this position paper I out-
line the fundamentals of my belief, in terms of existing work and future
challenges.

1 The Future?

Any engineering discipline is based on: (i) a well-established underlying theory;
(ii) standard parts or components for building systems; and (iii) tools for con-
structing systems from components, and for verifying systems. So it would seem
logical to conclude that Component-based Software Engineering (CBSE) and
Formal Methods (FM) are the essential ingredients for Software Engineering.

As software becomes ever more pervasive (witness the Internet of Things),
the challenge facing Software Engineering nowadays is how to tackle ever increas-
ing scale and complexity, while guaranteeing safety. Is CBSE + FM up to the
challenge? Is CBSE + FM addressing the challenge? To answer in the affirma-
tive, I believe we need to accomplish two things: (i) compositional construction;
and (ii) compositional verification.

2 Compositional Construction

Compositional construction is what CBSE sets out to achieve. The general pic-
ture of CBSE is depicted in Fig. 1. The basic idea is that components should pre-
exist, i.e. they should be built independently from specific systems and deposited
in a repository. Repository components can be reused in many different systems
constructed by composing the components.

Whilst a generic component (Fig. 2(a)) is a unit of composition with provided
and required services, commonly used components fall into three main categories:
(i) objects (Fig. 2(b)); (ii) architectural units (Fig. 2(c)); and (iii) encapsulated
components (Fig. 2(d)). Composition mechanisms (Fig. 3) used by these cate-
gories are respectively: (i) direct message passing (method call); (ii) indirect
message passing (port connection); (iii) coordination (exogenous composition).
c© Springer International Publishing AG 2017
O. Kouchnarenko and R. Khosravi (Eds.): FACS 2016, LNCS 10231, pp. 10–14, 2017.
DOI: 10.1007/978-3-319-57666-4 2



From Formal Methods to Software Components 11

Fig. 1. CBSE: compositional construction.

Fig. 2. Types of components.

Fig. 3. Composition mechanisms.

The desiderata for compositional construction are embodied in the idealised
component life cycle [1], illustrated in Fig. 4. Apart from the use of pre-existing
components from a repository, the key desiderata include composition in both the
design phase and the deployment phase;1 since maximum composition equates
to maximum reuse.

2.1 Component Models

For compositional construction, components and their composition mechanisms
[5] have to be defined properly. We advocate to do so in a component model
[9,10]. Figure 5 shows a taxonomy of current component models with respect to
the idealised component life cycle. Categories 1–4 do not support composition
in both design and deployment phases. Category 5 does, but has only a lone
member, namely X-MAN [2,7,8,12], that we have defined and implemented. X-

1 Run-time composition, or dynamic reconfiguration, is also meaningful, though it
may be harder to define, implement and verify.



12 K.-K. Lau

Fig. 4. Idealised component life cycle.

MAN achieves compositional construction, but it currently lacks tool support
for compositional verification [3].

3 Compositional Verification

With compositional construction, we should be able to accomplish composi-
tional verification, i.e. hierarchical, bottom-up, verification of component-based
systems whereby the smallest (atomic) components at the lowest level are veri-
fied first, and their verification is reused, i.e. not repeated, in the verification of
a composite at the next level up.

This is illustrated in Fig. 6, which shows the W model [6] for component-based
development life cycles: component life cycle and system life cycle, and how they
intersect. The W model supports compositional verification. Component verifi-
cation is done in the component life cycle when components are developed for
the repository, independent of specific systems. Compositional verification is
done when a specific system has been assembled from already verified repository
components. By reusing the verification of sub-components at successive levels
of composition, instead of verifying the complete system as a monolith, compo-
sitional verification should be able to scale to large complex systems which are
beyond the capability of current verification techniques and tools.

4 Back to the Future?

Looking back, I advocated synergy between FM and CBSE [4] at the early stages
of the International CBSE Symposium. In my opinion, hitherto this synergy has
not really materialised, or at least what little there is has not been effective.
According to [11], there has been little FM activity at the CBSE symposium. I



From Formal Methods to Software Components 13

Fig. 5. Idealised component life cycle: taxonomy of component models.

surmise the converse is true of CBSE activity at FM conferences – maybe even
FACS?

Looking forward to the future, I strongly believe that this synergy will be cru-
cial for developing Software Engineering techniques that are not only truly engi-
neering techniques as in traditional engineering disciplines, but can also tackle
scale and complexity. In other words, this synergy can provide not only an engi-
neering (compositional) approach to software construction from standard parts,
but also compositional reasoning, which together can tackle ever increasing scale
and complexity in software systems and their V&V.

Fig. 6. The W model.



14 K.-K. Lau

References

1. Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F., Pomberger, G., Pree, W.,
Stal, M., Szyperski, C.: What characterizes a software component? Softw. Concepts
Tools 19(1), 49–56 (1998)

2. di Cola, S., Tran, C., Lau, K.-K.: A graphical tool for model-driven development
using components and services. In: Proceedings of 41st Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) 2015, pp. 181–182
(2015)

3. He, N., Kroening, D., Wahl, T., Lau, K.-K., Taweel, F., Tran, C., Rümmer, P.,
Sharma, S.: Component-based design and verification in X-MAN. In: Proceedings
of Embedded Real Time Software and Systems (2012)

4. Lau, K.-K.: Component certification and system prediction: is there a role for for-
mality? In: Crnkovic, I., Schmidt, H., Stafford, J., Wallnau, K. (eds.) Proceedings
of the Fourth ICSE Workshop on Component-based Software Engineering, pp.
80–83. IEEE Computer Society Press (2001)

5. Lau, K.-K., Rana, T.: A taxonomy of software composition mechanisms. In: Pro-
ceedings of 36th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 102–110. IEEE (2010)

6. Lau, K.-K., Taweel, F., Tran, C.: The W model for component-based software
development. In: Proceedings of 37th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pp. 47–50. IEEE (2011)

7. Lau, K.-K., Tran, C.: X-MAN: an MDE tool for component-based system develop-
ment. In: Proceedings of 38th EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 158–165. IEEE (2012)

8. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software
components. In: Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A.,
Szyperski, C., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 90–106.
Springer, Heidelberg (2005). doi:10.1007/11424529 7

9. Lau, K.-K., Wang, Z.: Software component models. IEEE Trans. Softw. Eng.
33(10), 709–724 (2007)

10. Lau, K.-K., Wang, Z., di Cola, S., Tran, C., Christou, V.: Software component-
models: past, present and future. In: Tutorial at COMPARCH 2014 Conference,
30 June 2014, Lille, France (2014)

11. Maras, J., Lednicki, L., Crnkovic, I.: 15 years of CBSE symposium - impact on the
research community. In: Proceedings of the 15th International ACM SIGSOFT
Symposium on Component-Based Software Engineering, pp. 61–70. ACM (2012)

12. Elizondo, P.V., Lau, K.-K.: A catalogue of component connectors to support devel-
opment with reuse. J. Syst. Softw. 83, 1165–1178 (2010)

http://dx.doi.org/10.1007/11424529_7

	From Formal Methods to Software Components: Back to the Future?
	1 The Future?
	2 Compositional Construction
	2.1 Component Models

	3 Compositional Verification
	4 Back to the Future?
	References


