
July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Chapter 8

Charaterising Object-Based Frameworks in

First-Order Predicate Logic

Shui-Ming Ho and Kung-Kiu Lau

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, U.K.

In the component-based approach Catalysis, a framework is a reusable artefact
that can be adapted and composed into larger systems. The signed contract
between components specifies how the required properties of one component are
satisfied by the provided properties of another. We examine this concept in the
context of framework-based development. Although Catalysis advocates rigorous
development, frameworks lack a comprehensive formal foundation. We consider
a simplified view of frameworks and their transformation into first-order logic.
Theorem proving may be used to check the consistency of framework specifications
and we identify ways in which these specifications may be simplified beforehand
to reduce the burden of proof.

Contents

8.1. Introduction . 222
8.2. Catalysis Frameworks . 223
8.3. A Cursory Overview of FML . 225

8.3.1. Datatypes . 225
8.3.2. Classes and Associations . 225
8.3.3. Behavioural Elements . 227
8.3.4. Constraints . 227
8.3.5. Importing Mechanisms . 228

8.4. The Specification of Structure . 229
8.4.1. Notation . 229
8.4.2. Object Identity and State . 230
8.4.3. State Space Specifications . 233
8.4.4. Object Diagrams . 234

8.5. Structuring and Modularity . 235
8.5.1. State Models . 237
8.5.2. Class Extension and Composition . 237

8.6. Behavioural Modelling and Specification . 239
8.6.1. State History Functions . 239
8.6.2. Events . 239
8.6.3. Constraints in FML . 240

8.7. Framework Consistency . 242
8.7.1. Contract Composition in Catalysis . 242
8.7.2. Contracts in FML . 243
8.7.3. Consistency Checking . 243

221

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

222 S-M. Ho and K-K. Lau

8.8. Frameworks in Component Modelling . 245

8.8.1. Signed Contracts and Composition . 246

8.9. Related Work . 249

8.10.Summary . 250

Bibliography . 251

8.1. Introduction

Code is not the only reusable artefact obtained during system development. Spec-
ifications and designs also have the potential for reuse. In particular, there has
been a growing interest in the identification and application of recurring patterns of
interaction. The relationship between design patterns and component, for example,
has previously been studied by Johnson [1] and Larsen [2]. Patterns may be applied
during the development process and they may be realised by one or more software
components.

In the component-based development approach Catalysis [3], designs patterns
are at the heart of frameworks. Framework-based development shifts the focus or
reuse from single classes to groups of classes. Underlying this approach are the
concepts of abstraction and refinement : generic frameworks may be specialised and
adapted to specific problem domains. The use of these frameworks may be subject
to constraints and ensuring these constraints are satisfied is integral to the Catalysis
approach.

Given its emergence as the de facto standard for object-oriented modelling, the
Unified Modelling Language [4] (UML) is used to model frameworks in Catalysis.
The Object Constraint Language [5] (OCL) can be used to specify their semantics.
Different modelling approaches introduce their own modelling concepts and Catal-
ysis is no exception. Although the use of UML and OCL is widespread, they are
not necessarily applicable to these approaches. Since the publication of D’Souza
and Wills’ text on Catalysis (Ref. 3), both UML and OCL have been revised, cul-
minating in the definitions of UML 2.0 and OCL 2.0. Both languages can express
more but because of the specifics of Catalysis’ modelling approach, they are still in-
adequate for framework modelling. Prior to OCL 2.0, much work has been devoted
to increasing OCL’s expressiveness. Of importance has been the need to provide
greater support for business modelling and the need to express different kinds of
business rules, e.g., those classified by Eriksson and Penker [6]. Catalysis has relied
on its own versions of UML and OCL, at the same time prescribing a different se-
mantics for OCL. Different notations can be used in different situations, making it
difficult to fix a standard notation for framework modelling.

In this chapter, for the purpose of framework modelling, we will depart entirely
from UML/OCL. Instead, we make use of a textual language, Framework Modelling
Language (FML), for defining frameworks from scratch. The intention is that FML
can be used to define the core structural and behavioural properties of frameworks.
However, these are informal descriptions and we will examine how frameworks in
FML might be formalised. Many existing approaches to formalising UML and
OCL are based on the transformation of UML models and OCL constraints into

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 223

an existing formalism. Given the differences in UML/OCL and Catalysis’ version
of these languages, the applicability of these approaches to frameworks is limited.
In this chapter, we outline how frameworks defined in FML may be translated
into first-order logic. The resulting specification may be submitted for theorem
proving. Where appropriate, this specification may be simplified beforehand. These
simplifications are explored in Sec. 8.7..

8.2. Catalysis Frameworks

That different aspects of a system can be modelled independently, then assembled
together, is not new: role modelling in OORAM [7], aspect-oriented development,
and framework modelling in Catalysis are variations of this concept.

Traditionally, frameworks are defined as groups of interacting objects. Fig-
ures 8.1. and 8.2. show two such frameworks. These domain specific frameworks
describe the roles a person plays in different contexts: that of a driver and an
employee. Figure 8.1. shows the structural relationship between drivers and their
cars. Collaborative behaviours can be expressed as joint actions, as illustrated in
Fig. 8.2.: employees and companies collaborate in the action employ. Joint actions
may be thought of as system level behaviours, much like use cases in object-oriented
analysis. They may be decomposed into much smaller actions (local actions, or mes-
sages) which occur at the object level. The decomposition of these actions may be
represented in a similar manner to use cases in UML. The discussion of frameworks
in this chapter, however, will not be concerned with such decompositions.

Drivers

Person
owner drives

Car
1 1

Fig. 8.1. People playing the role of drivers.

Company
worksFor

1

employee

1..*
Person

employ

Employees

Fig. 8.2. Companies and employees collaborating in the action employ.

The above frameworks can be augmented with constraints, which can be ex-
pressed in either OCL or in any other notation, e.g., natural language.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

224 S-M. Ho and K-K. Lau

Model Synthesis/Composition. The models of Figs. 8.1. and 8.2. may be syn-
thesised, or composed, to form a new framework Drivers+Employees. Figure 8.3.
shows the unfolded view of the framework. Whether this synthesis is possible in
UML is dependent upon how well defined the package extension mechanism of UML
is. For a discussion of UML’s package extension mechanisms, the reader is referred
to Cook et al.’s discussion [8]. In Catalysis, the derivation of Drivers+Employees is
expressed either using a package dependency diagram (Fig. 8.4.a) or as a pattern
application (Fig. 8.4.b).

Company
worksFor

1

employee

1..*
Person

employ

owner

1

drives

1
Car

Drivers+Employees

Fig. 8.3. The synthesis of the Driver and Employee frameworks.

Drivers Employees

Drivers+Employees

Car

Drivers

Person

Car

Company

Employees

CompanyPersonPerson

(a) (b)

Fig. 8.4. The derivation of Drivers+Employees can be expressed in two ways: (a) using package
dependency diagrams; or (b) using pattern application diagrams.

External Interactions. Usually, objects within a framework collectively main-
tain some invariant, which must be observed by interactions within the framework
and also by interactions between objects in different frameworks. This latter sit-
uation arises when model composition occurs and the behavioural models of each
component framework must be unified. The synthesis of frameworks may result
in invalid models either because constraints conflict or existing ones are too weak,
resulting in unexpected behavioural models.

An effect invariant is a constraint on actions both within a framework (internal
actions) and those defined elsewhere (external actions). They are usually expressed
as trigger rules, similar to the behavioural contracts of Helm et al [9]. For example,
in the Observer pattern an effect invariant could specify the sequence of actions
that take place whenever the state of a subject changes: the trigger—a change in
the subject’s state—results in the subject sending a notification to its observers, in
turn, causing them to update themselves. OCL 2.0 goes some way toward expressing

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 225

these kinds of rules. However, these rules can only occur within the context of a
single class although, in general, rules may be defined on the whole system.

From the informal to the formal

The remainder of this chapter is devoted to the problem of deriving a formal spec-
ification, spec(F) of an FML framework F. Ideally, we would like to fix a standard
notation for defining frameworks and their properties. Catalysis makes use of its
own extensions to UML/OCL. The notations may be intuitive but they lack a proper
definition within the (informal) semantic framework of UML/OCL. The extensions
either require subtle changes to the existing semantics of OCL, or complicate the
language unnecessarily. For this reason, FML is used.

8.3. A Cursory Overview of FML

In the majority of UML models there are two kinds of model element : structural
elements and behavioural elements. In FML, structural elements correspond to
classes, attributes, and associations; behavioural elements correspond to events that
occur within the framework.

8.3.1. Datatypes

Common to many object-oriented (or object-based) languages is the notion of a set
of basic data types (e.g., Integer, String, etc.) from which more complex data struc-
tures can be built. UML is no exception and basic data types are defined within a
package called DataTypes. In FML, we will assume the existence of a corresponding
framework, DataTypes, which contains the ADT definitions of primitive types. Pa-
rameterised collection types (bags, sets, and sequences) also exist in UML/OCL. In
the sequel we make use of one such collection: Set(Data), sets of Data elements. In
addition to primitive types it is also possible to define additional datatypes within
a framework. This is illustrated later.

8.3.2. Classes and Associations

The FML declaration

framework F

class C {}

defines a class C in framework F. The class has no features (or fields), which is
denoted by the empty parentheses. The term feature is used to refer to a property
of a class as attributes and associations are not conceptually distinguishable as they
are in UML.

The features of a class may be represented by either functions or predicates. In
the declaration

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

226 S-M. Ho and K-K. Lau

class C { f: -> T; p: (T) }

the class C has two features, denoted by the function f and the predicate p. In
general, f and p may either be attributes of class C or associations in which instances
of C participate. If T is a class, then f can be interpreted as the name of an
association that is navigable from C to T, through which a single instance of T is
returned. The feature p may be interpreted as the name of an association which,
when navigated, results in any number of T-instances. This loosely corresponds to
the situation in UML where an association p is marked with the variable multiplicity
marker * at the association end at T. Given the above, the correspondence between
features in FML and attributes and associations in UML can be described as follows.

Let F be a framework expressed in Catalysis’ extended UML notation and let
F consist of the n classes read from the diagram: C1,. . . ,Cn. The corresponding
framework in FML will be denoted by F and the classes of F will be denoted by
C1,. . . ,Cn.

Attributes. Suppose the class C1 is defined as follows:

C1 { a: -> T; b:(t1,...,tk, T) }

(1) The feature a corresponds to the UML attribute declaration a: T in C1.
(2) The feature b corresponds to the (Catalysis) parameterised attribute b with

parameter types t1,. . . ,tk and result type T.

Binary Associations. Suppose R is a binary association joining the classes C2

and C3 (where both classes have no attributes or other associations) and that each
association end is labelled with the role names r2 and r3 respectively.

(1) The declaration C2 { r3: -> C3 } corresponds to the situation where the as-
sociation end named r3 has the multiplicity constraint 1.

(2) The declaration C3 { r2: (C2) } corresponds to the situation where the asso-
ciation end named r2 has any of the following multiplicity constraints: 0..*, 1..*,
or 0..1.

In the above, it is assumed that navigation is possible from one class to another if
and only if there is a role name at the target end of the association. This gives rise
to a third condition.

(3) In the absence of role names, the direction of navigation may be explicitly
marked as being from C2 to C3 in which case we either have the declaration

C2 { R: -> C3 } or C3 { R: (C3) } ,

depending on the multiplicity at C3 as outlined above.

Item (2) above represents a departure from UML/OCL in that it deviates from
the usual notion of navigation through an association. An alternative is to allow
collection types, i.e., r2: -> Set(C2). Other collections may be used. For ex-
ample, if r2 had the UML stereotype ordered, then we might use the declaration

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 227

r2: -> Sequence(C2) instead. The use of collection types allows us to express a
greater range of multiplicity constraints on association ends.

n-ary Associations. These associations represent a general relationship between
n participant classes. Unlike binary associations, however, an n-ary association is
not navigable. If R is a ternary association between C1, C2, and C3, then each of
those classes has a feature named R, e.g., a feature R: (C2,C3) in class C1.

It should be noted that the above covers only a subset of UML’s repertoire of
associations. The frameworks considered in this chapter are object-based frame-
works, not object-oriented. Although inheritance may be used for more interesting
designs, it may also introduce its own problems, particularly where behavioural
overriding occurs [10]. Classes in FML are considered as defining a traits rather
than taxonomic structures.

Additionally, UML has the relationships of composition and aggregation. How
aggregation should be applied has been the subject of much discussion. Both these
relationships, however, may be represented as normal associations coupled with
suitable constraints to represent either a composition or aggregation relationship.

8.3.3. Behavioural Elements

Whereas Catalysis talks about actions, in FML observable behaviours are described
using timed events. An event is instantaneous and corresponds to the occurrence
of some action. Alternatively, it may represent some signal that is raised whenever
some property holds at a given point in time.

A timed event in F, declared as m(C1,...,Cm,t1,...,tn,Time), where C1, . . . , Cm
are the participant classes of the action and t1, . . . , tn are additional parameter types
of the action, can be interpreted in two ways:

(1) there is a joint action m(t1, . . . , tn) in F in which instances of C1, . . . , Cm partic-
ipate; or

(2) there is a local action m initiated by an instance of C1, which involves objects
of the other specified classes.

Actions, whether local or joint, are considered as globally observable behaviours in
FML, occurring within an explicit time context, as dictated by the Time parameter.

8.3.4. Constraints

Conceptually, objects have state histories and in FML it is possible to refer to an
object as it is at specific points in time. We denote the state of an object x at time t
by the term $(x,t). As usual, the dot notation is used to represent feature access.
Thus, if a is a function feature of x, then the term $(x,t).a denotes the value of
a for object x at time t.

Constraints on objects are introduced as facts of the framework. Facts are
expressed as formulae in first-order logic using FML’s notation. As is the case with
events, constraints are always global properties unlike OCL, where constraints are

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

228 S-M. Ho and K-K. Lau

always local properties of classes.
As an example, the multiplicity on the role named employee in Fig. 8.2. may be

expressed as the situation where the set employee must not be empty:

fact oneOrMoreEmployees {

all c: Company, t: Time:: !empty($(c,t).employee)

} .

This assumes that association ends with variable multiplicity are represented as
functions returning collections. In this case, employee is assumed to be a function
with target type Set(Person) as opposed to a predicate employee: (Person).

Preconditions and postconditions may be attached to events. The employ

declaration may be attached with a pre- and postcondition as follows:

event employ(c: Company, p: Person, t: Time) {

pre: !mem(p, $(c,t).employee)

post: $(c,next(t)).employee = add(p,$(c,t).employee)

} .

The term $(c,next(t)) denotes the state of the object c at time t+1 and the post-
condition states that employ results in a person p being added to the set employee
of c at time t+1.

8.3.5. Importing Mechanisms

The import mechanism of FML provides the basis for framework composition and
extension. An importing framework may extend existing frameworks in a number
of ways. It may define new features for classes, new events, and new constraints.
In addition, the importing framework may rename elements from imported frame-
works.

A statement “import F[A\B, A.f\g]” denotes the importing of the framework
F subject to two conditions: the class (or type) A is renamed to B and the feature f

of A is renamed to g. Renaming allows us to force classes from different frameworks
to be considered as partial definitions of the same class.

Example: Suppose that two FML frameworks Drivers and Employees have been
defined. Then the derivation of Drivers+Employees is accomplished by

framework Drivers+Employees

import Drivers

import Employees .

This is the structured definition of the framework. The body of the framework
module consists of two import statements, analogous to a textual inclusion of the
bodies of the Drivers and Employees frameworks. The consequence is that there
are two Person definitions: one with a feature drives and the other a feature
worksFor.

Suppose there is a procedure flatten, which takes the structured definition of F
and produces the unfolded view of F. The purpose of flatten is to resolve multiple

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 229

definitions of the same class and to produce a single definition of that class. The
unfolded view, or flat definition, of Drivers+Employees is shown in Fig. 8.5.. The
flatten procedure takes the definitions of Person from Drivers and Employees and
amalgamates them into the single definition shown.

framework Drivers+Employees

class Person { drives: -> Car, worksFor: -> Company

}

class Car { owner: -> Person

}

class Company { employee: -> Set(Person)

}

fact oneOrMoreEmployees {

all c: Company, t: Time:: !empty($(c,t).employee)

}

event employ(c: Company, p: Person, t: Time) {

pre: !mem(p,$(c,t).employee)

post: $(c,next(t)).employee = add(p,$(c,t).employee)

}

Fig. 8.5. The unfolded Drivers+Employees framework in FML.

In the following sections we will look at how, given the FML definition of a
framework in FML, we can derive its specification in many-sorted first-order logic.
For structured definitions, we can define corresponding structured specifications.
Using the flatten procedure, we can obtain flat definitions and, correspondingly,
obtain flat specifications. The next section explores the specification of the static
structure of frameworks. In particular, the presentation will be concerned with the
definition of state spaces for objects. Classes are given a semantics by defining how
all possible states (or local object configurations) can be generated. Thereafter, the
specification of constraints and the dynamic aspects of frameworks is discussed.

8.4. The Specification of Structure

For the time being, we concentrate on class specifications as opposed to framework
specifications. The idea presented here is that from the FML definition of a class
C, we can construct a state space specification vspec(C). The specification vspec(C)
enumerates all the possible state values that instances of C may take, each value
representing a unique assignment of values to the features of C.

8.4.1. Notation

Let F be a framework and let C = {C1, . . . , Cn} be the set of classes that participate
in F. The specification of F is denoted by spec(F) and the specification of class Ci

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

230 S-M. Ho and K-K. Lau

will be denoted by spec(Ci).
For each class Ci, let there be two lists, funs(Ci) and preds(Ci). The former

is the lexicographically ordered list of the function features of Ci and the latter
is a similarly ordered list of predicate features of Ci. In the Drivers+Employees

framework this would mean

funs(Person) = [drives: -> Car, worksFor: -> Company]

and

preds(Person) = [] .

8.4.2. Object Identity and State

At this point it should be noted that a class is defined by a pair of specifications:
the specification of its object identities and the specification of its state space. As
such, a class is considered purely in a structural sense: it is the framework that
gives the class a context, specifying state constraints for objects and providing the
link between object identities and state values.

8.4.2.1. Object Identity

Formally, each class Ci, where 1 ≤ i ≤ n, has associated with it a corresponding sort
Ci . We call the sorts C1, . . . ,Cn the identifier (or reference) sorts for C1, . . . , Cn.
Intuitively, the identifier sorts serve two purposes: firstly, the data elements of the
sort act as names (or object identifiers) for the individual instances of C1, . . . , Cn;
secondly, they act as object reference types in associations. A feature a: -> Cj of
class Ci therefore represents an association from Ci to Cj.

For each class Ci, we can associate with it an abstract datatype of object iden-
tifiers, i.e., an abstract datatype in which there is one constant ci0 : [] → Ci and a
function next : [Ci] → Ci for generating successive object names. There are there-
fore an infinite number of object names for each class.

8.4.2.2. Object States

Associated with each class Ci is a sort CiState. The sort CiState is called the
object value sort of class Ci and its data elements the object values or state values
of Ci. The set of data elements of CiState represents the state space of Ci. Each
state value x : CiState denotes an object configuration corresponding to a specific
assignment of values to the function features of an object and a specific state over
which properties (predicate features) hold.

8.4.2.3. Features

The state of an object is observable through its associated features. The state of a
Ci-object at any point in time is given by a single state value x : CiState. For each
function a: -> T in funs(Ci) the specification contains a corresponding function

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 231

symbol

a : [CiState] → T .

Similarly, for each predicate p : (t0, . . . , tn) in preds(Ci) there is a corresponding
predicate

p : [CiState, t0, . . . , tn] .

8.4.2.4. Generating Object States

Here, we consider the specifications of object states for the classes Ci. We denote
these specifications by vspec(Ci). The specifications vspec(Ci) describe how object
states, x : CiState, are generated.

Undefined States. For each class Ci we require that among its object values is
one which represents the undefined state for any Ci-instance. This may be repre-
sented by the constant

null : [] → CiState .

In FML this undefined value is denoted as null.

Defined States. To enumerate all defined (non-null) states of Ci we require ap-
propriate state generation functions. These functions may be derived according to
the lists funs(Ci) and preds(Ci). If a class has function features then there must be
a constructor which assigns to each of these features a value. If funs(Ci) = [a1: ->

t1, . . . , ak: -> tk], then a constructor

C ∗
i : [t1, . . . , tk] → CiState

is introduced. A ground term C ∗
i (x1, . . . , xk) denotes a state in which the features

a1, . . . , ak are set to the values x1, . . . , xk respectively. We call the states generated
by C ∗

i constructors initial states of Ci.
Previously, it was mentioned that one way of dealing with collections is to take

a predicative approach whereby x : T is an element in a collection p at state
c : CiState if p(c, x) holds. In this case, the intended object state denoted by the
term C ∗

i (x1, . . . , xk) is one where each of the collections p in preds(Ci) is empty.
Note that if funs(Ci) = [] then the nullary function C ∗

i : [] → CiState is in-
troduced. Therefore, the simplest class Cj, which has no features, can be in either
one of two states: null or C ∗

j —in an undefined state or some defined state.
If we are dealing with a predicative approach to collections or if there are pa-

rameterised features then we need constructors for generating the different states
over which each predicate holds. For each predicate p : [t1, . . . , tk] in preds(Ci) we
introduce a constructor

assertp : [CiState, t1, . . . , tk] → CiState .

Intuitively a term assertp : [s, x1, . . . , xk] denotes a state s ′ : CiState for which the
formula p(s ′, x1, . . . , xk) holds.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

232 S-M. Ho and K-K. Lau

8.4.2.5. Constructor and Feature Axioms

We can take advantage of the conventions used to generate constructors (i.e., the
lexicographical ordering of arguments in C ∗

i constructors) to derive appropriate
axioms for both the constructors and features of each class. For functions, equations
describe how they can be evaluated over each state; for predicates, we can describe
over which states a property can be computed to hold; and for constructors, we
can identify some standard properties and generate axioms appropriate properties
accordingly.

Evaluating Features. Let funs(Ci)= [f1: -> t1, . . . , fk: -> tk] and let fj
(1 ≤ j ≤ k) be a function in funs(Ci). An axiom

(∀x1 : t1, . . . , xk : tk) (fj (C
∗
i (x1, . . . , xk)) = xj)

describes the evaluation of the function fj over the initial states of Ci. Additional
axioms are required to specify how the function f is evaluated over more complex
states, i.e., those states reached through the application of the assert constructors.
For each predicate p in preds(Ci), an axiom

(∀x : CiState, x1 : t1, . . . , xl : tl) (f (assertp(x , x1, . . . , xl)) = f (x))

is generated. Similarly, for each predicate p, an axiom

p(assertp(x , x0, . . . , xk), y0, . . . , yk) ⇔ (x0 = y0 ∧ . . . ∧ xk = yk) ∨ p(x)

is generated.

Assert Constructors Properties. For the assert constructors we can specify a
number of properties possessed by them. As discussed earlier, a predicate approach
to representing collections can be used, in which case we would like the assert
constructors to have the same properties as the member addition constructors of
sets. The assert constructors therefore have the properties of being idempotent and
commutative, i.e., for each predicate p we have the equations

assertp(assertp(x , ~y), ~y) = assertp(x , ~y)

and

assertp(assertp(x , ~x), ~y) = assertp(assertp(x , ~y), ~x) .

The situation becomes more complex when dealing with multiple predicate fea-
tures as different terms involving different assert constructors may refer to the same
state. For instance, a class Person with features

name : [] → String , parents : [String], and children : [String],

has associated with it the constructor

Person∗ : [String] → PersonState

and the assert constructors

assertParents : [String] → PersonState

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 233

and

assertChildren : [String] → PersonState .

Let x : PersonState be a state in which the following holds:

name(x) = Noel, parents(x , Mary), children(x , Ann) .

The state x can be reached from the initial state Person∗(Noel) either by applying
assertParents first, i.e.,

assertChildren(assertParents(Person∗(Noel), Mary), Ann) ,

or by applying assertChildren first, i.e.,

assertParents(assertChildren(Person∗(Noel), Ann), Mary) .

Interpreting the Undefined State. There are two ways of viewing this. The
first approach is to take the view that if an object is in an undefined state then
any query on its features results in an undefined value. Thus, a function applied to
the object value null would itself result in an undefined value ⊥. Each datatype is
extended to include an undefined value, resulting in the underlying logical formalism
being a three-valued logic.

Alternatively, a function applied to the value null results in some unspecified
value. Thus, the term f (null) may denote any value in the range of f . In this case,
the features queried over null may be observationally equivalent to those of any
other Ci -state although the two states may be distinct. The idea can be extended
to predicates. Here, we make the assumption that any property trivially holds for
the null state. That is, for each predicate p we include the axiom

(∀x0 : t0, . . . , xk : tk) (p(null , x0, . . . , xk)) .

A motivation for taking this stance is that any state that can be constructed from
the undefined state must itself be the undefined state. In general, such states are
constructed using the assertp constructors, in which case we have the axiom

(∀x0 : t0, . . . , xk : tk) (assertp(null , x0, . . . , xk) = null) .

8.4.3. State Space Specifications

We can collect all the elements discussed in Sec. 8.4.2. and use them to form object
value specifications vspec(Ci), for each class Ci. These specifications provide the
focal point for studying class extension and composition in frameworks.

Example 8.1. Let A be the framework defined below.

framework A

class C { }

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

234 S-M. Ho and K-K. Lau

Thus C is the simplest possible definable class discussed earlier. Given the above
FML model, we can generate the following object value specification vspec(CA):

vspec(CA) =

sorts : CState

funs : null ,C ∗ : [] → CState .

Given that funs(C) = [] and preds(C) = [], according to the discussion in Sec. 8.4.2.,
vspec(CA) has no axioms. Specifications are interpreted with initial semantics. Thus,
the above specification is one in which there are two distinct states.

8.4.4. Object Diagrams

Up to this point we have only considered state spaces. We have yet to consider the
binding of object states to object names. In order to bind a Ci-object to one of its
possible states we need an assignment function

$: [Ci] → CiState ,

which tells us which state values are associated with each object in the framework.
An instance diagram for framework A can be formalised using models of spec(A).

Note that in our current understanding of framework specifications spec(A) consists
of the C-object identifier ADT specification, the object value specification vspec(C),
and the valuation function $.

An instance diagram for A can be described by one possible model for spec(A).
For example, let A be a model for vspec(CA) extended with the valuation function
$: [C] → CState such that

CA def
= {c1, c2, c3, . . .}

CStateA def
= {0, 1}

nullA
def
= 0

C ∗A def
= 1

$A
def
= {(c1, 1), (c2, 1), (c3, 0), (c4, 0), . . .} .

This interpretation corresponds to an instance diagram where there are two objects
in existence, c1 : C and c2 : C , each of which is in the state denoted by the constant
C ∗. All other objects c3, c4, . . ., which we take to be mapped to the value 0, are
interpreted as being inactive or do not exist.

This treatment of instance diagrams is similar to Bordeau and Cheng’s [12] work
on giving a formal semantics for OMT object diagrams and instance diagrams. In
their work, object diagrams are formalised as algebraic specifications and instance
diagrams as algebras satisfying these specifications. In their case, an instance dia-
gram corresponds to an algebra with the addition of a special element errCi

, which
denotes the error object of class Ci , and a special state undef Ci

, which is the un-

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 235

defined state of Ci . An axiom

$(errCi
) = undef Ci

,

fixes the interpretation of the state of the error object. In our specifications, we do
not have such objects.

Although our treatment on formalising static aspects is similar to their work,
concerning the introduction of object state sorts, it must be noted that we use the
term state differently to Bordeau and Cheng. There, the term refers to the simplest
possible observation of an object, i.e., observations of objects described in state
charts: “object-states are the simplest kind of attribute, as they provide a simple
summary of the condition of an object.” Attributes are therefore different kinds of
observations, each one of which is given a name. Thus, for each attribute α of Ci
there is a valuation function

α : [Ci] → T ,

the provision being that if an object x : Ci contains a link to an object y and if x
is an error object then y must also be an error object, i.e.,

α(errCi
) = errT .

8.5. Structuring and Modularity

Many of the structuring mechanisms in algebraic specification, (e.g., renaming,
extension/enrichment, hiding, and union) form the basis for Catalysis’ notion of
package extension. In this section we will consider extension/composition in-the-
small, i.e., composition/extension of classes. When defining frameworks in FML,
we take the composition of classes to mean the union of their individual definitions.
Whether a class is extended or composed, the state space of a class becomes larger.
This is reflected in the object value specifications of the extended/composite class.

Example 8.2. Recall framework A from Ex. 8.1. Let B be the framework defined
below by extending C with the features a and r and with the type T.

framework B

import A

extend class C { a: -> T, r: (T) }

type T { t1: -> T, t2: -> T }

The specification vspec(CB), shown in Fig. 8.6., can be derived from vspec(CA) by
introducing new sorts, functions, and predicates, i.e., vspec(CB) is obtained by ex-
tending vspec(CA) with the function

a : [CState] → T

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

236 S-M. Ho and K-K. Lau

and the predicate

r : [CState,T] .

The state space of CB consists of values which encapsulate the new data in-
troduced by a and r. States encoding this data can be generated by the new
constructors

C ∗ : [T] → CState and assertr : [CState,T] → CState .

vspec(CB) = extend vspec(CA) with

sorts : T ,CState

funs : t1, t2 : [] → T

C ∗ : [T] → CState

assertr : [CState,T] → CState

a : [CState] → T

preds : r : [CState,T]

axioms : (∃!x : T) (C ∗ = C ∗(x))

(∀x : T) (a(C ∗(x)) = x)

(∀x : CState, y : T) (a(assertr(x , y)) = a(x))

(∀x : T) (assertr(null , x) = null)

(∀x : CState, y : T) (assertr(assertr(x , y), y) = assertr(x , y))

(∀x : CState, y , z : T)

(assertr(assertr(x , y), z) = assertr(assertr(x , z), y))

(∀x : T) (r(null , x))

(∀x : CState, y , z : T) (r(assertr(x , y), z) ⇔ (y = z ∨ r(x , z)))

Fig. 8.6. Extending the specification vspec(CA).

We can enumerate all the desired states of CB. The intended state space can be
described as the union of the initial states set

{ null , (t1, {}), (t2, {}) }

and the set of states

{ (t1, {t1}), (t1, {t2}), (t1, {t1, t2}), (t2, {t1}), (t2, {t2}), (t2, {t1, t2}) }

generated from the initial states via the assertr constructor. The intention is that
the undefined state null in vspec(CA) corresponds to the undefined state in vspec(CB)

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 237

and that the state denoted by the constant C ∗ corresponds to any one of the initial
states of CB listed above. This condition is made explicit by the axiom

(∃!x : T) (C ∗ = C ∗(x)) .

8.5.1. State Models

We can make the following observations about the relation between the state space
models of class C in frameworks A and B. Let A and B be models of vspec(CA) and
vspec(CB) respectively, then,

(1) CStateA ⊆ CStateB;
(2) nullA = nullB; and
(3) CA = CB.

In fact, CStateA ⊂ CStateB since, in framework B the state space CState is extended
with new elements. In the general case, we make the following observations.

Let C be a class in framework M and let C be extended in a framework M’. Thus,
vspec(CM) and vspec(CM′) are object value specifications for C in M and M’ respectively
with models M and M′. Then,

(1) sM ⊆ sM
′

for each sort s in vspec(CM).
(2) cMs = cM

′

s for each constant c of sort s.
(3) f M(x1, . . . , xm) = f M

′

(x1, . . . , xm)
for all functions f : [s1, . . . , sm] → s in vspec(CM),
where xi : sMi for 1 ≤ i ≤ m.
f M = f M

′

|(sMi)m ,
i.e., each m-placed function f M of M is the restriction to dom(f M) of the
corresponding function f M

′

of M′.
(4) pM(x1, . . . , xn) iff pM′

(x1, . . . , xn) for all predicates p : [s1, . . . , sn] in vspec(CM),
where xi : sMi for 1 ≤ i ≤ n.

That is, M is a submodel of M′.
The term extend is somewhat of a misnomer in our specifications: strictly speak-

ing, vspec(CB) does not extend vspec(CA). We take extension to mean that the initial
semantics properties of no junk and no confusion are preserved whenever new sorts
and function and predicate symbols are added. A more appropriate term is en-
largement [13]. Enlargement is similar to the extending mode of import used in
OBJ3 [14], which preserves the no confusion property across module imports.

8.5.2. Class Extension and Composition

Extension. If A and B are two classes such that vspec(A) = 〈ΣA, ΦA〉 and vspec(B),
then “B extends A {. . .}” corresponds to

vspec(B) = 〈ΣA ∪ Σδ, ΦA ∪ Φδ〉 .

As described in the example Σδ and Φδ emerge as a result of taking into considera-
tion the new class definition B. New constructors are introduced to enlarge the state

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

238 S-M. Ho and K-K. Lau

space of A and function/predicate symbols are introduced for each newly declared
feature symbols of B. The set Φδ consists of the axioms that can be generated
according to the new definition of B—the axioms extend the interpretation of fea-
tures over the newly introduced states. In addition, Φδ includes the equality axioms
for constraining how A∗-generated states are mapped to equivalent B∗-generated
states.

Composition. The case for class composition is similar. If C1 and C2 are classes
such that vspec(C1) = 〈ΣC1 , ΦC1〉 and vspec(C2) = 〈ΣC2 , ΦC2〉 and ⊕ is the implied
class composition operator, then the composition

C = C1 ⊕ C2 = C2 ⊕ C1

means

vspec(C) = 〈ΣC1 ∪ ΣC2 ∪ Σδ, ΦC1 ∪ ΦC2 ∪ Φδ〉 ,

the union of vspec(C1) and vspec(C2), followed by an extension by 〈Σδ, Φδ〉. As with
extension, Σδ and Φδ arise from the generation of new state constructors. However,
whereas extension always results in the addition of 〈Σδ, Φδ〉, the composition of C1
and C2 may result in

vspec(C) = 〈ΣC1 ∪ ΣC2 , ΦC1 ∪ ΦC2〉 .

This situation can arise when C1 = C2. Note that in the case of C1 ⊕ C2 = C2
(C1 6= C2) additional axioms Φδ are still required to equate C ∗

1 -generated states
to a subset of C ∗

2 -generated states.

Framework Extension and Composition. The idiosyncrasies associated with
class extension and composition are reflected at the framework level. For framework
extension we have

spec(G) = 〈ΣF ∪ Σ∆, ΦF ∪ Φ∆〉 ,

where

Σ∆ = Σγ ∪
⋃

i

Σδi
and Φ∆ = Φγ ∪

⋃

i

Φδi
.

The extension of each class Ci introduces the extensions 〈Σδi
, Φδi

〉 as described
above. The extension of a framework with new event declarations and new con-
straints is reflected by the introduction of Σγ and Φγ respectively. Here, Σγ con-
sists purely of the new event predicate symbols introduced in G whereas Φγ may
consist of (additional) rules specifying the effects of already declared events or new
constraints. In the case of pure composition we have

spec(F) = 〈ΣF1 ∪ ΣF2 ∪ Σ∆, ΦF1
∪ ΦF2 ∪ Φ∆〉 .

This time Σ∆ and Φ∆ are defined by

Σ∆ =
⋃

i

Σδi
and Φ∆ =

⋃

i

Φδi
.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 239

8.6. Behavioural Modelling and Specification

For dynamic properties of frameworks we need to consider temporal versions of
the state assignment functions described earlier—state history functions. When
considering temporal aspects, we assume time is discrete and that there is a global
(synchronous) time scale valid across frameworks, i.e., objects do not have local
time. The use of time was illustrated in Fig. 8.5. in the definition of the fact
oneOrMoreEmployees and the pre- and postcondition definition for the event employ
in Drivers+Employees.

8.6.1. State History Functions

For each class Ci, the framework specification contains a function

$: [Ci ,Time] → CiState .

The sort Time acts as an abstract time axis against which observations on frame-
work state are made. The definition of time is assumed to reside in the aforemen-
tioned DataTypes framework. Here, Time is interpreted as the natural numbers
with constant 0, successor function next : [Time] → Time and ordering relation <.
The term $(x , t), where x : Ci and t : Time, denotes the state of the Ci-object
named x at the t th observable moment of the framework and $(x ,next(t)) the next
observable state of x as was illustrated previously.

The issue of object existence was raised when we considered instance diagrams in
Sec. 8.4.4.. The scheme can be extended to state histories: an object x exists at time
t if and only if $(x , t) 6= null . From this we can go on to define the usual notions of
existence sets of objects and populations of objects within an OO system. In the
framework of FML, these correspond to temporal variations of OCL’s allInstances

operator.

8.6.2. Events

In FML, both the internal state of objects and the history of events are noted. On
the one hand, state sequences allow us to talk about how the states of objects may
change over time while timed events allow us to describe simple interaction protocols
and the effects of actions on the states of objects. The motivation for having
both state sequences and externally observable events is that some state transitions
are silent—they may occur as a result of some unknown event occurring, i.e., the
occurrence of an external action. Consequently, we do not consider the specification
of locality axioms [15], which restrict what actions can modify an object’s state.

The approach adopted in this formalisation of Catalysis frameworks is based
on non-reified temporal logic, i.e., where events and state valuation functions are
explicitly augmented with a time parameter. In Fig. 8.5. the declaration of the event
employ illustrates the essence of the approach. This differs from reified approaches
in which explicit event sorts and event predicates are introduced.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

240 S-M. Ho and K-K. Lau

8.6.3. Constraints in FML

In Sec. 2, we were interested in three kinds of constraints: invariants, expressed
as facts in FML; pre- and postconditions, which in FML, are attached to event
declarations; and external effect invariants. According to the Catalysis definition,
external effect invariants may be thought of as conditions that must be checked
whenever a framework is imported into others. These are expressed in a similar
manner to facts but introduced by the keyword assert. The translations of in-
variants and these assertions into first-order logic is straightforward. As we saw
earlier, the invariants of FML are expressed as formulae in first-order logic but
using FML’s object-based syntax. The translation converts object terms/formulae
into non-object-based terms/formulae. Thus, a term $(x,t).f is rewritten as the
term f ($(x , t)) and the formula $(x,t).g(y) is rewritten as g($(x , t), y).

8.6.3.1. Invariants

From the preceding sections it can be seen that we have a choice when it comes to
constraining the state of an object. The first method is to address the state space
of a class directly. That is, we can assert that all states of class C satisfy a given
property P , i.e.,

(∀x : CState) P(x) ,

or, in FML, by the fact

fact { all x: CState:: P(x) } .

The alternative is to constrain which states may be assigned to objects. In this case
the property P is asserted to hold over assigned states:

(∀x : C , t : Time) P($(x , t)) ,

expressed by

fact { all x: C, t: Time:: P($(x,t)) } .

The former approach requires that the sort CState is visible to the modeller. In
the latter case, the sort is implicit and hidden. In FML, CState is considered a
hidden sort—individual states may only be referenced using object terms of the
form $(x , t).

Implicit Properties. It should be noted that there are a number of intrinsic
properties applicable to all objects/classes. These properties are defined as axioms
of the specification spec(F). An example of one such property is the persistence of
objects: once an object becomes active or is created, it is not destroyed. For each
class Ci, the following axiom can be generated to assert this:

(∀x : Ci , t : Time) ($(x , t) 6= null ⇒ $(x ,next(t)) 6= null) .

This constraint ensures that an event does not cause an object to move from a
defined stated to an undefined state.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 241

8.6.3.2. Events

Let m be a timed event and 〈mpre, mpost〉 denote the pre- and postcondition pair
attached to m. Then, the event axiom

(∀~x) (m(~x) ∧ mpre(~x) ⇒ mpost(~x)))

specifies the intension of m.
In any interpretation of a framework, the extension of m gives its event history,

describing when m occurs and which objects were involved in each occurrence. Un-
derlying the event is the assumption that any object participating in it is one that
exists. Thus, if ~x = (x1, . . . , xn , t) and xi : Ci , then the event m would have a guard

(∀~x) ¬(m(~x) ∧
n∧

i=1

$(xi , t) = null) .

For example, the employ event would be described by the axiom

(∀c : Company , p : Person, t : Time)

(employ(c, p, t) ∧ ¬mem(p, employee($(c, t)))

⇒ employee($(c,next(t))) = add(p, employee($(c, t))))

subject to the guard

(∀c : Company , p : Person, t : Time)

¬(employ(c, p, t) ∧ $(c, t) = null ∧ $(p, t) = null) .

8.6.3.3. External Effect Invariants

One of the main features of Catalysis is the ability to choose any level of abstrac-
tion when modelling frameworks. This is reflected in the different ways in which a
constraint may be expressed. For example, in the Observer pattern, the synchro-
nisation of data between two objects may either be expressed as a static invariant
between subject and observer, or using behavioural contracts. These contracts may
be expressed in FML as facts.

In contrast, external effect invariants act as additional assertions that must be
checked whenever a framework is imported into others. If F and G are frameworks,
where mG is an event in G, then the presence of an external effect invariant EF in F

would require that

IF+G ∧ (mG ∧ PG ⇒ QG) ∧ EF

holds whenever F and G are composed. In reality, there is little to distinguish effect
invariants from invariants. Hence, in the sequel we do not concern ourselves with
external effect invariants.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

242 S-M. Ho and K-K. Lau

8.7. Framework Consistency

Intuitively, a framework specification spec(F) = 〈ΣF , ΦF 〉 is consistent if the axioms
ΦF are not in some way contradictory. The danger of basing framework composition
on union rather than disjoint union is that specifications of the same class in different
frameworks may not be compatible. Catalysis defines two types of composition to
address these issues, depending on the application of the framework.

Firstly, a framework may define one of several slices of behaviour exhibited by a
system. Classes are partially defined and, likewise, operations may also be partially
defined. This corresponds to the idea in UML that complex constraints may be
decomposed into smaller ones or that multiple constraints may be combined into
single statements. In Catalysis the composition associated with this is known as
joining. Secondly, the individual functionality of components may need preserving.
Taking the intersection of classes ensures that the actions of composite classes
adhere to mutually exclusive constraints. As we will see both types of composition
differ from the standard notion of subcontracting.

8.7.1. Contract Composition in Catalysis

Join. The join of n pre- and postcondition pairs 〈Pi ,Qi〉 (1 ≤ i ≤ n) for an event
m is given by the pair formed by

〈P1 ∧ . . . ∧ Pn ,Q1 ∧ . . . ∧ Qn〉 .

This is not the only way of joining action specifications in Catalysis or in UML tools
such as the KeY system [16]. An alternative way is to factor the preconditions of
each specification m into their postconditions, i.e., to derive the specification

〈 true, (P1 ⇒ Q1) ∧ . . . ∧ (Pn ⇒ Qn) 〉 .

From this a resultant precondition can be computed to derive

〈 P1 ∨ . . . ∨ Pn , (P1 ⇒ Q1) ∧ . . . ∧ (Pn ⇒ Qn) 〉 .

The reader is referred to Hennicker et al. [17] for a discussion on the semantics of
each kind of contract composition.

Intersection. The difference between joins and intersections lies in the fact that,
for intersections, the invariants Ii and operations specifications 〈Pi ,Qi〉 for each
class Ci are assumed to be mutually inconsistent but nonetheless the composition
of contracts should still be allowed. Intersection may result in the refactoring of
a design. To avoid the problem of inconsistency between the invariants Ii , the
invariants must be factored into the method specifications as follows:

〈
∨

i

(Pi ∧ Qi),
∧

i

(Ii ∧ Pi ⇒ Qi)

〉
,

i.e., it involves a retraction of axioms.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 243

8.7.2. Contracts in FML

It can be seen that the notions of join and intersection differs from the principle of
subcontracting in Design by Contract [18], where preconditions are weakened and
postconditions strengthened:

〈P1 ∨ . . . ∨ Pn ,Q1 ∧ . . . ∧ Qn〉 .

When class extension occurs there are a couple of ways we can deal with the re-
finement of an event specification. We could allow an extending class to provide
an alternative axiom to describe the intention of the event. Following the subcon-
tracting principle, we could replace the event axioms m ∧ Pi ⇒ Qi by a single
subcontracting-compliant axiom

m ∧ (P1 ∨ . . . ∨ Pn) ⇒ Q1 ∧ . . . ∧ Qn .

Instead we leave the set of imported axioms untouched, preserving the axiom set

{m ∧ P1 ⇒ Q1, . . . ,m ∧ Pn ⇒ Qn}

This coincides with joining, i.e., we can show that the join

m ∧ (P1 ∨ . . . ∨ Pn) ⇒ (m ∧ P1 ⇒ Q1) ∧ . . . ∧ (m ∧ Pn ⇒ Qn)

is a logical consequence of the above axiom set.

8.7.3. Consistency Checking

Consistency of a specification implies that there is some model which satisfies the
specification. Tools such as Alcoa [19] typically check constraints in two ways:
(i) by exercising invariants or operations, attempting to find satisfying states and
transitions respectively; or (ii) by checking that some well-known property of a
system is a logical consequence of the object model constraints. Our aim is to check
that there are models which satisfy the axioms of a framework, i.e., ensuring that
the invariants (axioms) are not so strong that they rule out any satisfying states
and ensuring that the resulting states from events are reachable.

One source of difficulty (and complexity) in consistency checking in specifica-
tions derived from FML models is the manner in which invariants and operations
are specified. A lack of distinction between local object invariants and global invari-
ants makes it difficult to direct the theorem proving process on specific parts of the
model. Another source of complexity arises from the use of time in specifications.
As we saw earlier, many generated axioms are required to specify intrinsic prop-
erties of frameworks, e.g., persistence constraints. For theorem proving purposes,
we can seek to reduce the number of axioms we need to deal with by examining
which parts of a specification are unnecessary for invariant and operation checking.
In the remainder of this section we will identify ways in which the complexity of a
specification spec(F) may be reduced for theorem proving. The resulting specifica-
tion may be processed by any number of theorem provers, e.g., the tableaux-based
3tap [20], or the resolution-based Otter [21]. In the latter case, the additional

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

244 S-M. Ho and K-K. Lau

step of reducing the many-sorted specification into a single-sorted specification [22]
is required.

8.7.3.1. (Static) Invariants

The decision to consider the sort CState as hidden means that a static invariant
in OCL, for example, would be formulated as a temporal invariant in FML. Con-
straints on a state history function $ indirectly restricts which states in CState are
applicable. We can view the constraint

(∀x : C , t : Time) (a($(x , t)) > 0)

as being a weaker form of the static constraint

(∀x ′ : CState) (a(x ′) > 0) .

That is, temporal constraints may be rewritten into static constraints. For any
valid object x ′ we should be able to make a query

(∃x ′ : CState) (a(x ′) > 0 ∧ x ′ 6= null) ,

i.e., we want to see whether we can construct a state for which a(x ′) > 0 and
one that happens not to be the undefined state. The condition that the state is
undefined is important for checking that actions do result in what we intuitively
consider as valid states. These assumptions are made explicit by the introduction
of persistence axioms and the event-guard axioms mentioned earlier.

8.7.3.2. Temporal Invariants and Events

The situation for handling temporal invariants that contain references to next-states
and events are similar. Given a temporal invariant P ⇒ Q , we wish to ensure
that from all states satisfying a property P there exists a state satisfying Q . The
persistence constraint is one such example. The statement may be recast: from all
defined states, there exists a state which is also defined, resulting in

(∀x ′ : CState) (x ′ 6= null ⇒ δ(x ′) 6= null) .

As before, a term $(x , t) is replaced by the state variable x ′. In addition, for each
x ′ the term $(x ,next(t)) may be replaced by a term δ(x ′). The consequence of
these rewrites is that the datatype Time may be eliminated from the framework
specification.

An observation that can be made from the above is that event-guard axioms may
also be discarded. The reason is that we wish to consider the effects of operations
over valid (non-null) object states. Consequently, we can go further and discard
the constant null and its related axioms.

8.7.3.3. Flat Specifications vs Structured Specifications

A final consideration is that the flat specification flatspec(F) of a framework can be
used as the basis for consistency checking as opposed to the structured specification

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 245

spec(F). The flat specification for F is obtained from applying the flatten procedure
to F, and then generating a specification from the flattened model.

From the discussion of structuring and modularity at the class level in Sec. 8.5.
it can be seen that in structured specifications some function symbols and axioms
become redundant whenever classes are extended. These ‘legacy’ function symbols
and axioms arise as a result of enlarging the state space of objects. As new state
generators are added existing constructors become redundant: if C1 is extended
by C2 any C1-state reachable using the constructor C ∗

1 is also reachable using the
constructor C ∗

2 . The introduction of the constructor C ∗
2 also brings about the intro-

duction of new axioms ranging over C ∗
2 -generated states. These axioms describe the

evaluation of features over C2-states. However, these are a superset of the existing
C1-states. Consequently, the equations introduced for each function over the states
of C1 may also be discarded. Flat specifications have the property that they consist
of only symbols and axioms for the class C2. Axioms are not generated for C1 since
the fact that C2 is derived from C1 is discarded when unfolding takes place. That
is, flatspec(F) is a sub-specification of spec(F).

8.8. Frameworks in Component Modelling

In this section, we consider how the concepts of framework and component are
related by means of an example of a production planning system (PPS), adapted
from Rausch’s article on design by signed contract [23] for componentware. The
goal of the PPS is to optimise the scheduling of jobs to robots. The operation of
robots is constrained in the following ways:

(1) each robot may process only one job at a time; and
(2) no two robots may be assigned the same job.

The first condition is violated if a robot is assigned two jobs whose scheduled times
overlap.

The PPS itself is modelled as a component-based system, constructed from
two subcomponents: a scheduler and a robot component. This can be expressed
using a UML component diagram, as illustrated in Fig. 8.7.. Each component has a
provided and required interface. The components are defined such that the provided
interface of one satisfies the required interface of the other.

Job

RobotsScheduler

Job

RobotRobot

Fig. 8.7. Component diagram showing how the production planning system is assembled from
subcomponents.

A framework representing the scheduling component is shown in Fig. 8.8.. How-
ever, unlike the Scheduler component in Fig. 8.7., the framework does not distinguish
between the provided and required services.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

246 S-M. Ho and K-K. Lau

scheduled

Scheduler

start: Nat
end: Nat

Job

hasConflict()

Robot

*

schedule

0..1

assigned

Fig. 8.8. A framework representing a job scheduling component.

The Robots component is similar to Scheduler but describes only the static re-
lationships between jobs and robots. It differs from Scheduler in the definition of
robots, in which case it adds a (derivable) attribute duration, and the absence of
the schedule action.

Figure 8.9. shows the FML definition for the component Scheduler. In particu-
lar, the fact labelled noConflicts expresses the condition that a robot may not be
assigned two jobs whose scheduled times overlap. The event schedule, correspond-
ing to an assignment of a job to a robot, should maintain this invariant. An event
hasConflict is signalled whenever the invariant is violated. Thus, a valid model
for this framework is one in which hasConflict does not occur.

The robot handling component, Robots, is shown in Fig. 8.10.. The
fact conflictGuard provides is an alternative way of expressing the invariant
noConflict in Scheduler. It states that the hasConflict property should not
become true whenever there is a change in a robot’s state. This is an effect invari-
ant but not an external one as it applies equally to interactions within Robots and
to Scheduler.

Implicit Properties. In the framework Scheduler, an intrinsic property is that
every object referenced in the collections scheduled and assigned are valid objects.
That is, we have the axiom

(∀r : Robot , j : Job, t : Time) ¬(mem(j , scheduled($(r , t))) ∧ $(j , t) = null)

for the feature scheduled and a similar axiom is generated for assigned. Like
persistence axioms and event-guard axioms these axioms may be discarded before
the theorem proving begins.

8.8.1. Signed Contracts and Composition

The signed contract between two components is a user’s specification of the syntactic
and behavioural mappings between them. It specifies how the required interface of
one component is satisfied by the provided interface of another. The intention
of signed contracts is to enable users or developers to check whether all required
properties of a component are fulfilled by another component. Signed contracts are
similar to specification fitting morphisms for instantiating parameterised algebraic
specifications.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 247

framework Scheduler

import Sets[Data\Job]

import Sets[Data\Robot]

class Robot { scheduled: -> Set(Job)

}

class Job { assigned: -> Set(Robot), start: -> Nat, end: -> Nat

}

fact IntervalNonNegative {

all j: Job, t: Time:: $(j,t).start < $(j,t).end

}

fact { all j: Job, r1,r2: Robot, t: Time::

mem(r1,$(j,t).assigned) & mem(r2,$(j,t).assigned)

==> r1=r2

}

fact noConflicts { all r: Robot, j1,j2: Job, t: Time::

j1!=j2 & mem(j1,$(r,t).scheduled) & mem(j2,$(r,t).scheduled)

& $(j1,t).start<=$(j2,t).start

==> $(j1,t).end<=$(j2,t).start

}

fact { all r: Robot, t: Time:: hasConflict(r,t)

<==> exists j1,j2: Job:: j1!=j2

& mem(j1,$(r,t).scheduled) & mem(j2,$(r,t).scheduled)

& $(j1,t).start<=$(j2,t).end & $(j2,t).start<=$(j1,t).end

}

event hasConflict(r: Robot, t: Time)

event schedule(j1: Job, r: Robot, t: Time) {

decls: all j2: Job

pre: empty($(j1,t).assigned) & j1!=j2 & mem(j2,$(r,t).assigned)

& (($(j1,t).start<=$(j2,t).end & $(j2,t).start<=$(j1,t).end)

or

($(j2,t).start<=$(j1,t).end & $(j1,t).start<=$(j2,t).end))

post: $(j1,next(t)).assigned=add(r,$(j1,t).assigned)

& $(r,next(t)).scheduled=add(j1,$(r,t).scheduled)

}

Fig. 8.9. The Scheduler component.

In the following, to differentiate one class from another, elements in Scheduler

will be subscripted by S and those in Robots by R. We wish to map the class RobotR
to RobotS and JobS to JobR. In frameworks the syntactic mapping is straightfor-
ward. In general, this can be achieved using the renaming mechanism of FML
whenever the names of required components differs from that of the provided com-
ponent. However, in addition to syntactic mappings, the signed contract may specify
behavioural mappings between components.

In the previous section, the discussion on consistency checking focused on en-
suring that there exist valid object states satisfying the framework axioms. This is

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

248 S-M. Ho and K-K. Lau

framework Robots

import Sets[Data\Job]

import Sets[Data\Robot]

class Job { assigned: -> Set(Robot),

start: -> Nat, end: -> Nat, duration: -> Nat

}

class Robot { scheduled: -> Set(Job)

}

fact nIntervalNonNegative {

all j: Job, t: Time:: $(j,t).start < $(j,t).end

}

fact { all j: Job, t: Time::

$(j,t).start + $(j,t).duration = $(j,t).end

}

fact { all j: Job, r1,r2: Robot, t: Time::

mem(r1,$(j,t).assigned) & mem(r2,$(j,t).assigned) ==> r1=r2

}

fact { all r: Robot, t: Time:: hasConflict(r,t)

<==> exists j1,j2: Job:: j1!=j2

& mem(j1,$(r,t).scheduled) & mem(j2,$(r,t).scheduled)

& $(j1,t).start<=$(j2,t).end & $(j2,t).start<=$(j1,t).end

}

fact conflictGuard { all r: Robot, t: Time::

$(r,t)!=$(r,next(t)) ==> !hasConflict(r,next(t))

}

event hasConflict(r: Robot, t: Time)

Fig. 8.10. The Robots component in FML.

sufficient for checking the consistency of the operation schedule against the invari-
ants in Scheduler and the temporal invariant

fact { all r: Robot, t: Time::

$(r,t)!=$(r,next(t)) ==> !hasConflict(r,next(t))

in Robots. In Rausch’s signed contracts, however, a mapping between the con-
straints in one component and those in another may also be specified. For ex-
ample, if Robots requires jobs to have the property nIntervalNonNegative and
Scheduler provides jobs with this property (IntervalNonNegative), then this be-
havioural dependency may be expressed using signed contracts. In FML, the precise
way in which one property should be matched with another should be made using
explicit assertions. Thus, we have

assert { IntervalNonNegative ==> nIntervalNonNegative }

to represent one mapping. Such assertions are required for event matching. Signed
contracts follow the subcontracting principle: iven the pre- and postcondition pair
〈PL,QL〉 of a provided operation L and the pre- and postcondition pair 〈PR,QR〉 of a

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 249

required operation R, the conditions PL ⇒ PR and QR ⇒ QL should hold. However,
not all events in FML are defined using pre- and postcondition pairs. The event
hasConflict is one such example. In both frameworks the event is defined using a
fact and a suitable condition must be formulated to test whether hasConflictR is
a suitable match for hasConflictS:

assert { all r: Robot, t: Time::

Robots::hasConflict(r,t) ==> Scheduler::hasConflict(r,t)

} .

8.9. Related Work

The formalisation of object-based (or, in the wider context, object-oriented) sys-
tems has been studied extensively within different disciplines of computer science.
In systems modelling, much effort has been placed on giving a formal semantics
for the different kinds of diagrams used in UML. Prominent among these is the
work of Richters [24,25], which is concerned with the formalisation of OCL with
respect to a subset of UML’s class diagrams. This work may be used as a basis
for the validation of UML models and OCL constraints. The aforementioned KeY

tool [16] may also be used to check the consistency of UML class diagrams but
differs in its formalisation approach. Class diagrams and static OCL constraints
are translated into first-order predicate logic [26]—a similar transformation might
defined to translate OCL (pre version 2.0) constraints into FML; OCL pre- and
postconditions specifications are translated into dynamic logic [27]. Dynamic logic
has been used elsewhere, firstly to examine formal foundations for conceptual mod-
elling [28], and secondly to examine the way in which dynamic classes can be used
to model the roles of objects [29], supporting the notion that objects may switch
between different behavioural roles at different times.

Temporal logic has also been applied extensively. For example, OCL expres-
sions have been translated into the temporal logic Botl [30]. The full expressivity
of Botl, however, is not exploited because of the lack of temporal operators in
OCL. Increasing the temporal expressiveness of OCL has been a subject of great
interest. There have been numerous proposals for the incorporation of time in OCL,
e.g., by Hamie et al. [31] and Sendall and Strohmeier [32], either by defining tempo-
ral operators for OCL or adding explicit notions of discrete or real time for timing
constraints. The need for a temporal OCL for modelling business components has
been discussed by Conrad and Turowski [33]. Temporal constraints can be repre-
sented in UML’s state charts but the definitions of UML/OCL limit what kind of
temporal properties can be specified, hence the need for a proprietary OCL. Sim-
ilarly, Ziemann and Gogolla describe their own version of OCL, TOCL (Temporal
OCL) [34], which extends OCL with temporal operators and adapts existing OCL
operators to a temporal context and Bradfield et al. [35] define a template-based
approach for specifying the temporal properties.

Increasing the expressivity of OCL, however, does not address the issue of a
lack of integration between the different views—static, behavioural, interactive, and

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

250 S-M. Ho and K-K. Lau

functional—of an object model. The issue has been addressed partially by the inte-
gration of class diagrams and sequence diagrams [36–38]. Different views of a model
may introduce different kinds of constraints (e.g., timing constraints in sequence di-
agrams) without having to increase the expressivity of the constraint language.
However, Conrad and Turowski’s observations apply even to the interaction view
in the integrated approach.

In many of the above approaches, the object-oriented aspects of models are
lost in their formalisation. Objects have a shared vocabulary for their at-
tributes/associations and operations: in essence, local object features are projected
onto a global context. This differs from class-as-template approaches, where classes
are templates from which objects derive their own unique vocabulary ([39] - [41]).
The idea has been applied to Catalysis frameworks, exploring the formal seman-
tics for frameworks and interaction [42] and embedding this static semantics into
a temporal setting using modular distributed temporal logic (Mdtl) [43]. Static
semantics for frameworks are limited in the kinds of interactions that may be ex-
pressed: interactions occur via framework parameters. Mdtl alters the situation
and allows the specification of effect invariants while also allowing the specification
of synchronous and asynchronous communication between objects from different
frameworks.

The formalisation of a class described in this chapter differs from the above
approaches in one common aspect: the way in which object state is treated. In
this text, there is an explicit specification of a class’ state space. In model-based
approaches this state space is similar to taking the Cartesian product of the attribute
types of a class and augmenting this set with a special undefined element. Object
value specifications are similar in style to formalising object state using algebraic
specifications [44] where, with the addition of ordered sorts, it is possible to use
subsorts as a mechanism for partitioning state spaces.

Much of the work on formalising UML/OCL has concentrated on class diagrams.
At the same time, the aforementioned shift toward increasing the expressivity of
OCL for dynamic constraints (i.e., action clauses [45,46] in OCL 2.0) has been
realised to some degree. Indeed, Catalysis goes further and allows the specification
of how actions are invoked and sequenced within constraints. In contrast, FML
is less expressive owing to its simplified event model based on a synchronous time
framework. Consequently, FML is restricted compared to OCL 2.0 or Mdtl when
it comes to specifying the interactions between objects.

8.10. Summary

This chapter has been concerned with how model frameworks in Catalysis, which
makes use of extensions and adaptations to UML/OCL, may be formalised. There
are many approaches to formalising object-based or object-oriented systems, some
of which have been discussed. In this chapter first-order logic is used as the formal
foundation for frameworks.

From the FML definition of a framework F, we have looked at how a specifi-
cation of F, spec(F), can be derived. Contained within this specification are the

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 251

specifications of classes and object states. A semantics for a class C is given by its
associated object value specification vspec(C), which enumerates the state space of
C. This notion of explicitly enumerating object states influences the way in which
framework composition and extension is defined.

The composition of two frameworks F and G is defined if the axioms in the re-
sulting framework F+G are consistent, which can be verified by a theorem prover.
There are ways in which the specification spec(F+G) can be reduced prior to the-
orem proving: symbols and axioms which become redundant in spec(F+G) may be
identified and discarded. Not all redundant formulae are discarded. Typically, one
framework may strengthen the constraints of another but nonetheless these weaker
constraints are retained in framework specifications.

It has been argued that the specification of software contracts is not enough
for componentware. The notion of design by signed contract extends Design by
Contract with the ability to specify the syntactic and behavioural mappings be-
tween the provided services of one component and the required services of another.
This notion has been examined in the context of frameworks. Syntactic mappings
may be identified during importing and renaming may be used to ensure that pro-
vided components are mapped to required components. The signed contract may
also identify behavioural mappings between components. These are equivalently
represented using assertions in FML.

Acknowledgements

The first author is indebted to the Engineering and Physical Sciences Research
Council, without whose support this work would not have been possible.

Bibliography

1. R.E. Johnson. Frameworks = (Components+Patterns). Communications of the ACM,
40(10): 39–42, 1997.

2. G. Larsen. Designing Component-Based Frameworks Using Patterns in UML. Com-
munications of the ACM, 42(10): 38–45, 1999.

3. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML. Addison-
Wesley, 1998.

4. OMG Unified Modeling Language Specification, Version 1.5 (Draft), March 2003.
5. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with

UML. Addison-Wesley, 1999.
6. H.-E. Eriksson and M. Penker. Business Modeling with UML, Business Patterns at

Work. Wiley, 2000.
7. T. Reenskaug et al. Working with Objects. Manning/Prentice-Hall, 1995.
8. T. Clark, A. Evans, and S. Kent. A Metamodel for Package Extension with Renaming.

In J.-M. Jezequel, H. Hussman, and S. Cook, editors, Proc. UML 2002, LNCS 2460,
pages 305–320, Springer-Verlag, 2002.

9. R. Helm, I. Holland and D. Gangopadhyay. Contracts: Specifying Behavioural Com-
positions in Object-Oriented Systems. In Proc. OOPSLA, 169–180, October 1990.

10. M. Vaziri and D. Jackson. Some Shortcomings of OCL, the Object Constraint Con-

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

252 S-M. Ho and K-K. Lau

straint Language of UML. Technical report, Massachusetts Institute of Technology,
December 1999.

11. D. Jackson. Micromodels of Software: Lightweight Modelling and Analysis with Alloy
(Draft). Technical report, Massachusetts Institute of Technology, February 2002.

12. R.H. Bordeau and B.H.C. Cheng. A Formal Semantics for Object Model Diagrams.
IEEE Transactions on Software Engineering, 21(10): 799–821, October 1995.

13. H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1, Equations and Initial
Semantics. Springer-Verlag, 1985.

14. J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi and J.P. Jouannaud. Introduc-
ing OBJ. In J.A. Goguen, editor, Applications of Algebraic Specification using OBJ,
Cambridge, 1993.

15. N. Aguirre and T. Maibaum. A Temporal Logic Approach to Component-based Sys-
tem Specification and Verification. In Proc. ICSE02, 2002.

16. W. Ahrendt et al. The KeY Tool. Department of Computer Science, Chalmers Uni-
versity and Goteborg University, Technical Report in Computer Science No. 2003–5,
February 2003.

17. R. Hennicker, H. Hussmann and M. Bidoit. On the Precise Meaning of OCL Con-
straints. In Object Modeling with the OCL, LNCS 2263, pages 69–84, Springer-Verlag
2002.

18. B. Meyer. Design by Contract. Technical Report TR-EI-12/CO, ISE Inc., 1987.
19. D. Jackson, I. Schechter and H. Shlyakhter. Alcoa: The Alloy Constraint Analyzer.

In Proc. 22nd Intl. Conf. on Software Engineering, pages 730–733, 2000.
20. B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The Tableau-based Theorem Prover

3TAP, Version 4.0, In Proc. 13th Intl. Conf. on Automated Deduction, LNCS 1104,
pages 303–307, Springer, 1996.

21. W.W. McCune Otter Reference Manual and Guide, Argonne National Laboratory,
January, 1994.

22. H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York,
1972.

23. A. Rausch. “Design by Contract” + “Componentware” = “Design by Signed Contract”
In Journal of Object Technology, Special issue: Proc. TOOLS USA 2002, 1(3): 19–36,
2002.

24. M. Richters and M. Gogolla. OCL: Syntax, Semantics, and Tools. In Object Modeling
with the OCL, LNCS 2263, pages 42–68. Springer-Verlag, 2002.

25. M. Richters. A Precise Approach to Validating UML Models with OCL Constraints.
PhD thesis, Universität Bremen, 2002.

26. B. Beckert, U. Keller, and P.H. Schmitt. Translating the Object Constraint Language
into First-order Predicate Logic. In Proc. VERIFY, Workshop at Federated Logic
Conferences, Copenhagen, Denmark, 2002.

27. T. Baar, B. Beckert, and P.H. Schmitt. Extension of Dynamic Logic for Modelling
OCL’s @pre Operator. In D. Bjorner, M. Broy, and A.V. Zamulin, editors, Proc. 4th
Intl. Andrei Ershkov Memorial Conf., Perspectives of Systems Informatics, LNCS
2244, pages 47–54, Springer-Verlag 2001.

28. R.J. Wieringa. A Formalisation of Objects using Equational Dynamic Logic. In C. De-
lobel, M. Kifer and Y. Masunag, editors, 2nd Intl. Congress on Deductive and Object-
Oriented Databases 566, pages 431–452, Springer-Verlag, 1991.

29. R.J. Wieringa, W. de Jonge, and P. Spruit. Using Dynamic Classes and Role Classes
to Model Object Migration. In Theory and Practise of Object Systems, 1(1): 61–83,
1995.

30. D. Distenfano, J.P. Katoen, and A. Rensink. On a Temporal Logic for Object-based

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

Charaterising Object-Based Frameworks in First-Order Predicate Logic 253

Systems. In S.F. Smith and C.L. Talcott, editors, Formal Methods for Open Object-
based Distributed Systems IV, pages 305–326. Kluwer Academic Publishers, September
2000.

31. A. Hamie, R. Mitchell, and J. Howse. Time-based Constraints in the Object Constraint
Language. Technical Report CMS-00-01, University of Bristol, 2000.

32. S. Sendall and A. Strohmeier. Specifying Concurrent System Behaviour and Timing
Constraints Using OCL and UML. In Proc. UML 2001, LNCS 2185, pages 391–405,
Springer-Verlag 2001.

33. S. Conrad and K. Turowski. Temporal OCL: Meeting Specification Demands for Busi-
ness Components. In K. Siau and T. Halpin, editors, Unified Modeling Language:
Systems Analysis, Design and Development Issues, Chapter 10, pages 151–166, Idea
Publishing Group, 2001.

34. P. Ziemann and M. Gogolla. An Extension of OCL with Temporal Logic. In Critical
Systems Development with UML—Proc. UML’02 Workshop, pages 53–62, Technische
Universität München, Institut für Informatik, 2002.

35. J. Bradfield, J. Küster-Filipe, and P. Stevens. Enriching OCL using observational mu-
calculus. In R.-D. Kutsche, and H. Weber, editors, Proc. Fundamental Approaches to
Software Engineering 2002, LNCS 2306, pages 203–217, Springer-Verlag 2002.

36. J. Yang, Q. Long, Z. Liu and X. Li. A Formal Semantics of UML Sequence Diagrams.
In Z. Liu and K, Araky, editors, Proc. of 1st International Colloquium on Theoretical
Aspects of Computing (ICTAC 2004), Lecture Notes in Computer Science 3074, pages
170-186, Springer, 2005.

37. X. Li, Z. Liu and J. He. A Predicative Semantic Model for Integrating UML Models.
In Proc. Australian Software Engineering Conference, pages 168-177, IEEE Computer
Society, 2004.

38. Z. Liu, J. He, X. Li and J. Liu, Unifying views of UML , Electronic Notes in Theoretical
Computer Science, Volume 101, pages 95-127, 2004.

39. E. Amir. Object-Oriented First-Order Logic. In Linkoping University Electronic Ar-
ticles in Computer and Information Science, ISSN 1401–9841, 4(1999): 042.

40. H.-D. Ehrich. Object Specification. In E. Astesiano, H.-J. Krewski, and B. Krieg-
Bückner, editors, Algebraic Specification, Chapter 12, pages 435–465, Springer, 1999.

41. K.-K. Lau and M. Ornaghi. Correct Object-Oriented Systems in Computational Logic.
In A. Pettorossi, editor, Proc. LOPSTR ’01, LNCS 2372, pages 168–190, Springer-
Verlag, 2002.

42. K.-K. Lau, S. Lui, M. Ornaghi, and A. Wills. Interacting Frameworks in Catalysis. In
Proc. 2nd Intl. Conf. on Formal Engineering Methods, pages 110–119, IEEE Computer
Society Press, 1998.

43. J. Küster Filipe, K.-K. Lau, M. Ornaghi, and H. Yatsu. Intra- and Inter-OOD
Framework Interactions in Component-based Software Development in Computational
Logic. In A. Brogi and P. Hill, editors, Proc. 2nd Intl. Workshop on Software Devel-
opment in Computational Logic, September 1999.

44. J.A. Goguen and R. Diaconescu. Towards an Algebraic Semantics for the Object
Paradigm. In RECENT Trends in Data Type Specification: Workshop on Specification
of Abstract Data Types: COMPASS: Selected Papers, LNCS 785, Springer-Verlag,
1994.

45. A. Kleppe and J. Warmer. Extending OCL to Include Actions. In Proc. UML 2000,
LNCS 1939, 440–450, Springer-Verlag, 2000.

46. A. Kleppe and J. Warmer. The Semantics of the OCL Action Clause. In Object Mod-
eling with the OCL, LNCS 2263, 213–227, Springer-Verlag, 2002.

July 1, 2006 16:0 World Scientific Review Volume - 9.75in x 6.5in MASTER

254 S-M. Ho and K-K. Lau

