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Abstract—Software composition aims to provide mechanisms
for systematic construction based on well-defined software units.
Various software composition mechanisms have been defined in
the literature for different kinds of software units. In component-
based development, it is desirable to have software units and
composition mechanisms that support automated, systematic
construction. In this paper, we first survey existing definitions
of composition units and the corresponding composition mech-
anisms, and then use the survey to propose a taxonomy that
identifies good candidates for composition units and composition
mechanisms for component-based development.

I. INTRODUCTION

Software composition [34] refers to the composition of
software constructs into larger composite constructs. The pri-
mary motivation for software composition is reuse [43], but
composition also provides a means for systematic software
construction. For Component-based Software Development
(CBD) [22], [49], composition is of the essence, since com-
ponents, by definition, are units of composition [47], [48]. For
CBD, software reuse is of course a fundamental objective, in
order to reduce production cost; however, in addition, CBD
also seeks to automate composition as much as possible, so
as to reduce time-to-market as well.

In the most general terms, composition can be defined as
any possible and meaningful interaction between the software
constructs involved. A composition mechanism defines such an
interaction. Clearly there are many different possible kinds of
software constructs, with corresponding composition mecha-
nisms [10], [35], [45], [43], [25], [48], [49], [4], [18], [7], [41],
[37]. Simple type definitions can be composed into compound
types by type composition [12]; arbitrary chunks of code can
be joined together with glue and scripts [44]; typed constructs
can be linked by message passing, e.g. direct method calls
between objects, or port connections between architectural
units [45], [8]; and so on.

In CBD it is desirable to have software constructs that
make good composition units [40], together with suitable
composition mechanisms that facilitate both reuse and sys-
tematic construction [2] and are also automatable. In this
paper we first survey existing composition mechanisms for
various kinds of software units, and then use the survey
to propose a taxonomy that identifies good candidates for
composition units and composition mechanisms, for defining
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software component models [22], [29], that support automated,
systematic composition in CBD.

II. DIFFERENT VIEWS OF SOFTWARE COMPOSITION

In order for our survey to be as inclusive as possible, we
consider all the views of software composition found in the
literature, that is, the various perceptions (and definitions) of
what composition means in all the relevant software commu-
nities. In any view of composition, composition is performed
on software entities that are perceived as meaningful units of
composition. We will focus on units of composition that define
behaviour, rather than constructs that define primitive types
or pure data structures. Composition mechanisms compose
units of composition into larger pieces of software, i.e. they
compose pieces of behaviour into larger pieces of behaviour.
In this section, we outline the different views of composition
and briefly discuss the generic nature of the associated units
of composition and composition mechanisms.

A. The Programming View

One view of software composition is that it is simply what
a programmer does when putting bits of code together into
a program or an application. In this view, any legitimate
programming language construct is a unit of composition;
and composition is simply joining these constructs together
using some other construct (e.g. sequencing) defined in the
programming language. We call this the ‘programming view’
of composition.

Meaningful units of composition in the programming view
include functions in functional languages, procedures in im-
perative languages, and classes [48] and aspects [25] in object-
oriented and aspect-oriented languages.

Clearly the ‘programming view’ represents programming-
in-the-small. To equate composition with this view, however,
is to overlook many issues that are significant for software
engineering, such as reuse and systematic or automated con-
struction.

B. The Construction View

A higher-level view of composition is the view that software
composition is “the process of constructing applications by
interconnecting software components through their plugs”
[33]. The primary motivation here is systematic construction.

We call this view the ‘construction view’ of composition.
It is at a higher level of abstraction than the ‘programming
view’: it typically uses scripting languages [39] to connect



pre-existing program units together. The ‘construction view’
thus represents programming-in-the-large [17], as opposed to
programming-in-the-small.

In the ‘construction view’, the units of composition are
referred to as components, but these are only loosely defined as
software units with plugs, which are interaction or connection
points. Consequently, components may be any software units
that can be scripted together by glue. For example, components
may be modules glued by module interaction languages [42],
or Java Beans composed by Piccola [1], and so on.

System designs in the ‘construction view’ are represented
by software architectures [45], [8]. A software architecture
contains components and their inter-connections.

Although the ‘construction view’ hints at software reuse (via
components) [32], [34], [43], it does not explicitly show how
reuse occurs. In particular, it does not assume that components
are supplied by third parties (and pre-exist in a repository).
Software architectures similarly do not make any assumptions
about component reuse.

C. The CBD View

To define components precisely, we should define them
in the context of a component model [22], [29]. A compo-
nent model defines what components are (their syntax and
semantics) and what composition operators can be used to
compose them. Thus in [22] a software component is defined
as “a software element that conforms to a component model
and can be independently deployed and composed without
modification according to a composition standard”.

The advent of CBD [11], [22], [49] brought about a sharper
focus on not only component models (different kinds of com-
ponents and composition mechanisms), but also repositories
of (pre-existing) components and component reuse from such
repositories. Thus CBD is motivated by systematic construc-
tion as well as reuse of (pre-existing) third-party components.
We call this the ‘CBD view’; it extends the ‘construction
view’, by the additional emphasis on component models as
well as reuse of third-party components.

Software architectures also subscribe to the ‘CBD view’,
in addition to the ‘construction view’, in the sense that
an architecture description language (ADL) [16], [30] could
be considered to be a component model, with architectural
units as components, and port connection as a composition
mechanism for such components. However, in contrast to the
‘CBD view’, software architectures do not always assume or
make use of third-party components or repositories of such
components, as we remarked earlier.

In the ‘CBD view’, units of composition are components as
defined in the chosen component model. A generic component
is a unit with provided and required services (Fig. 1(a)).
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Fig. 1. Components in current component models.

component

In current component models [29], components are objects
(as in object-oriented programming), architectural units (as
in ADLs), or encapsulated components [28] (with no required
services). Objects have provided services (their methods) but
do not specify their required services (Fig. 1(b)). Architectural
units have their input and output ports as required and provided
services respectively (Fig. 1(c)). Encapsulated components
encapsulate computation (and control and data) and do not
call other components, i.e. they have only provided services
but no required services (Fig. 1(d)).

Generic components are composed by matching their re-
quired and provided services. Objects cannot be ‘composed’
this way, since they do not specify their required services;
rather, they ‘compose’ by direct method calls. Architectural
units compose by connecting their (compatible) ports. Encap-
sulated components cannot connect directly; rather they need
to be coordinated by exogenous composition connectors [27],
[50].

Finally, it is worth re-iterating that the boundaries between
these views are not cut and dried. In particular, the construction
view and the CBD view overlap, as already pointed out. This
is mainly due to the generic nature of components defined in
the construction view, which loosely covers components in all
the current component models. We will see the overlap again
in our survey (Fig. 8) in the next section.

III. A SURVEY

Now we survey composition mechanisms that have been
defined in all three views. As already mentioned, we view a
unit of composition as a software unit that defines behaviour,
and composition mechanisms as ways of building larger units
of behaviour. Since it does not make much sense to consider
composition mechanisms that are only unary in arity, our
normal assumption is that composition mechanisms are (at
least) binary in arity.

Composition mechanisms in all three views fall into four
general categories: (i) containment; (ii) extension; (iii) con-
nection; and (iv) coordination. We now briefly define and
explain each category, using generic units of composition, and,
for elucidation and illustration, we compare and contrast the
category with corresponding UML mechanisms.

A. Containment

Containment refers to putting units of behaviour inside the
definition of a larger unit. This is illustrated in Fig. 2(a), where
U3 contains Ul and U2. Containment is thus nested definition.

The behaviour of the _ us us
U3 2
= U1 U2 u1 U2

container unit is de-

fined in terms of that _ N i _
f the Contained units : ?object composition Qobject aggregation
0 b

but the precise nature @ Generic () UML

of the containment dif- Fig. 2. Containment

fers from mechanism to mechanism. Examples of containment
are nested definitions of functions, procedures, modules and
classes, as well as object composition and object aggregation.



Compared to (standard) UML, our notion of containment
covers more composition mechanisms. In UML, containment
is defined for classes only; there is no notation for nested
class definition, and the only forms of containment are object
aggregation and object composition (Fig. 2(b)).

B. Extension

Extension refers to defining the behaviour of a unit by ex-
tending that of at least two other units of composition. This is
illustrated in Fig. 3(a). Ex-
amples of extension include Ut vz
multiple inheritance in object- U3 Us

oriented programming, as- extension 4 class extension
peot weaving [24] in aspect- (a) Generic (b) UML
oriented programming, sub- Fig. 3. Extension.

ject composition [37] (or correspondence-combination, or su-
perimposition [5]) in subject-oriented programming and fea-
ture composition [41] in feature-oriented programming (Fig.
8).

Multiple inheritance can be defined as a composition mecha-
nism that extends multiple classes (e.g. Ul and U2 in Fig. 3(a))
into another class (U3) that inherits from these classes.

Aspect weaving can be defined as a (binary) composition
mechanism that extends a class (say Ul in Fig.3(a)) and an
aspect (U2) into another class (U3) that is the result of weaving
U2 into Ul. (Of course U3 is just the new version of Ul.)

Similarly, subject composition and feature composition can
be defined as composition mechanisms that extend multiple
subjects and features respectively (e.g. Ul and U2 in Fig.3(a))
into another subject or feature (U3) that is the result of
superimposition between these subjects or features.

Compared to UML, our notion of extension covers more
composition mechanisms. In UML, extension is used to define
inheritance for classes only, and the only composition mech-
anism based on extension is multiple inheritance (Fig.3(b)).
Other extension mechanisms, namely aspect weaving, subject
composition and feature composition, can only be represented
in UML as multiple inheritance if it is acceptable to represent
an aspect, a subject or a feature as a class. However, if aspects,
subjects and features are to be distinguished from classes, as
they are intended to be, in aspect-oriented, subject-oriented
and feature-oriented programming, then we cannot define
aspect weaving, subject composition and feature composition
as composition mechanisms in UML.

C. Connection

Connection refers to defining a behaviour that is an
interaction between the behaviours of multiple units.

This is illustrated y 1E_E|U2 U1 EE%_EEJ U2

in Fig. 4. This .
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fected by the units Fig. 4. Connection.

either directly or indirectly invoking each other’s behaviour.
Connection is thus message passing, and as such it induces
tight coupling between units that send messages to each other.

Examples of connection include object delegation [38] and
port connection between architectural units (Fig. 8).

Direct message passing (Fig. 4(a)) is a form of delegation.
An example is object delegation. Objects directly invoke each
other’s methods, i.e. they connect by direct method calls,
or delegation. This is illustrated for three objects A, B,C
in Fig. 5(a). In general, an object could call any number
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Connection by direct and indirect message passing.

Fig. 5.

of methods in another object. This is true for an arbitrary
assembly of connected objects.

Indirect message passing (Fig. 4(b)) is done via plugs in
the units. Plugs provide input/output points via which units
can communicate. An example of indirect message passing is
architectural units connected via their ports. An architectural
unit has ports, for input and output, which can be linked to the
ports of other architectural units by connectors. Architectural
units invoke each other’s behaviour by messages passed via
their ports. Fig. 5(b) shows three units linked via (some of)
their ports. Connected ports have to be compatible of course.

Compared to UML, our notion of connection covers
more composition mechanisms. In UML, connection is
only defined for UML2.0 components, not for classes.
In UML2.0, compo-
nents are architec- Hi]\\Jg%
tural units with in- > Reauredsenice T Resenib comeaor
pUt pOI'tS that are re- (a) Component (b) Composite component
quired services and Fig. 6. Connection in UML.
output ports that are provided services (Fig. 6(a)). Port connec-
tion is done by using assembly connectors, and port forwarding
or exporting is done by using delegation connectors, illustrated
in Fig. 6(b).

Somewhat ironically, UML has no notation for object dele-
gation. Association between classes can only express relation-
ships between classes, but not method calls between objects.

D. Coordination

Coordination refers to defining a behaviour that results
from coordinating the behaviours of multiple units. This is
illustrated in Fig. 7. The coordination is performed by a
coordinator which communicates with the
units via a control and/or a data channel.
The units themselves do not communicate
directly with one another. Coordination thus
removes all coupling between the units, in
contrast to connection, which induces tight
coupling through message passing. Exam-
ples of coordination are data coordination us1ng tuple spaces
[13], data coordination using data connectors [6] for parallel
processes or active components, control coordination using
orchestration [19] for (web) services, and control coordination

communication
channel

Fig 7. Coordina-



using exogenous composition for encapsulated components
(Fig. 8).

Tuple spaces are used in coordination languages to coor-
dinate parallel processes, by storing and sharing typed data
objects (tuples) between the processes. In contrast to connec-
tion mechanisms, these processes communicate only with the
tuple space, but not directly or indirectly with each other.

Data connectors are data channels that coordinate the data
flow between the ports of active components, thus separating
the data flow from computation. The components execute their
own threads, consuming data values on their input ports and
putting data values on their output ports. The components do
not communicate directly with each other. The flow of data
values is defined by the data channels between them.

In control coordination, control connectors coordinate the
control flow between passive components. The components
do no have their own threads, and are executed only when
control reaches them from the control connectors. Control
coordination thus separates control flow from computation.

In UML there is no notion of coordination, and hence no
notation for coordination.

E. The Survey

Our survey is structured according to the above four
categories (and the three views) and is shown in Fig. 8.

class contained class aggregate

see ) {public:
class compose
{ C void setContalned(contalned *,contained *);

public: private q et t

s t *firs

P ot sined first; ;ggt:ﬂgd *second;

, contained second; || 5ig aggregate::setContained(contained *cl,contained *c2)

{ first=cl; second=c2; }

Fig. 9. Containment: Composing objects by object composition and object
aggregation. . )
aggregates two objects of the contained class, because

it only contains pointers to them. Class aggregate does
not manage the life cycle of instances pointed by (first,
second).

The Extension category contains multiple (class) inheri-
tance, mixin-inheritance [10], mixin-class inheritance, trait
composition [18], trait-class composition, subject composition,
feature composition, (aspect) weaving and invasive composi-
tion. We choose aspect weaving as a representative mechanism
to explain. An aspect [25] defines a crosscutting concern for
some base code. It can be woven with the base code to change
the latter’s behaviour by adding behaviour (advice) at various
points (join points) in the base code specified in a pointcut
(that identifies matching join points). Weaving is done by
an aspect weaving mechanism, which is a special language
processor that weaves advices! into a class construct. Fig. 10
shows a simple aspect in Aspect] [24] to print out Entering
before executing the display method of any class with any
return type, and to print out Exiting after executing the
method, that is woven with a Java class application. The

public class application{ ...

public aspect tracef{
public void display(

pointcut log():

) {
Unit of. Composition Mechanism System.out. prlntln("MOde"); b:xgcgflfn(pfgéi ); ;/525§3§{§dv33é
Campesiion Containment Extension Connection Coordination ! agg:;?m Oﬁétfﬁﬁfﬁl“‘"E“t?rngffgéger sdvice
Function Function nesting Higher-order function Qutput before weaving } System.out .print %n( "Exiting——-") i)
Function call Mode Output aft
Procedure Procedure nesting Procedure call }‘; put 2 7:55 weaving
ntering
Class nesting Mode
= Class Obj_ect composilion Multiple inheritance Object delegation Exiting-—-—
2 Object aggregation Fig. 10. Extension: Composing an aspect with a class by aspect weaving.
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K
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Fig. 8.
We will explain representative mechanisms in the category,
with examples. For lack of space we cannot explain all the
mechanisms in detail.

The Containment category contains function nesting, pro-
cedure nesting, class nesting, object composition and object
aggregation, and module nesting. We will explain object
composition and object aggregation in object-oriented pro-
gramming as representative examples. In object composition,
the container object manages the life cycle of the contained
objects, i.e. the latter get constructed and destroyed with the
former. In contrast, in object aggregation, the life cycle of
the contained objects is independent of that of the container
object. This is illustrated by the C++ example in Fig. 9.

The compose class composes two objects of the
contained class managing the life cycle of two instances
(first, second). In contrast, the aggregate class only

A survey of composition mechanisms.

nection for architectural units (see Fig. 5). Here we give a
more detailed example of port connection. Fig. 11 shows the
composition of two architectural units A and B in ArchJava
[3]. Port y of A is connected to port x of B. Port « of A and

Componen{t class A{ w051 (o AB N
port x{ requires int readNum
port y{ provides int add(); > >-.>
port n{ requires char readTxt();} } > A >{> > [>
port m{ provides void printChar();} X ¥ y
//implementation of provided methods
. component class AB{
} PO x{ requires int readNum();}
port y( provides int sqr();}
port n{ requires char readTxt();}

port m{ provides vold prlntchar(),)
private final A a = new A();
private final B b = new B();
) connect a. g b. i

glue n to
glue x to
glue m to
glue y to

component class B{
port x{ requires
port y{ provides
port n{ requires
port m{ provides
//implementation

int add();}
int sqr();}
char readTxt ();
void printChar();}
of provided methods|

y e )
Fig. 11. Connection: Composing architectural units by port connection.

a.
b.m;
boy:

ports n, m,y of B are forwarded (by delegation connectors)
as ports n, m,y of the composite AB by gluing the former to
the latter. Forwarding different ports would result in a different

' As well as inter-type declarations.



composite with different ports. In general, a port may have
multiple services, which may be either required or provided
services; in this example we have only used ports with a single
service.

The Coordination category includes data coordination, (web
service) orchestration and exogenous composition (of encapsu-
lated components). We explain orchestration for web services
as a representative example. A web service [19] provides a set
of operations that can be invoked by users via its WSDL (web
service description language) [15] interface (with web enabled
protocols). A sequence of invocations can be defined as a
workflow, in a workflow language like BPEL (business process
execution language) [36], and when the workflow is executed
on a workflow engine, the invocations take place. Such a
workflow is called an orchestration. Thus orchestration is a
composition mechanism for web services. This is illustrated
in Fig. 12 for two web services WS'1 and WS2. The workflow,

BPELPmce«

| |
| |
| |
WS1|  |WS2

<process name="BPELProcess"
<!--Participants (WS1 and WSZ)*7>
<partnerLinks>
<partnerL1nk name="Ws1"../>

artnerLink name="WS2"../>
< partnerLinks>
<!--Request/response vars of participants-->
<variables> ... </variables>
<sequence>
<invoke..partnerLink="WS1"..operation="X"../>
<if> <condition> <!--cl--> <condition>
<sequence>
<invoke..partnerLink="WS1"
</sequence>
<else>
<if> <condition> <!--c2--> <condition>

—> service request
- — [>servce response

.operation="Y"../>

‘Workflow defined by BPELProcess:

<sequence>
<invoke..partnerLink="WS2"
</sequence
</if> </else> </sequence>
</process>

.operation="2z"../>

Fig. 12. Coordination: Composing web services by orchestration.

depicted by an activity diagram, is defined as a BPEL process:
it invokes operation X in WS1, and then invokes either
operation Y in WS1 or operation Z in WS2 depending on
whether condition ¢l or ¢2 holds, and then terminates. Thus,
orchestration coordinates the invocation of operations in W.S'1
and WS2.

Our survey shows some interesting characteristics of the
three views, and the composition mechanisms therein. Each
view is based on a particular kind of unit of composition.
In the programming view, units of composition do not have
plugs. In the construction view, units of composition have
plugs: modules have interaction points as plugs; architectural
units have ports as plugs; fragment boxes [7] have hooks as
plugs; processes have channels as plugs. In the CBD view,
units of composition have proper interfaces for composition:
web services have WSDL interfaces; encapsulated components
have interfaces for exogenous composition.

The boundaries between views are of course not clear cut.
As we pointed out in Section II, the construction and the CBD
views overlap. This is evident in Fig. 8. The construction
view also overlaps slightly with the programming view. A
module could be a unit of composition in the programming
view. However, modules with interfaces do have plugs for
interacting with other modules; so a module is also a unit
of composition in the construction view. Another example is
a feature. A feature in feature-oriented programming does not
have plugs, but a feature in the Genvoca model [9] does have
plugs; such a feature would be a unit of composition in the
construction view.

In each view, there is a predominant kind of composition
mechanism, except the programming view, where all composi-
tion mechanisms except coordination are used. In the construc-
tion view, without the assumption of third-party components,
the predominant composition mechanism is connection. This
reflects the primary concern of constructing larger pieces
of software from smaller pieces. The fact that modules use
nesting betrays its programming view roots. In the CBD view,
with the presumption of (pre-existing) third-party components,
the predominant composition mechanism is coordination. This
is due to the assumption of third-party components: web
services are assumed to be available on web servers, while
encapsulated components are assumed to be in repositories
provided by third parties.

IV. ALGEBRAIC COMPOSITION MECHANISMS

Our survey is not based on any desiderata for composition
mechanisms, but it does provide a comprehensive source
of information for further analysis of the mechanisms in
terms of desirability criteria. In this section we propose a
taxonomy based on a desideratum for CBD, namely systematic
construction. We will show that mechanisms that are algebraic
meet this desideratum, and identify such mechanisms.

When a composition mechanism is applied to units of
composition of a given type, the resulting piece of software
may or may not be another unit of composition of the same
type. If it is, then it can be used in further composition;
composition mechanisms that produce units of composition
of the same type as the composed units of composition are
algebraic. Algebraic composition mechanisms are good for
hierarchical composition (and therefore systematic construc-
tion), since each composition is carried out in the same manner
regardless of the level of the construction hierarchy. Indeed in
the ‘construction view’, such mechanisms are deemed the most
desirable since they can constitute a component algebra [2].

We only consider one-sorted algebra, not many-sorted al-
gebras, where ‘algebraic’ would mean the resulting unit is
of the same type as at least one of the composed units. In
practice, in any programming paradigm, there is usually only
one pre-dominant, paradigm-defining sort, e.g. object-oriented

programming, service-oriented programming, etc.

Composition Mechanism
Extension Connection

Multiple inheritance | Higher—order function

Containment Coordination

Function nesting

o . P .
‘S | Procedure nesting | Mixin inheritance Trait composition
& | Module nesting Trait composition Port conr’?ection Exogenous
S| Class nesting Subject composition . - composition
< | Object composition| Feature composition | Invasive composition
Object aggregation| Invasive composition Channels

o .
s Mixin—class inheritance Function call -
S Procedure call Data coordination
g Trait—class composition| Module connection

. y Orchestration
s Weaving (_)bject delegatlop.
2 Trait-class composition

Fig. 13.
Analysing the mechanisms in our survey in Fig 8, we arrive
at the taxonomy of algebraic versus non-algebraic mechanisms
in Fig. 13.
In the Containment category, all the mechanisms are al-
gebraic, since the composite is always the same type as the
composed units.

Algebraic vs. non-algebraic composition mechanisms.



In the Extension category, some mechanisms are algebraic,
while some are not. Multiple inheritance yields a class from
two classes and is therefore algebraic. Similarly, mixin in-
heritance, subject composition and feature composition are
algebraic. Trait composition can be done by either extension
or connection, but it is always algebraic since it always yields
another trait. Invasive composition performs both extension
(by overwriting) and connection (via hooks), but it is always
algebraic because it always yields another fragment box.

Mixin-class inheritance and weaving yield, respectively a
class from a mixin and a class, and a class from an aspect and
a class, and are therefore not algebraic. Trait-class composition
falls into both the Extension and Connection categories, de-
pending on whether the trait composition involved is done by
extension or connection, but trait-class composition is always
non-algebraic since it yields a class from a trait and a class.’

Like the Extension category, in the Connection category,
some mechanisms are algebraic and some are not. A higher-
order function composes functions and yields a function, and
is therefore algebraic. So is port connection, which composes
architectural units and yields an architectural unit. Channels
connecting processes create new processes, and are therefore
algebraic.

A function call returns a pair of functions rather than
a single function, and is therefore non-algebraic. Similarly,
procedure call, module connection, and object delegation are
non-algebraic.

Finally, in the Coordination category, only exogenous
composition is algebraic, since the composition of two
encapsulated components always yields an encapsulated
component. In exogenous L4

composition (Fig. 14), the /%\
O)
A

components are encapsu- ] [(®
ﬂ @
(a) Atomic

lated (Fig. 1(d)). There are

two basic types of compo- N :
nents: (i) atomic and (i) component(b) Cgc;?\ﬂgsclt%?n © goorrr?p%%sétnet
composite. An atomic com- Fig. 14. Exogenous Composition.
ponent (Fig. 14(a)) consists of a computation unit (U) and
an invocation connector (IU). A computation unit contains
a set of methods which do not invoke methods in the com-
putation units of other components; it therefore encapsulates
computation. An invocation connector passes control (and
input parameters) received from outside the component to
the computation unit to invoke a chosen method, and after
the execution of method passes control (and results) back to
whence it came, outside the component. It therefore encap-
sulates control. A composite component (Fig. 14(c)) is built
from atomic components by using a composition connector
(Fig. 14(b)). Such a connector encapsulates a control structure,
e.g. sequencing, branching, or looping, that connects the sub-
components to the interface of the composite component.
Since the atomic components encapsulate computation and
control, so does the composite component. Encapsulated com-

2Qur classification of subject composition as algebraic, and aspect weaving
as non-algebraic, mirrors the dichotomy between symmetric and asymmetric
aspect mechanisms [21], [26] in aspect-oriented software development.

ponents therefore encapsulate control (and computation) at
every level of composition. Fig. 14 clearly shows that ex-
ogenous composition is algebraic: exogenous composition of
encapsulated components always yields another encapsulated
component. The composition connector provides the interface
of the composite, which is derived directly from the interfaces
of the composed components.

Data coordination is not algebraic since it does not yield
a single process; rather it yields the same set of processes
(either sharing a tuple space or connected by data connectors).
Orchestration of web services is not algebraic since the result
of an orchestration is a workflow, rather than a web service,
as we showed in Section III-E. Of course the workflow could
be turned into web service, by creating a WSDL interface
for it, but this would require an extra step after orchestration.
Indeed, some BPEL editors force the user to take this extra
step in order to make the orchestration executable as a web
service.

V. COMPOSITION OPERATORS

Another desideratum for CBD is that composition mecha-
nisms should be automatable. A composition is automatable if
it can be explicitly defined as a composition operator, i.e. like
a mathematical function, that can be defined and then applied
to arbitrary arguments, i.e. units of composition, of specified
types. For example, a higher-order function & : X — Z that
composes two functions f: X — Y and g : Y — Z (where
X, Y, Z are types) can be defined explicitly in terms of f and
g as h(z) = g(f(x)). The operator h can be used to compose
any two functions with type signatures X — Y and Y — Z.

Applying a composition operator does not require any
glue that has to be constructed manually. With composition
operators defined from algebraic composition mechanisms, we
Algebraic Composition Mechanism

Containment Extension Connection Coordination
Pﬁggggg?enﬁgggrg Multiple inheritance |  Trait composition
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Fig. 15. Algebraic composition mechanisms as operators.

can automate hierarchical composition. In this section, we
propose a taxonomy of algebraic composition mechanisms
that can be defined as operators versus those that cannot. This
taxonomy is shown in Fig. 15.

In the Containment category, no mechanism can be defined
as an operator, since nesting can be done in arbitrary ways.

In the Extension category, multiple inheritance, trait com-
position, and feature composition, all perform extension that
may require glue for conflict resolution and overriding in
general, and therefore cannot be defined as operators. Invasive
composition requires glue for both extension and connection,
and therefore cannot be defined as operators.

By contrast, mixin inheritance never requires glue, since it
performs extension in a fixed manner. A mixin M is a set of
methods, and can be defined as a record {f1 — myq,..., fn —



my,} with fields f1,..., f, whose values are the signatures
maq,...,my, of M’s methods. Mixin inheritance can be defined
as record combination, which is a binary operation & [10] such
that My & Mo, for any M; and M, yields a new mixin M3
which is a new record with the fields from M7 and M5, where
the value for each field is the value from the left argument M,
(or the right argument M5) in case the same field is present
in both records.

An example (Fig. 16) in MixedJava [20] shows mixin A
with methods m1, m2, m5; mb prints the message ‘Alpha’.

Mixin B has methods

m3, m4, mb; mb prints the g TR B

‘ m() (...} ML || mBOL b MmO
message ‘Beta’. The first o0 L print Aphal || () {71 pri nt et 2}
COmpOS]thn eXpreSSIOIl //two conposition expressi ons|

m xi n AB=A conpose B;

generates a  composite m Xi n BA-B conpose A;
1%1 3 H > m xi n AB{ m xi n BA{
mixin AB, in which A’s MOT Y e | MO w0 )
. , {3 mOL ) || m80L - ) MO}
mb overrides B’s mb. m6(){//print Al pha}}|| n5(){//print Beta}}
Similarly, the second Fig. 16. Mixin inheritance.

composition expression generates a composite mixin BA, in
which B’s m5 overrides A’s m5.

Similarly, it is possible to define simple correspondence-
combination operators for composing arbitrary subjects, e.g. a
simple ‘merge-and-overwrite’ operator. However, it is difficult
to define an operator for complex correspondence-combination
mechanisms that can compose arbitrary subjects.

In the Connection category, for any two given traits and two
architectural units, respectively, there are in principle many
different possible pairs of matching services and compatible
ports, and each permutation of possible pairs gives rise to
an operator. Thus composing traits and architectural units
by connection is necessarily done in an ad hoc manner,
and cannot be defined as operators. Similarly, for any two
given processes, there are many different possible channels
for connecting them. Thus composing processes by channels
connection cannot be defined as operators.

In the Coordination category, exogenous composition can
be defined as composition operators (connectors), as we have
already seen in the previous section.

Finally, this taxonomy is a sub-taxonomy of the taxon-
omy (Fig. 13) presented in the previous section. Together
they form the taxonomy that identifies desirable composition
mechanisms for CBD. Fig. 15 shows that these mechanisms
are mixin-inheritance, subject composition and higher-order
function (from the programming view) and exogenous com-
position (from the CBD view). Of these, only exogenous
composition is being used in CBD. Apart from exogenous
composition, current component models predominantly use
object delegation and port connection (for architectural units).

VI. DISCUSSION AND CONCLUSION

Various categories for software composition mechanisms
have been proposed before. Nierstrasz and Dami [33] suggest
three different types of compositional paradigms for com-
ponents (static abstractions with plugs): (i) functional com-
position, (ii) blackboard composition and (iii) extensibility.
Components are seen as (mathematical) functions from input

values to output values. In functional composition, components
are composed like (mathematical) functions. This corresponds
to the higher-order function mechanism in our Connection
category. Blackboard composition is data sharing by compo-
nents, and is therefore data coordination in our Coordination
category. Extensibility is not a separate mechanism, but part
of functional composition; it allows individual components
to be extended (by single inheritance), and requires any
such extension to be preserved in any functional composition
involving extended components. Nierstrasz and Dami do not
have our Containment and Extension categories.

Sametinger [43] categorises software composition mech-
anisms into two basic forms: (i) internal and (ii) external.
In internal composition mechanisms, composed units become
inherent parts of the composite, e.g. when source code is
compiled and linked to an executable file. This corresponds
to our Containment category in a coarse-grained ways; it is not
clear whether object aggregation is internal. In external com-
position mechanisms, composed units execute independently
and communicate with other composed units by interprocess
communication techniques. This covers our Connection and
Coordination categories, but again in a very coarse-grained
manner. It is not clear which of these forms our Extension
category belongs to.

Sommerville [46] defines three types of composition mech-
anisms for architectural units: (i) sequential, (ii) hierarchical
and (iii) additive. In sequential composition, the ‘provided’
interfaces of the units are linked by glue code that executes
their services in sequence; what happens to the ‘required’ ports
is not defined. Without ‘required’ ports, this mechanism seems
to be a control coordination mechanism, and seems to be
non-algebraic. Hierarchical composition is the same as port
connection in our Connection category. Additive composition
simply yields a composite whose interface is the set of the
interfaces of the components. This is a degenerate form of
port connection in which only delegation connectors are used
(to forward ports to the composite). Sommerville does not
have the Containment or Extension categories since he only
addresses architectural units. He also seems not to have the
Coordination category.

Szyperski [48] classifies software composition approaches
into two categories: (i) symmetric and (ii) asymmetric. Sym-
metric means the definition of composition is located in (one
of) the composed components, e.g. object delegation, while
asymmetric means the location of composition definition is
outside in a neutral place, e.g. container-based composition
like in EJB. These are coarse-grained categories, with sym-
metric covering our Containment, Extension and Connection
categories, while asymmetric corresponds to our Coordination
category.

Mehta et al [31] define composition mechanisms for compo-
nents as connectors, and categorise them into connectors for:
(i) communication (ii) coordination (iii) conversion and (iv)
facilitation. Communication connectors transfer data, whilst
coordination connectors transfer control, between components.
These connectors belong to our Connection category, since



they compose components by message passing. Conversion
connectors convert the interaction required by one component
to that provided by another, e.g. conversion of data format;
thus they are adaptors. Our categories do not include adaptors;
we do not consider them to be composition mechanisms since
they are unary operators. Facilitation connectors provide mech-
anisms for facilitating and optimizing component interactions.
They do not feature in our categories.

The only work related to our taxonomy for CBD is that of
Chaudron [14]. He does not propose any taxonomy, but he
does define desiderata for composition mechanisms for CBD.
Interestingly, Chaudron’s desiderata support our taxonomy for
CBD. Three of his criteria which are relevant here state
that: (i) composition mechanisms should be exogenous to
components, i.e. not built into the components themselves; (ii)
composition mechanisms should provide separate mechanisms
for dealing with control flow and data flow; (iii) composition
languages should provide means for building higher level,
larger-granularity composition abstractions. (i) and (ii) support
our classification of exogenous composition (of encapsulated
components) as desirable for CBD (Fig. 15), while (iii) sup-
ports our choice of algebraic mechanisms as desirable for CBD
(Fig. 13).

For practical development, we will always need to use a
combination of different kinds of components and composition
mechanisms. Non-algebraic mechanisms or mechanisms that
cannot be defined as operators may be better for top-level sys-
tem design. On the other hand, given a top-level architectural
design, it may be better to provide all its required services by
designing the desired composites using composition operators
that can be applied automatically.

We have not addressed run-time or dynamic composition,
e.g. proximity-based composition (objects in a context may be
automatically connected) [47], and data-driven composition
[47].

Finally, we agree with Szyperski [47], [48] that for CBD
the ‘universe of composition’ is as yet largely unexplored. Our
work here is a response to his ‘call-to-arms’ [47].
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