
Composing Components in Design Phase using Exogenous Connectors

Kung-Kiu Lau, Ling Ling and Zheng Wang
School of Computer Science, The University of Manchester

Manchester M13 9PL, United Kingdom
{kung-kiu, lling, zw}@cs.man.ac.uk

Abstract

Composition can take place during different stages of
component life cycle. We identify two main stages : design
phase - components are composed into composite compo-
nents for reuse; deployment phase - components are com-
piled and the resulting binaries are assembled into exe-
cutable systems. Ideally, the design phase composition
should maximise component reuse. However, this ideal is
not realised in current component-based development be-
cause they can not reuse composite components in design
phase. In this paper, we propose a novel approach for com-
posing components in design phase using exogenous con-
nectors. In contrast to existing composition approaches,
our approach allows composite components built in design
phase to be further reusable in both design and deployment
phases so as to achieve both component reuse and design
flexibility. We demonstrate the feasibility of our approach
in an industrial-strength case study - Automatic Train Pro-
tection system, and compare them with the closely-related
existing composition approaches.

1. Introduction

Component-Based Development (CBD) [14] attempts
to construct software systems by assembling pre-existing
components, possibly supplied by third parties. In such a
development process, the life cycle of components [4] can
be divided into different phases [8]. The two main phases
are Design and Deployment. In the design phase, compo-
nent designers design, construct and deposit components in
repositories. In the deployment phase, system developers
retrieve appropriate components from repositories and com-
pose them into their target systems.

Component composition, or assembly, plays a funda-
mental role in CBD, and so it does in both design and de-
ployment phases. In the design phase, components can be
composed into composite components, which are compo-
nents that can be deposited in repositories as such. Build-
ing composites from pre-existing components is of course

a kind of component reuse. Furthermore, composite com-
ponents represent sub-systems or sub-parts, and are useful
as sub-designs in any systematic approach to design. In the
deployment phase, binaries of components (composites) are
composed into an executable system in such a way that the
system’s behaviour is as desired. Composing components is
again a kind of component reuse as well as a design activity.

The above is the ideal scenario whereby both component
reuse and design flexibility can potentially be maximised.
In current composition approaches, this ideal is currently
not realised, primarily because composite components can-
not be composed again in the design phase. In this paper, we
propose an approach to the composition in design phase that
allows composite components created in the design phase
for further composition in both the design and deployment
phases. The key idea of our composition approach is us-
ing the exogenous connectors [7]. In [7] we introduced ex-
ogenous connectors and presented their use in deployment
phase composition only. This paper presents the definition
and implementation of design phase exogenous connectors,
and shows how they are used in the design phase composi-
tion. In section 2, we present the definition of design phase
composition and describe how components are composed
in this phase using exogenous connectors. Then section
3 presents our implementation, followed by an industrial-
strength case study, the Automatic Train Protection system,
to demonstrate the feasibility of our approach in section 4.
Finally, we compare our approach with the closely-related
composition approaches in existing literature and discuss
the advantages and potential drawbacks of our approach.

2. Design Phase Composition

In CBD, composition is a central issue, since the na-
ture of components is as building blocks from a repository
that are assembled or plugged together into larger blocks
or systems. So components are pre-existing reusable soft-
ware units that can be produced and used by independent
third-parties. Components can be composed into composite
components which in turn can be composed with (compos-

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

ite) components into even larger composite components (or
subsystems), and so on.

Composition can take place during different stages of the
life cycle of components. An idealised life cycle of software
components [8] includes the design phase, the deployment
phase and the run-time phase.

A

B

C

D

BC

Design Deployment

AssemblerBuilder Repository

C

B

A

B

A

D

BC

RTE

Run−time

InsA

InsB

InsD

InsBC

deployment phase
component(binary) component instances

design phase
component(source)

connector connector

Figure 1. Component Life Cycle.
• Design Phase

In this phase, components are designed, constructed,
and then deposited in a repository. Components con-
structed in this phase are in source code, so they are not
executable before compilation and deployment. Com-
ponents can be composed into composite components
that are also in source code. Composites from sub-
parts of a system and as such are useful for designing a
system. The constructed components, including com-
posites, are then catalogued and stored in the reposi-
tory in such a way that they can be retrieved later, as
and when needed.

• Deployment Phase
In this stage, components are retrieved from the repos-
itory and compiled into their binary code, so that they
are ready for execution. Binary components can be
composed into a complete system that is executable.

• Run-time Phase
In this phase, there is no new composition. Compo-
nents of a system are instantiated with data and the
whole system is executed.

2.1. Exogenous Connectors

In our composition approach, components are reusable
building blocks that are assembled by exogenous connec-
tors into composite components in design phase. The dis-
tinguishing characteristic of our composition approach is on
exogenous connectors that provide us a structured way to
systematically compose components in design phase.

In the literature of design phase composition, existing
approaches usually adopt message passing, and generally
fall into two main categories: (i) composition by direct
message passing; and (ii) composition by indirect message
passing. In direct message passing scheme, there are gener-
ally two distinct roles: the sender and the receiver of a mes-
sage (Fig. 2(a)). The identity of the receiver is known as a

c();

B

B.c();

A

(a) Direct Message
Passing

Con1.notify();
B.c(); c();

B
A notify();

Con1

Passing
(b) Indirect Message

component connector

B.c(); c();
a();

B
A.a();

Con1

A

(c) Exogenous Composition

Figure 2. Composition Approaches.

priori by the sender of the message, as exemplified by direct
method calls, i.e. the caller Objects have to know the iden-
tities of the callee Objects. EJB [5], CCM [12], COM [2],
UML2.0 [11] and KobrA [1] adopt direct message passing
as a composition approach and their components are usu-
ally Objects. In indirect message passing scheme, compo-
nents are glued together by some scripts that pass messages
between them indirectly. A component is connected to an-
other component by a connector that when notified by the
former invokes a method in the latter (Fig. 2(b)), as exem-
plified by ADL connectors [9] that pass messages between
components indirectly. Like ADLs, Koala [15], SOFA [13],
PECOS [10], PIN [6] and Fractal [3] adopt indirect message
passing as the composition approach and their components
are usually architectural units.

In direct message passing scheme, Objects are composed
by direct method calls. There is no explicit code for con-
nectors that can be reused. Components are tightly cou-
pled with each other and thus are impossible to be reused
independently. Moreover, direct message passing scheme
does not support composite components to be created in
the design phase. Whereas, with indirect message passing
scheme, architectural units are composed by connectors that
are separate entities and composite components can be cre-
ated in the design phase. However, they are still difficult to
be reused, because those connectors just pass control from
one component to the others. They are strongly coupled
with those components they connect with.

It is clear that in existing composition approaches by
message passing, control is originated from components
and mixed up with computation, which results in compo-
nents tightly coupled to each other and causes difficulties in
reuse and composing components in design phase.

In contrast to existing composition approaches, our ap-
proach adopts exogenous connectors that initiate method
calls in the components, and handle any accompanying data
flow, so that any control flow between the components is
encapsulated by the connectors, as illustrated by Fig. 2(c).

In our approach, components react to their connector
only, rather than directly with each other. Computation is
encapsulated by components, whilst control is encapsulated
by connectors. Because of well-encapsulation, our compo-
sition approach is structured and hierarchical. In the de-
sign phase, components are composed by exogenous con-
nectors to composite components that are similar to their
constituent components. Thus exogenous connectors pro-
vide us an approach to systematically compose components

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

in a hierarchical way.
This hierarchy of composition requires a properly de-

fined type system for our connectors. In [7], We have intro-
duced the type system for exogenous connectors in deploy-
ment phase. In this paper, we focus on composing compo-
nents by exogenous connectors in design phase and we de-
fine the type system of design phase exogenous connectors
in Fig. 3.

def

def

def

Component Component −−> Composite;

Composite[n Nat, n > 1]

ComponentComponent types Atom

Basic types

Atom Invocation
Composite;

Invocation, ComputationUnit;

ComputationUnit;

Component;ComponentConnector[n]
Connector[n Nat, n > 1] :

Figure 3. Type System of Design Phase Ex-
ogenous Connectors.
There are two types of components: (i) atomic compo-

nent (Atom, Fig. 4 (a)); (ii) composite component (Com-
posite, Fig. 4 (b)). Every atomic component has an Invo-
cation and a Computation Unit. The Invocation serves as
an interface for the component, while the computation unit

.......
Unit1 UnitiUnit

(a) Atom (b) Composite

Computation

Invocation1

Connectori

Invocationi

Interface

ComputationComputation

InterfaceInvocation

Figure 4. Atomic Component and Composite
Component.

provides methods the component could offer. Components
in design phase are composed by design phase exogenous
connectors to composite components that are similar to their
constituents.

2.2. Composing Components in Design Phase

In this paper, we propose a novel approach for compos-
ing components in design phase, such that composite com-
ponents constructed in design phase can be stored and re-
trieved for further composition. Therefore both component
reuse and design flexibility are maximised.

Exogenous connectors in design phase serve as compo-
sition operators that connect existing components and en-
capsulate control over them, so as to build new composite
components. These connectors are generic and therefore are
pre-built and stored in a repository. The reason for that is
connectors can be reused, as well as components in design
phase.

Components are constructed by exogenous connectors in
design phase in a systematic way. Every atomic compo-
nent has a Computation Unit together with an Invocation
that provides an interface to the component as defined in
the type system (Fig. 3). The Computation Unit contains
implementation of the methods of the component, while

the Invocation provides a way to invoke those methods in
the Computation Unit. As depicted in Fig. 4(a), an atomic
component is constructed by applying an Invocation to a
Computation Unit. The Invocation exposes the component
interface and serves as an access point to the component. A
component can only be invoked through its interface, i.e. its
Invocation.

Atomic components are composed to form composite
components by the connectors that compose their inter-
faces. For each atomic component, the interface is exposed
by the Invocation, so a connector connects the Invocations
to construct a composite and then exposes an interface for
it (Fig. 4(b)). The composite component interface is de-
fined in terms of the interfaces of the constituent compo-
nents. Like atomic components, a composite component
also has a top level connector as an interface, because it
is the access point to services provided by the component.
Composite components can again be composed by connec-
tors to a larger composite component, as shown in Fig. 5.
The connection points of the constituent components are the
interfaces, i.e. the top level connectors.

Unit

.......
Unit1 Uniti

Computation

Invocation

ComputationComputation

Invocation1

Connectork

Connectori

Interface

Invocationi

Figure 5. Composing components in Design
Phase.
So far we have defined and implemented Pipe, Se-

quencer, Selector and Condition connectors. For a Pipe,
when a method on the composite component is called, it in-
vokes methods on the constituent components sequentially,
obtains the result from the previous component and pipes it
to the next one. For a Sequencer, the methods of compo-
nents connected are executed sequentially as the order de-
fined by the Sequencer connector. For a Selector, when a
method on a composite component is invoked, it can switch
to the correct constituent component to accomplish the re-
quest. A Condition is just a special selector, which connects
only one component and executes the methods of the com-
ponent based on the satisfaction of the condition. In this
case, the control flow over the constituent components is
encapsulated entirely by the connectors.

A composite component built in the design phase can
be further reused in building new composite components in
the design phase. For example in Fig. 6, a composite com-
ponent AB is retrieved from the repository. Components
AB and D are composed by a Selector connector that con-
nects their top level connectors, Pipe and Invocation, so as
to build a larger composite component ABD. ABD can again
be deposited back into the repository for future reuse. In
the deployment phase, components in the repository are re-

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

InvA InvB

InvD InvD

Binary Selector Connector

InvA InvCInvB InvD

InvA InvB

InvD InvA InvB
InvD InvA InvB

RepositoryBuilder Deployment Assembler Run−Time Environment

ABCD

InvA InvB InvC

ABCD

InvA InvB InvC

Invocation

Binary Invocation

Computation Unit

Binary Computation Unit

Pipe Connector

Binary Pipe Connector

Selector Connector

B C

AB
B C D

B

AB

B

ABD

AB

B

ABD

AB

B

AB

ABD ABD

AB

InsB InsCA

A

PipeAB
A

PipeAB

A
SelectorABD

D A

PipeAB

SelectorABD

PipeAB

D A

PipeABCD

SelectorABD

PipeAB

D

PipeABCD

SelectorABD

PipeAB

InsD InsA

Figure 6. Reuse Composites in both Design
and Deployment Phases.

trieved and compiled into binaries. They are composed by
deployment phase exogenous connectors (as presented in
[7]) to executable systems. For example in Fig. 6, the com-
posite component ABD is retrieved from the repository and
compiled into its binary code and then composed with the
binary component C to an executable system ABCD. Thus
the results of design phase composition (composites) can
be reused in both design and deployment phases, and hence
design phase composition maximises design flexibility.

3. Implementation

Having defined the design phase composition, in this
section we present the implementation of components and
the design phase exogenous connectors in Java, and illus-
trate how composite components are built in design phase
using exogenous connectors.

In our implementation, an atomic component is a set
of Java compilation units. It consists of source code of
an Invocation and a Computation Unit. For example in
construction of an atomic component BankA, Invocation
Inv BankA is connected to the Computation Unit BankA
(Fig. 7). In the implementation of Invocation, we specify
the connected computation unit name in the GetConnect-
edNames() method of the Invocation source code, as illus-
trated in Fig. 7(a). As we have explained in 2.1, an Invo-
cation is the interface of an atomic component, i.e. it is
the access point for invoking the services provided by the
component. In the implementation of Invocation, it has an
execute method:

execute(String MethodName,Vector Paras)

It is used to invoke a given method in an atomic compo-
nent with the parameters. For example, the interface of the
atomic component BankA is illustrated in Fig. 7(b). From
the interface, the user who wants to use the component gets
to know the methods provided by the component, e.g. With-
draw, Deposit and CheckBalance and the corresponding pa-
rameters, and the way to invoke methods is calling the ex-
ecute method as shown on the interface. When the exe-
cute method on the Invocation is invoked, Invocation calls

}
......

return rst=m.invoke(CU, Paras);
Method m=Methods.getName().matches(MethodName);
Object CU=(Object)Class.forName(GetConnectedNames.toString);

public Object execute (String MethodName, Vector Paras){

}
return SubComU;
SubComU.add("BankA");
Vector SubComU=new Vector();
/*Specify the connected Computation Unit Name*/

private Vector GetConnectedNames(){

......

......

(a) Implementation of Invocation

(b) Interface for the Atomic Component BankA

</Component>
</Operation_Specification>

BankA

</MethodList>

<MethodName> Deposit ... </MethodName>
<MethodName> CheckBalance ... </MethodName>

<Component>
<Name> BankA </Name>
<Operation_Specification>
 Object execute (String MethodName, Vector Paras)

 <Method_List>
 <MethodName>Withdraw

<Para>..</Para> <Return>...</Return>
</MethodName>

Inv_BankA

Figure 7. Invocation Implementation and Ex-
ample of an Atomic Component Interface.

the desired method with the parameters in the Computation
Unit as shown in Fig. 7(a).

Atomic components can be composed by design phase
exogenous connectors to composite components. A com-
posite component is also a set of Java compilation units,
which consists of the source code of the constituent com-
ponents and its associated exogenous connectors. The im-
plementation of the exogenous connectors is generic and
therefore is deposited into a repository for reuse. So not
only components, but also connectors can be reused in our
composition approach. When a connector is retrieved from
the repository and has the connecting components speci-
fied in its source code, the connector becomes specific for a
composition. For example in Fig. 8, Sel Comp is a selector
retrieved from the repository and it composes two atomic
components BankA and BankB to construct a composite
component C, so that a user could use the services provided
by BankA and BankB through C. The Invocations are the
interfaces of the atomic components BankA and BankB, so
that we specify their Invocation names in the GetConnect-
edNames() method of the Sel Comp source code (Fig. 8(a)).
The Selector connector has the execute method:

execute(String condition,String MethodName,Vector Paras)

The composite component constructed by Selector is in-
voked through this execute method. Internally the Selector
needs a condition to switch to the correct constituent com-
ponent, and invokes the execute method on the constituent
component interface to accomplish the request as illustrated
in Selector execute method in Fig. 8(a).

The interface of a composite is defined in terms of the
interfaces of the constituents. For example, the interface of
the composite component C (Fig. 8(b)) shows the execute
method and the method list under each condition provided
by BankA and BankB respectively. So the composite com-
ponent C constructed by Sel Comp can be used to work with
both component BankA and BankB depends on the condi-
tion.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

(b) Interface of the Composite Component C

 </Method_List>

 <Method_List>

 <MethodName> CheckBalance ...</MethodName>

 <MethodName> CheckBalance ...</MethodName>

(a) Implementation of Selector

 Object execute(String condition, String MethodName, Vector Paras)

<Component>

<Condition Case="Inv_BankA">

</Condition>
<Condition Case="Inv_BankB">

 <Operation_Specification>

</Condition>

 <Name> Composite Component C </Name>

 </Operation_Specification>
</Component>

 <MethodName> Withdraw ...</MethodName>
 <MethodName> Deposit ...</MethodName>

 </Method_List>

 <Method_List>

 <MethodName> Withdraw ...</MethodName>
 <MethodName> Deposit ...</MethodName>

Inv_BankA

BankA BankB

......

SubComOpt.atElement(i).execute (MethodName, Paras);
/* Switch the condition, if it goes to branch i */

 }

Vector Paras) {
String MethodName,

......

public Object execute (String condition,

}
 return SubComOpt;
SubComOpt.add("Inv_BankB");
SubComOpt.add("Inv_BankA");

 Vector SubComOpt=new Vector();
/*Specify the connected operator names. */
private Vector GetConnectedNames() {
......

C

Sel_Comp

BankA BankB

Inv_BankB

Figure 8. Selector Implementation and Exam-
ple of a Composite Component Interface.

BCC

SubComOpt.atElement(0).execute(MethodNames[0], Paras);
rst = SubComOpt.atElement(0).result;
SubComOpt.atElement(1).execute(MethodNames[1], rst);
rst = SubComOpt.atElement(1).result;
.......

}
.......

public Object execute (String[] MethodNames,Vector Paras) {

SubComOpt.atElement(i).execute(MethodNames[i], rst);

SubComOpt.add("Inv_BankConsortium");

/*Specify the connected operator names. */
 Vector SubComOpt=new Vector();

......

private Vector GetConnectedNames() {

}
 return SubComOpt;

......

SubComOpt.add("Selector_Composite");

C

Sel_Comp

Inv_BC Inv_BankA

BankA

Inv_BankB

BankB

BankConsortium

Pipe_Comp

BankB

Bank_Consort

BankA

Figure 9. Pipe Implementation.

A composite component can be reused to build up a
larger composite. As exemplified in Fig. 9, a compos-
ite component BCC is constructed by the Pipe connector
Pipe Comp that connects an atomic component BankCon-
sortium and the composite component C. When the banking
service on BCC is called, the Pipe connector first invokes
BankConsortium to find out the bank ID according to the
account number, and then passes the bank ID as the condi-
tion and the service request to composite component C. The
connection point for the composite component is the top
level connector, which is Sel Comp for the composite com-
ponent C. The connecting interfaces of the constituents, i.e.
the Inv BC and Sel Comp are specified in the GetConnect-
edNames() method in the Pipe Comp source code(Fig. 9).

The Pipe connector has the execute method:

execute(String[] MethodNames,Vector Paras)

It invokes the constituent components with the given meth-
ods sequentially, and passes the result of the predecessor
to the successor. Internally, it calls the execute method on

each constituent component, gets the results and pipes them
to the next constituent component as shown in Fig. 9.

The execute() method for the Sequencer connector has
the same signature as the execute() method of the Pipe
connector. However, a Sequencer sequentially invokes the
given methods with individual parameters, instead of pip-
ing the predecessor’s result to the successor. The Condition
connector is a special case of Selector. It connects to only
one constituent component. When the input condition is sat-
isfied, the Condition connector will invoke the constituent
with the given method name and parameters.

4. A Case Study - Automatic Train Protection
System

In this section, we use an Automatic Train Protection
(ATP) system to demonstrate the feasibility of our design
phase composition approach. The ATP system is located
onboard of a train to ensure safety. The system consists of
five subsystems: the sensors (SNRS), speedometer (SPDO),
brakes (BRKS), alarm (ALRM) and reset (RSET). The
SNRS contains three sensors and they are attached to the
side of the train and detect information on the track-side sig-
nals. Each sensor generates a signal in the range of DAN-
GER, CAUTION, PROCEED respectively. The majority of
signals from the three sensors is sent to the rest subsystems.
On receiving DANGER, both the alarm and the brakes must
be enabled, as the train must be stopped. CAUTION indi-
cates that the alarm must be enabled and if the train speed is
not decreasing the brakes will be enabled too. PROCEED
allows the train to continue. The fourth signal is UNDE-
FINED which means there is no majority among the signals.
But in order to ensure safety, it is handled as DANGER. A
RESET signal is generated by the ATP system. In receiving
this signal, the whole system is reset, i.e. the train’s brakes
and alarm are disabled.

Originally in the repository, we have atomic components
SNRS, SPDO, RSET, BRKS and ALRM which provide func-
tionalities for each subsystem respectively, and the connec-
tors for reuse. Considering in the ATP system, the alarm
and brakes react to all the signals, we firstly construct a
composite component that consists of ALRM and BRKS.
The interface of the atomic component ALRM is shown in
Fig. 10. The ALRM component has methods: Enable, Dis-
able and IsEnabled, which can be called through the exe-
cute method on the Invocation. To implement the function-
alities of the composite component, we retrieve the com-
ponents ALRM and BRKS as well as the Condition, Se-
quencer and Selector connectors from the repository, and
they are composed hierarchically to the composite compo-
nent ALRM BRKS Control(ABC), as illustrated in Fig. 11.

The interface of the composite component ABC is shown
in Fig. 12. It can be invoked through the execute method on

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

 <MethodName> Enable

 <MethodName> Disable ... </MethodName>
 <MethodName> IsEnabled ... </MethodName>

<Component>

 </MethodName>

</Operation_Specification>

<Name> ALRM </Name>

</Component>

 Object execute (String MethodName, Vector Para)

</Method_List>

<Method_List>

<Operation_Specification>

 <Para>...</Para> <Return>...</Return>

Figure 10. The Interface of the Atomic Com-
ponent ALRM.

ALRM_BRKS_Control

Signal from the Sensor
&&(Vt−V0)

Sel2
Proceed Caution Danger || Undefine Reset

Cond1

Sel1

Cond2 Seq1 Seq2

Inv_ALRM

ALRM

Inv_BRKS

BRKS

Repository

Seq Cond

Sel Pipe

Inv_SNRS

SNRS

Inv_SPDO Inv_RSET

SPDO RSET

Inv_ALRM Inv_BRKS

ALRM BRKS

if(isEnabled())

Disable()

Retrieved Retrieved

Enable()
else

Enable()
Enable() Disable()

Disable()

if(Vt−V0>0)

Enable()

if(!ALRM.
isEnable())

Figure 11. Construction of a Composite Com-
ponent in Design Phase.

<Component>

 <Operation_Specification>
 Object execute (String condition, String MethodName, Vector Paras)

 <If Case="Inv_ALRM.IsEnabled()"> Inv_ALRM.Disable () </If>
</Condition>

 <Condition Case="ALRM.IsEnabled()">
 <If Case="(Vt−V0)>0"> Inv_BRKS.Enable() </If >

 </Condition>

<Condition Case="Proceed">

<Condition Case="Caution">

</Condition>

<Seq> Inv_ALRM.Enable() </Seq>
<Seq> Inv_BRKS.Enable() </Seq>

 <Seq> Inv_ALRM.Disable()</Seq>

</Condition>

<Condition Case="Danger" or "Undefine">

</Condition>
<Condition Case="Reset">

</Operation_Specification>
</Component>

 <Name> Alarm_Brakes_Control </Name>

 <Condition Case="! ALRM.IsEnabled()"> Inv_ALRM.Enable() </Condition>

 <Seq> Inv_BRKS.Disable() </Seq>

Figure 12. The Interface of the Composite
Component Alarm Brakes Control.

the Sel2, which is the top level Selector connector. It re-
ceives signals and the train speed as input. When the signal
is PROCEED, it invokes sub Condition connector Cond1
that checks whether ALRM is enabled. If so it disables the
alarm. When the signal is CAUTION, Sel2 invokes sub Se-
lector Sel1 that checks whether ALRM is enabled or not. If
not it enables the ALRM, otherwise it calls sub Condition
connector Cond2 that checks whether the train speed is de-
creasing or not. If not it enables brakes. When the signal is
DANGER or UNDEFINED, Sel2 calls sub Sequencer con-
nector Seq1, which enables the ALRM and BRKS sequen-
tially. When the signal is RESET, Seq2 is chosen by Sel2
and it disables both the ALRM andBRKS.

As the outcome of the design phase composition, the
composite component ABC can be deposited back into the
repository to facilitate component reuse. As shown in
Fig. 13, we retrieve the composite component ABC and

Seq3

Sel2

Sel1

Cond1

Sel4

Seq1 Seq2

Inv_RSET

RSET

Cond2

ALRM

Inv_BRKS

BRKS

input signal and speed

Inv_ALRM

if(reset system) if(!reset system)

Enable()

ALRM_BRKS_Controller

RSET_ALRM_BRKS_Controller

pass reset signal pass signal and speed

Figure 13. Reuse the Composite Component
in Design Phase Composition.

compose it with the atomic component RSET to construct a
larger composite component, which includes a reset mech-
anism. A Sequencer connector Seq3 composes RSET and
ABC by connecting their interfaces, i.e. their top level con-
nectors, which are Inv RSET and the Sel2 respectively. Then
a Selector connector Sel4 connects Seq3 and Sel2 and it
becomes the top level connector of the composite compo-
nent RSET ALRM BRKS Control(RABC). RABC takes all
signals and the train speed as input through the interface
Sel4. When the signal is RESET, Sel4 calls Seq3, which
first enables the component RSET and then passes RESET
signal to component ABC. When the input signal is not RE-
SET, Sel4 passes the signal and train speed to component
ABC and the alarm and brakes within composite component
ABC will respond accordingly.

SNRS RSET ALRM BRKS

Inv_BRKSInv_ALRMInv_RSETInv_SPDOInv_SNRS

Seq2Seq1Cond2Cond1

Sel1

Sel2

Seq3

SPDO

Seq4

Sel4if(!reset system) if(reset system)

readSensors() readSpeed() pass signal and speed pass reset signal

ALRM_BRKS_Controller

RSET_ALRM_BRKS_Controller Sel3

Figure 14. ATP System assembled in Deploy-
ment Phase.

The composite component RABC can also be deposited
back in the repository and be reused for further the design
phase and deployment phase composition. In the deploy-
ment phase, the whole ATP system is assembled as shown
in Fig. 14. Components RABC, SNRS, SPDO are com-
piled into binaries and composed by a deployment phase
Sequencer connector Seq4. The connection points for the

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

atomic components are the Invocations and the one for the
composite component is the top level connector, which in
RABC is the Sel3. Further we have another deployment
phase Selector connector Sel4 which connects Seq4 and
the composite component RABC. The system is executed
through the top level connector Sel4. If signal from the
system is RESET, Sel4 will pass forward the signal to the
composite component RABC to respond. Otherwise Sel4
invokes the execute method in Seq4. Seq4 invokes the read-
Sensors() method in SNRS and readSpeed() in SPDO, then
passes the signal and speed to the composite component
RABC.

5. Evaluation and Discussion

The ATP example we presented in the previous section
illustrates how exogenous connectors are used to construct
composite components in the design phase, which can be
reused in further compositions in both design and deploy-
ment phases, i.e. composite components can then be com-
posed into larger composite components in design phase
or can be composed into executable system in deployment
phase. It shows that composite components built in design
phase are reusable in further compositions, thus our com-
position approach maximise design flexibility. In this sec-
tion we evaluate our composition approach and discuss its
advantages and potential drawbacks with respect to closely-
related composition approaches.

The distinguishing characteristic of our composition ap-
proach is on the exogenous connectors that provide us
a structured way to systematically compose components
in design phase. The implementation of our connectors
is generic and we have demonstrated its use in construc-
tion of some other applications such as a banking sys-
tem. In the current implementation, we implemented ex-
ogenous connectors in Java, however, they could be im-
plemented in other programming languages such as C# in
.NET. The exogenous connectors that we have implemented
are deposited into a repository, and they can be retrieved to
compose components into composite components in design
phase . Composite components built in the design phase
can also be composed to larger composite components, and
compiled into binaries that can then be composed to exe-
cutable systems in deployment phase.

As we have already analysed in section 2.1, existing de-
sign phase composition approaches mainly fall into two cat-
egories: (i) direct message passing; (ii) indirect message
passing. In the following we will compare our composition
approach with both of them.

In direct message passing scheme, components are hard-
wired together by direct method calls. For a component to
communicate with another component, the methods of the
callee component have to be specified in the source code

of the caller component. For example in EJB, as depicted
in Fig. 15, for an enterprise bean to communicate with an-
other enterprise bean, it needs to look up the target bean’s
home object via JNDI, then calls the create() method on the
home object to create an instance of the target bean and call
the methods on this instance. The connections are speci-
fied in the source code of the caller enterprise bean. As

JNDI

Call the Method

Caller

M1()

Callee

M2()

Look up

Home Interface

Remote Interface

Home Interface

Remote Interface

Figure 15. Direct message passing example -
EJB.

demonstrated by the EJB example, in direct message pass-
ing scheme, there is no explicit code of connector. Thus
connectors are not reusable. The caller components are
tightly coupled with the callee components. The result of
design phase composition in direct message passing scheme
is simply not reusable. There is even no such thing as a com-
posite, since components are hard-wired by direct method
calls, which can not result in a separate entity that could be
reused. Thus neither components nor connectors could be
reused independently in direct message passing.

In indirect message passing scheme, components are
composed by connectors that are separate entities and com-
posite components can be created in the design phase. How-
ever, they are still difficult to be reused, because those con-
nectors just pass control from one component to the others.
They are strongly coupled with those components that they
connect with. We take Koala as an example of indirect mes-

 contains component A a;

 requires I r;

 b.r = r ;

 component B b;

 connects a.r = b.p ;

component ABC {

connects ab.r = c.p ;
}

 component C c;
 contains component AB ab;

(a) Component Composition in Koala

component AB {

}

ABC

A C
AB

B

(b) CDL file for compound component AB (c) CDL file for configuration ABC

tm n

Figure 16. Indirect message passing example
- Koala.

sage passing. Components are composed by connectors that
bind up their ports and method calls are routed from one
port to the other. For example in Fig. 16(a), the out-port
of component A is bound to the in-port of component B and
the out-port of B is connected to the out-port of the compos-
ite component AB. Note that all components including the
composites are specified in Component Description Lan-
guage (CDL) [15] (Fig. 16(b) and (c)). The specification
of the composite component AB is stored in a file system

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

that serves as a repository. Later the composite component
AB is retrieved from the repository and composed with the
component C by connecting its out-port to C’s in-port to a
larger composite component ABC. In the deployment phase,
there is no new composition and all Koala components are
compiled into a programming language, e.g. C.

As demonstrated by the Koala example, in indirect mes-
sage passing scheme, components are difficult to be reused,
because they are tightly coupled by connectors. In partic-
ular, Koala only reuses components in their specifications
rather than their implementations, so no components are
reused in the deployment phase. Consequently, the result
of design phase composition in indirect message passing
scheme are difficult to be reused in general.

In contrast to the existing composition approaches, we
adopt exogenous connectors in our design phase compo-
sition. Components are composed in the design phase to
form composite components, which in turn can be com-
posed again in both design and deployment phases. Hence
the reusability of components is maximised. We reuse not
only the specifications of components but also their im-
plementations, i.e. components do not need to be imple-
mented from scratch in the deployment phase. Also our ap-
proach makes system design more flexible, because devel-
opers could make choices on if components are composed
in design phase or deployment phase, because they could be
reused in both phases.

Our composition approach may have some potential
drawbacks. One is that once constructed, the composite
component is not flexible to changes, e.g. it is difficult to re-
place the constituents or extend the composite component.
When making some updates or changes, we have to rebuild
a new composite component.

Our work is only at the preliminary stage and so far we
have not considered the issues of data. Currently, data is
kept in the individual constituent components. In some
cases, within a composite component, data needs to be
shared between the constituents. So data flow is another im-
portant issue in design phase composition that we are tack-
ling. We are also in the process of investigating solutions
for updating and substitution of composite components. For
large-scale software development, this may require much
concern when it comes to system maintenance. Thus we
need to test our theory on larger examples in future work.

6. Conclusion

In this paper, we present a novel approach for composing
components in design phase using exogenous connectors.
The ATP example is used to demonstrate the feasibility of
our approach. The main contribution of this approach is that
composite components built in design phase can be stored
in a repository and retrieved for further composition in this
phase, and also the binaries of the composite components

are further composable in deployment phase. As a conse-
quence, both the reusability of components and the design
flexibility are maximised.

References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Lait-
enberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-based product line engineering with
UML. Addison-Wesley, 2002.

[2] D. Box. Essential COM. Addison-Wesley, 1998.
[3] E. Bruneton, T. Coupaye, and M. Leclercq. An Open Com-

ponent Model and Its Support in Java. In Proceedings
of 7th International Symposium on Component-Based Soft-
ware Engineering, pages 7–22. Springer -Verlag, 2004.

[4] B. Christiansson, L. Jakobsson, and I. Crnkovic. CBD pro-
cess. In I. Crnkovic and M. Larsson, editors, Building Re-
liable Component-Based Software Systems, pages 89–113.
Artech House, 2002.

[5] L. DeMichiel, L. Yalçinalp, and S. Krishnan. Enterprise
JavaBeans Specification Version 2.0. Sun Microsystems,
2001.

[6] J. Ivers, N. Sinha, and K. Wallnau. A Basis for Composition
Language CL. Technical Report CMU/SEI-2002-TN-026,
CMU SEI, 2002.

[7] K.-K. Lau, P. V. Elizondo, and Z. Wang. Exogenous con-
nectors for software components. In Proceedings of 8th In-
ternation Symposium on Component Based Software Engi-
neering, pages 90–106. Springer-Verlag, 2005.

[8] K.-K. Lau and Z. Wang. A taxonomy of software component
models. In I. Crnkovic and M. Larsson, editors, Proceedings
of Component-Based Software Engineering Track on 31st
Euromicro Conference, pages 88–95, 2005.

[9] N. Medvidovic and R. Taylor. A classification and com-
parison framework for software architecture description
languages. IEEE transactions On Software Engineering,
26(1):70–93, 2000.

[10] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. P.
Black, P. O. Müller, C. Zeidler, T. Genssler, and R. van den
Born. A component model for field devices. In Component
Deployment, pages 200–209. ACM, 2002.

[11] OMG, http://www.omg.org/cgi-bin/doc?ptc/
2003-08-02. UML 2.0 Superstructure Specification.

[12] OMG, http://www.omg.org/technology/
documents/formal/components.htm. CORBA
Component Model, V3.0, 2002.

[13] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Archi-
tecture for Component Trading and Dynamic Updating. In
Proceedings of ICCDS98. IEEE CS Press, 1998.

[14] C. Szyperski, D. Gruntz, and S. Murer. Component Soft-
ware: Beyond Object-Oriented Programming. Addison-
Wesley, second edition, 2002.

[15] R. van Ommering. The Koala Component Model. In
I. Crnkovic and M. Larsson, editors, Building Reli-
able Component-Based Software Systems, pages 223–236.
Artech House, July 2002.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: The University of Manchester. Downloaded on October 31, 2008 at 07:21 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

