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Abstract

A component-based system consists of components linked by connectors. Data can reside in
components and/or in external data stores. Operations on data, such as access, update and transfer
are carried out during computations performed by components. Typically, in current component
models, control, computation and data are mixed up in the components, while control and data
are both communicated by the connectors. As a result, such systems are tightly coupled, making
reasoning difficult. In this report we demonstrate an approach for encapsulating data.
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1 Introduction

A software system consists of three elements: control, computation, and data. The system’s behaviour is
the result of the interaction between these elements. Therefore, the latter determines whether the system
has desirable properties such as loose coupling and ease of analysis and reasoning. It is reasonable
to expect that it is advantageous to encapsulate these elements, and separate them from one another,
since this should make reasoning more tractable. For example, some recent research in stimulus reactive
systems has focused on separating control flow from data flow [16, 11]. There is even a component
model for software agents that separates dataflow and control flow; and encapsulates control [22].

Paradoxically perhaps, for component-based software systems, it is not any easier to achieve such
separation of concerns. A component-based system consists of components linked by connectors, as
exemplified by software architectures [27]. In such a system, data can reside either in components
or in external databases (which are often also regarded as components). Operations on data, such as
access, update and transfer are carried out during computations performed by components. Typically,
in current component models, control, computation and data are mixed up in the components, while
control and data are both communicated by the connectors. As a result, such systems are tightly coupled,
making reasoning difficult. More seriously, this impedes component reuse, which is a key objective for
component-based development.

In this report, we present an approach for encapsulating data in components for a component model
we are developing. Currently, our component model is based on encapsulating control and computation
[19]. We therefore introduce into our component model the notion of data encapsulation. We explain
the underlying principles and demonstrate the feasibility of this development.

In the sequel, we outline the component model in Section 2 . Then, in Section 3, data encapsulation
is introduced. In Section 4, we apply our approach to a bank system. In Section 5, we evaluate our data
encapsulation approach and conclude by Section 6.

2 Encapsulation in our Component Model

The notion of encapsulation is an essential concept to our component model. Components encapsulate
computation and data, the latter being the focus of this report. Composition operators, realised as con-
nectors, encapsulate control. In our model, components are constructed from computational units and
connectors. A computational unit can be a class, module, Oracle package, etc. constrained to perform
computations within its boundaries. It should not invoke other units’ methods or access data external
to its boundaries. Connectors are used to construct atomic components from computational units, and
compose them to form composite components. As compositional operators, connectors operate on two
or more components whether atomic, composite or a mix of both kinds.

2.1 Encapsulating Control in Connectors

Connectors in our component model are exogenous [19]. Their distinctive feature is that they encap-
sulate control. In current component models, connection schemes use message passing, and fall into
two main categories:® (i) connection by direct message passing; and (ii) connection by indirect message
passing. Direct message passing corresponds to direct method calls, as exemplified by objects calling
methods in other objects (Fig. 1 (a)), using method or event delegation, or remote procedure call (RPC).

For asurvey, see[20].



Component models that adopt direct message passing schemes as composition operators are EJB, CCM,
COM [4] etc.
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(a) Direct message passing (b) Indirect message passing

Figure 1: Connection by message passing.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors, as exemplified by
ADLs. Here, connectors are typically glue code or scripts that pass messages between components indi-
rectly. A connector, when notified by a component invokes a method in another component (Fig. 1 (b)).
Besides ADLs, other component models that adopt indirect message passing schemes are JavaBeans
[14], Koala [28], SOFA [3] etc.

In connection schemes by message passing, direct or indirect, control originates in and flows from
components (Fig. 2(b)). This s clearly the case in both Fig. 1(a) and (b). Furthermore, computation, con-
trol and data are intermixed (Fig. 2). Components initiate control and perform computation (Fig. 2(b)).
Connectors provide communication between components for both control and data where both flow in
tandem between components (Fig. 2(c)). Clearly in current component models, neither control nor data
is encapsulated.
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(a) Components and connectors (b) Control flow (c) Data flow

Figure 2: Current component models.

In our model, components do not call methods in other components, and control originates in and
flows from exogenous connectors, leaving components to encapsulate computation and data. This is
illustrated by Fig. 3. Fig. 3(a) shows an example of exogenous connection. Here components do not
call methods in other components. Instead, all method calls are initiated and coordinated by exogenous
connectors. The latter thus encapsulates control, as is clearly illustrated by Fig. 3(b), in contrast to
Fig. 2(b). Exogenous connectors thus truly encapsulate control, i.e. they initiate and coordinate control.

2.2 Encapsulating Computation in Components

As is clearly evident from the previous section, components are not artifacts of a programming language,
such as classes, modules, packages, etc., nor are they simply parts of a whole. In our model, a component
is a new concept. It is a software unit intrinsic to which are the encapsulation and compositionality
properties [17].
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Figure 3: Connection by exogenous connectors.

A component encapsulates both computation and data. Data encapsulation is equivalent to making
the component’s data private. Encapsulating computation is restricting all computational tasks per-
formed by the component not to cross its boundaries.

The notion of encapsulation in computing is not new. It has acquired different meanings depending
on the paradigm or discipline. In the object-oriented paradigm, encapsulation is localising data together
with the methods (computation) that operate on this data, in objects, and restricting access to data exclu-
sively to these methods. While data is encapsulated, computation is not. Objects (instances of classes)
perform method call on other objects (4(a)).

Operations Operations
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Data [ 1]
Data
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Figure 4: Objects and architectural units.

Component models supporting data components such as EJB [10], CCM [25] and .NET [21] can en-
capsulate data, but not computation. The same applies to port-connector type components in ADLs [27],
UML2.0 [9, 24] and Koala [1]. Components in the above models can call methods in other components
directly or via remote procedure calls (RPC) over connectors (and ports) (Fig. 4(b)).

The other property of a component, compositionality, represents the ability to construct new compo-
nents from existing ones. The composition of two components A and B must lead to a new component
C defining the same characteristics of A or B, i. e., encapsulation and compositionality.

In contrast to our components, objects and classes are not compositional. Method calls are the
only means used for objects and classes. However, as these objects and classes are ‘composed’, the
result is not a new class or object nor does this composition preserve computation. Port-connector type
components can compose but because they do not encapsulate computation, they also not compositional.

Alone, encapsulation is not beneficial. To utilise this concept, a means for accessing hidden com-
putation, control and data must be made available: It is the interface. Objects and classes provide
no real interfaces. While they have ‘interfaces’, these are no more than advertising rather than access
to encapsulated properties. Methods of objects and classes are directly accessible, not via interfaces.
Port-connector components use their ports as their interfaces.

In our component model, components are built from computational units and exogenous connec-



tors. As stated previously, a computational unit only performs computational task that do not cross its
boundaries. That is, method calls by one computational unit against others is not permitted. It also has
no direct access to external data. Consequently, computational units encapsulate computation and data.

Exogenous connectors encapsulate control (Section 2.1). They are hierarchical in nature, with a type
hierarchy [19]. At the bottom of the hierarchy, and because components are not allowed to call methods
in other components, we have an exogenous method invocation connector. This is a unary operator that
takes a component, invokes one of its methods, and receives the result of the invocation. To structure
the control flow in a set of components or a system, at the next level of the type hierarchy, we have
other connectors for sequencing exogenous method calls to different components. So we have n-ary
connectors for connecting invocation connectors, and n-ary connectors for connecting these connectors,
and so on. As well as invocation connectors, we have defined and implemented pipe connectors, for
sequencing, and selector connectors, for branching.

There are two different kinds of components: atomic components and composite components. An
atomic component is constructed from a computational unit satisfying our requirements above and an
invocation connector (invoker for short). The invoker exposes an interface for the atomic component. A
composite component on the other hand is one or more components composed together by a connector
of arity equal to the number of components where the connector exists at level > 2. The connector is
called the composition connector and exposes the composite interface interface.

Diagrammatically, a computational unit U connected to an invoker I forms an atomic component
(Fig. 5). The component encapsulates computation, since the computational unit does so, and the in-
voker invokes methods provided by the computational unit (Fig. 6(a)). Clearly, a composite component
encapsulates computation as depicted in Figure 6(b).

Composition
connector
Invoker E— ?
Computational — A B C
unit
(a) An atomic component (b) A composite component

Figure 5: Atomic and composite components.
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(a) An atomic component (b) A composite component

Figure 6: Encapsulation and compositionality.



2.3 Composition that Preserves Encapsulation

To construct composite components (and systems in some cases), we need composition operators that
preserve encapsulation and compositionality. These operators must work on components’ interfaces,
which is a requirement imposed by encapsulation. The operators can not be glue code. Methods calls
of objects and ADL connectors, used in current component models, are too not suitable. Component
models lack proper compositional operators, in our view, because of the absence of encapsulation and
compositionality.

Accordingly, we use exogenous connectors at levels > 2 as compositional operators. These opera-
tors are compositional and therefore preserve and propagate encapsulation. Figure 7(a) shows a system
which is a composite components. It has a top-level connector that exposes its interface. The system
(composite component) is composed from other components, each of which has a top-level connector
too. These components, whether atomic or composite, are all compositional. They encapsulate control
and computation.

Figure 7(a) illustrate an important property, viz. self-similarity. Each dotted box indicates a com-
posite component. Starting from atomic components, dotted boxes encapsulates one another until the
outer most box is achieved which is in fact our system. It is clear from the diagram that the structure of
every composite component is similar to that of each of its subcomponents.

(a) Exogenous connection (b) Acme

Figure 7: Self-similarity of a composite component.

The significance of self-similarity is that it provides the basis for a compositional way to construct-
ing systems from components. Component models do not provide such a basis. For example, Figure
7(b) represents an Acme architecture of the system depicted in Figure 7(a). While (E,D) is a compos-
ite component (7(a)), it is not in Figure 7(b). In Figure 7(b), (B,D,E) is not similar to the top-level
component, since the later has no interface.

24 A Temperature Controller example

Let’s build a simple component-based system for a temperature controller using three computational
units: (i) Control Panel that has two buttons to increment and decrement temperature one unit at a time;
(if) T+ that processes requests for incrementing temperature; and (iii) 7'— that decrements temperature.
The computational units are not components yet. 7'+ and 7'— are designed with high reusability in
mind. It is possible to use them with other hardware that increases or decreases one step at a time, say,
ventilation levels, or any other similar task.

In the system requirements, it is stated that temperature must be controlled within the range [17, 27]
via a panel that has two buttons: one to increment and the other to decrement temperature, one unit at
a time. Therefore, we construct the atomic components T"_U P from T+, T_DOW N from T— and
Panel from Control Panel. As functionality of each of these atomic components is well understood,



the next step is to compose 7"_U P and T_DOW N using a selector. The new composite UP_DOW N
is composed with Panel using a pipe connector. The resulting composite is in fact the required temper-
ature controller.

Control
Panel

Figure 8: Temperature controller system.

All components in Figure 8 are well encapsulated. Each atomic components is composed from an
invoker and a computational unit. The later implements provided services such as increase, decrease,
etc; and invokers expose the functionality necessary to invoke these methods. That is, invokers provide
interfaces for the respective atomic components. For example, 7' U P encapsulates computation that
implements the increase method (as well as encapsulating data) in such a way that processing a request
is completely performed within itself.

With regard to compositionality, all components above are compositional. The temperature con-
troller itself is a component with a pipe composition connector as its interface. The composite (system)
encapsulates computations, control and data in its subcomponents, T U P and T_DOW N.

In this simple example, we have demonstrated encapsulation and compositionality with regard to
computation and control. However, data related issues have been ignored in this example, though men-
tioned in the specifications. For example, data input/output as well as how the temperature range is
enforced are not clear. We direct our attention to data in the next section.

3 Encapsulating Data

We have presented, in Section 2, our component model and its underlying concepts of encapsulation and
compositionality. In that context, only two elements of software systems have been addressed: compu-
tation and control. The third element however, data, is yet to be addressed. In our model, connectors
encapsulate control and atomic components encapsulate computation. Since composite components are
constructed from composition operators and components, they must encapsulate control and compu-
tation. The model is unique in its approach of encapsulation and compositionality. We believe that
extending these concepts to encompass data in a way that preserves self-similarity will maximise the
benefits of encapsulation and compositionality. More importantly, it will allow for constructing efficient
systems with regard to performance and space. Therefore, the question we want to address in this report
is how we can encapsulate data in our component model.

Initially, computation and data are introduced into our components by computational units. Con-
structing an atomic component from a computational unit and an invoker definitely results in encapsu-
lating computation. We also assume that the construction process introduces data into the component
which is also encapsulated. In this case, the data originates from the computational unit, since the
invoker functionality is only to invoke methods implemented by the computational unit. In Figure 9
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Figure 9: Encapsulation of computation, control and data.

(a), encapsulated data indicates that local data of the computational unit has become the component’s
encapsulated data.

Data encapsulation must have the same meaning for composite and atomic components. To illus-
trate, and without loss of generality, we compose two atomic components. Each atomic component
has its own encapsulated data as in Figure 9 (a). The resulting composite component can also have its
own encapsulated data. Looking at it from a design point of view, the composite is always the result
of a design decision that usually involves data [13, 2]. The data, rooted in the system requirement, is
encapsulated as data of the composite (Fig. 9(b)).

It is important here to point out that other encapsulated data also exists in a component as a result
of the component construction. But this data is constant and only accessible by the top-level connector
of the component. Thus, we are not considering it in our treatment because it is not influential and it is
therefore ignored.

Example 3.1 : In this example we focus on data aspects of the temperature controller system presented
in Section 2.4. In particular, we trace the origin of each component’s data and address data input and
output.

From a reuse point of view, T+ and T'— are actually generic software modules which provides
incrementing and decrementing functionality, one unit at a time. These units can be used to control any
hardware whose behaviour changes by increasing or decreasing a property one step at a time. In addition
to temperature, the units can be used, for example, to change ventilation levels of a climate control
system. The difference between these units is in the data used to set their operating minima or maxima.
Therefore, creating atomic components from them results in creating data local to each component.
T _U P constructed from 7T+ and T_DOW N constructed from 7'— create data that sets their maximum
(M az_T) and minimum (Min_T) values respectively. We observe that each data requirement originally
local to 7'+ or T'— has become encapsulated data for each atomic component.

Composing T _UP and T_DOW N to construct UP_DOW N also creates additional data local to
UP_DOW N. This data is not necessarily related to data local of 77_UP and T_DOW N. To illus-
trate this aspect, we state more requirements of the temperature controller. In particular, the system
must remember two temperature settings, a factory and a user temperature settings. The UP _DOW N
component must encapsulate data introduced by the new requirements, namely User T and Factory T
(Fig. 10). In this case, data encapsulated by U P_DOW N does not originate from its sub-components.
O

To access encapsulated data in components, we need to decide on whether data is accessed from
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Figure 10: Data encapsulation in the temperature controller system.

control, computation or both. The later option is immediately excluded because a computational unit
is required to have no access to other computation and data external to its boundaries. Thus, control,
the only other part of any system, must allow for data access operations. The new requirements entails
semantical changes to the existing component model. In particular, since the control part of any system
is specified using connectors where the top-level connector of a component might arbitrarily be of any
type, each connector must be capable of data input and output.

Related to I/O operations are data initialisation and finalisation. When a component is created, it
often needs to initialise data. Similarly, the same component may also need to finalise (persist, garbage-
collect, etc.) part (or all) of its data before its destruction. Lacking the capability for data access by the
encapsulated computation, entails more modifications to the semantics of control connectors. Therefore,
we equip every connector with a data initialisation and finalisation sections. These sections contain data
access operations necessary for the component to perform upon its construction and destruction. Each
section is executed once throughout the lifetime of a component. We use an up-ward triangle atop the
connector to indicate a non-empty initialisation section and a down-ward triangle situated at the bottom
of the connector to to indicate a finalisation section.

Both modifications introduced into the semantics of control connectors preserve data encapsula-
tion. A connector is now responsible for data 1/0 access operations. Direct access to encapsulated
data is forbidden and can only be achieved indirectly via the component’s interface. Similarly, the ini-
tialisation/finalisation roles of a connector screen this data from external access. Furthermore, since
each top-level connector of a component specifies data 1/0O, initialisation and finalisation data access
operations, the component is actually encapsulating the required and provided data. We illustrate these
modifications by elaborating on Example 3.1.

Example3.2 In Figure 10, Min_T is data encapsulated by T DOW N; Max T is encapsulated by
T UP; and User T & Factory_ T are encapsulated by UP_DOW N. The forth component, Panel,
encapsulates no data. It is just a dummy input terminal of the temperature controller system. Values
T input via Panel are either +1 or —1 indicating requests for incrementing or decrementing tempera-
ture. No variable holding T data is shown in Figure 10 because 7' is just a parameter of increase and
decrease methods provided by the U P_DOW N component.

When the system is started, all data above must be initialised. Min T and Max T are set to
17C° and 27C° respectively. Factory_ T and User_T are set to 19C° and the previous user setting
respectively. The system is always initialised to operate at User T. A new temperature controller
system has Factory T and User_T set to 19C°. At shutdown, the system writes User T value to a
persistent data store so that it is remembered the next the system is started.



Data Component Initialisation Finalisation Value

Min T T _DOWN Vv 17C°
Magz T T_UP v 2700
Factory T UP_DOWN Vv 19C°
User T UP_DOWN Vv Vv 19C° | ¢

Table 1: Encapsulated data in the temperature controller and data access operations.

The above operations are specified in initialisation and finalisation sections of the relevant control
connectors. Table 1 shows encapsulated data, initialisation and finalisation.

= Encapsulated data == Connectors
>— Read - Read-write

Figure 11: Data encapsulation in the temperature controller system.

Finally, we specify data 1/O of the system. Based on Table 1, the Panel component represents a
data input operation and it encapsulates no computation. Therefore, and according to our new seman-
tics, it can be replaced by a read data access operation that inputs T value. As a result, the top-level
connector, which is a pipe, is no longer needed. Data access operations of Factory T and User T
are read and read — write operations respectively, provided by the selector connector. Min T and
Mazx_T are read operations performed by invokers of 7_DOW N and T'_U P respectively. Figure 11
presents the new architecture of the temperature control system. It is clear from the figure that each
component encapsulates its data. Furthermore, as each connector specifies its provided and required
data, components additionally encapsulates these data access operations. So, each level in the control
hierarchy encapsulates data and access operations upon the next higher level. Moreover, the new data
semantics of connectors introduce a significant simplification to the system architecture (Fig. 11) when
compared to the previous architecture in Figure 10. O

Compositionality has not be affected by upgrading the semantics of the composition connectors.
Components are still compositional in just the same way as before. In fact, the new semantics has en-
forced compositionality because (i) data encapsulation in components results from composition and (ii)
some connectors such as pipes establish data relationships among sub-components. Furthermore, the
encapsulation of data together with a component’s required and provided data requirements does not
impede compositionality. However, the new semantics imposes an additional requirement on composi-
tion: persistent data requirement of a sub-component in a composite must be propagated to the top-level
interface of the composite, where it is explicitly expressed. Otherwise, it will not be possible to correctly
deploy the component. For example, in Figure 11, all encapsulated data (except for T') in the system is
persistent. Accordingly, each component interface must explicitly express its data persistence require-



ments: (i) T_UP requires Max T, (ii) T_DOW N requires Min T and (iii) UP_DOW N requires
Factory T and User_T. At design time, (i) and (ii) are propagated to the interface of UP_DOW N.
The three requirements may show up as separate entries in the UP_DOW N or merged in one entry.
The later represents a requirement for one persistent data store.

Finally, despite the modifications introduced into the semantics of composition connectors, self-
similarity is still preserved. Every component encapsulates data together with its 1/0O data requirements.
Persistent data (provided or required) for a composite is propagated to the top-level connector of a
composite (or a system). The new semantics do not break self similarity with regard to encapsulating
computation nor does it impede compositionality.

4 Example The Bank System

Using a simple application, we now demonstrate encapsulation of data, control and computation as well
as compositionality and self-similarity. The example we have chosen is a bank consortium system,
whose architecture was described in terms of our component model without data encapsulation in [19].
The system has just one AT M that serves two bank consortia (BC'1 and BC?2), each with two bank

=

%) Y%e

BC2

Figure 12: Architecture of the bank consortium application (no data encapsulation).

branches (F and D, F and G respectively). The AT M passes customer requests together with customer
details to the customers bank consortium, which in turn passes them on to the customers bank branch.
The bank branches provide the usual services of withdrawal, deposit, balance check, etc. (Fig. 12).

We have re-designed the system making use of data encapsulation introduced into the semantics
of our component model. Atomic components are constructed from bank branches’ systems. Each
atomic component encapsulates the branch’s data and computation. Having atomic components created,
a number of composition operations are performed, using composition connectors, to yield the bank
system. With each operation performed, data and control is encapsulated at another level in a new
composite component. Composition is a bottom-up design process which is performed in piece-wise
manner.

At level one, an invocation connector is connected to every computational unit (branch system). This
enables all the services of a component to be invoked. Data pertinent to that specific bank branch is also
encapsulated in the component. Usually, this data is comprised from persistent data in many forms: files,
databases, etc. Invocation connectors that are used to create an atomic components, must furnish data 1/0
operations required by the component’s provided services (parameters and return values). For example,
the withdraw method requires two input parameters: account number and amount. It also outputs a
report. The Invoker of each bank branch must provide all these 1/0 operations for the withdrawal method

10



to run correctly. Composition starts at level two where atomic components are connected by level-two
connectors of type selector to effect appropriate behaviour among these components. Two components
representing bank consortia result from the later composition: BC'1 and BC2. Each bank consortium
must encapsulate data on on its branches and PIN's that belongs to each one of them. BC's’ selector
provide two /O operations: the first to read the PIN and the second to read BCode based on the input
PIN. At level three, a selector is used to compose BC'1 and BC2 to form the bank consortium system
BS. The selector provide one 1/0 operation to read the bank consortium code (CCode). It is interesting
to notice that, in the same way a bank branch encapsulates its data, each bank consortia encapsulates
its data, too. The later is persistent data on bank branches and PIN codes that belongs to each one of
them.

Figure 13: Architecture of the bank consortium application with data data encapsulation.

Execution of the system starts at the top-level connector of BC'; this connector is the one to initiate
control flow. In the previous implementation [19], the bank example was implemented using Java ob-
jects (connectors and computational units are classes) (Fig. 12). There, only control and computation
were encapsulated. Data was left to follow control starting from the A7'M component to bank branch
for processing and results (statement, say) flow back to the AT M. In this simple example, data size and
its route length may not be significant. In general, these two issue raise performance and space consid-
erations. Data encapsulation provide an efficient solution the problem. In our design (13), data required
by a components is encapsulated in the component itself. For example, the BC' component encapsulates
the data relating bank branches and PIN numbers; and each branch encapsulates its own data on its
customers’ accounts. For each component, be it a branch or the bank consortium, the top-level connector
is responsible for data I/O operations.

Consequently, data encapsulation serves not only the reduction of problems related to performance
and space, but also encapsulates data where it is needed. Furthermore, self-similarity is preserved. BS'is
similar to any of its sub-components BC'1 and BC2 as well as to bank branches F, D, G and F'. Every
component encapsulates data and computation, and all composites additionally encapsulate control.

5 Reated Work and Evaluation

In our component model, data is introduced into components when they are first constructed from com-
putational units and invocation connectors. At this level, data is only accessible via invocation connec-
tors; i.e., it is encapsulated in each atomic component. When atomic components are composed to build
new composite components, the composition operation introduces additional data. The resulting data
is also encapsulated since it is only accessible by the top-level connector of the component. It is clear

11



that, in both cases, the introduction of encapsulated data into components is a direct consequence of the
composition operation performed using composition connectors that specify data semantics. Composi-
tion connectors defines semantics for data 1/0 as well as for data initialisation and finalisation. With our
scheme of composition, data encapsulation has become systematic and at the same time a direct product
of composition. In this sense, we argue that our approach to data encapsulation is more comprehen-
sive. In fact, the term data encapsulation designates a new notion that current component models do not
address, though encapsulation is a major objective of the component-based approach.

In the sequel of this section, we justify our claim based on a survey on data approaches in current
component models [18]. The survey included JavaBeans [14], Enterprise JavaBeans (EJB) [10], Compo-
nent Object Model (COM) [4], .NET [21], CORBA Component Model (CCM) [25], Koala [28], SOFA
[26, 8], KobrA [1], Architectural Definition Languages (ADLs) [27], UML 2.0 [9, 24], PECOS [12], Pin
[15, 29], Fractal [7] and MALEVA [5]. Our approach is to investigate whether composition schemes in
current component models involve data semantics and assess these semantics with respect to our notion
of data encapsulation. Some component models distinguish elementary from composite components,
while others do not recognise the notion of a composite. Therefore, we treat each case independently
before addressing data in the model as a whole. However, we start by outlining explicit approaches to
data in current component models. Component models address data explicitly using three main abstrac-
tions: (i) properties or attributes that are mainly used, but not limited to, component configuration; (ii)
data components for modelling data sources particularity persistent data; and (iii) data ports as a means
for data 1/0.

Attributes are local variables used to store data in components. The data can be of any type sup-
ported by the specification environment. Furthermore, these attributes can be single-valued or collection
variables. Access to an attribute value is restricted via setter and getter methods, called data accessor
methods: a setter method sets the value of an attribute and a getter method returns its value. These
methods are means for specifying accessibility of attributes: an attribute with both methods specified is
a read-write attribute, while an attribute with one method indicates a read or write access depending on
which accessor method is used. Depending on the component model, accessor methods can be provided
services (part of the provides interface) or required services (part of the requires interface). Compo-
nents supporting attributes might establish relationships based on the values the attributes can have. A
component may place a constraint on the value of an attribute of another component. The attributes are
called constrained attributes. Also, an attribute of one component may trigger a behaviour in another
component. These attributes are called bound attributes.

Few component models provide data components as a vehicle for modelling various differing sources
of data such as relational databases, XML files and even data local to applications. These models are:
EJB, CCM, .NET, UML 2.0 and KobrA. However, the way data components are defined vary from one
component model to the other. Variations include the services they provide, the way they model data
sources and their scope of applicability. Basically speaking, a data component specifies and uniquely
identifies a persistent state together with possibly a behaviour (transaction). Data components are man-
aged by their implementation or by the component model infrastructure (container). A data component
must be bridged to the data store it models via a data connector (except for UML 2.0 and KobrA whose
components are modular units of a system). These connectors are either provided as part of the infras-
tructure implementation or provided in the model semantics.

Ports are points of interaction among entities. The interaction can be a method invocation that
triggers an internal behaviour of the entity owning the port, or a pure data access operation. The later
may also incur behaviour. We distinguish these ports by calling them data ports. Data access imposes
many characteristics such as direction of data flow, type information and constraints. For data ports, the
method of interaction can be by method calls or events in which case they exchange typed messages. In
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this context, it is data ports that we are concerned with. Functional ports comprise functional interfaces.
However, it is important to notice that data ports might be the only ports an entity can have as their
interaction points with their environments.

Factors leading to data encapsulation at the atomic level are different from those at the composite
level, though they may interact to enhance or degrade encapsulation at the composite level. Henceforth,
we address encapsulation at the atomic and composite levels separately.

At the level of atomic components, all models support data encapsulation because access to data and
computation is only permitted via interfaces. Component models with explicit approaches to data guar-
antee encapsulation via attributes, data components and data ports. But there are exceptions. PECOS,
which is a dataflow-oriented component model, makes data publicly available on data ports. There-
fore, atomic components do not encapsulate data. Another interesting case can be found in CCM’s data
components. Transparent persistence results in data components with a public state. This kind of per-
sistence occurs when CCM data components are directly specified using a programming language such
as Java. However, the persistent state is encapsulated for CCM data components that are specified using
Persistent State Description Language [23]. In this case, state members are only accessible via accessor
methods. Encapsulation at this level is also improved by explicit and constructive data semantics. For
example, Koala forbids any data declarations in its interfaces. The requirements forces all data to be in-
ternally represented in the component and accessed via accessors. Other models allow data declarations
for constant data (EJB) or variable data (COM) in their interfaces. However, excepts for the above two
cases, atomic components encapsulate data as part of their construction process.

On the second level, composition schemes are more influential on encapsulation than data ap-
proaches. In fact, many component models do not support explicit data approaches. These models
include COM, SOFA, ADLs and Pin. We even argue that data approaches counter data encapsulation
at the composite level since they factor out the data concern from the composition semantics. This is
clearly the case for data components. The encapsulation of a data component in a composite does not
result from the composition operation. The composition operation has no semantics relevant to data
components, since data component types are treated as any other component type in the model. Accord-
ingly, component models supporting data component types do not encapsulate data. EJB, CCM, .NET,
UML 2.0 and KobrA are members of this category. Fractal is to follow the approach of this category,
but data components in Fractal are still a draft proposal [6].

Semantics that most affects data encapsulation is the definition of the composite entity. JavaBeans,
EJB, COM, .NET, and CCM do not define the notion of a composite entity. Therefore, the most encap-
sulation they support is that at the atomic level. Other composition semantics are also important. These
semantics are best presented in Koala and PECOS. Therefore, we discuss them in the context of their
component models.

In Koala, components do not contain configuration specific information. A component must param-
eterise all of its configuration requirements, and specify function calls that set them via interfaces called
diversity interfaces. For Koala atomic components, diversity interfaces must be satisfied in exactly the
same way as any other requires interface. However, in composite components and system templates,
diversity interfaces must be implemented in a module external to the sub-components. The module acts
as target for all function calls originating from sub-components and connectors. In Koala, modules are
treated as interface-less components and allow for connecting them alongside normal components. The
role of modules in this case is a store for configuration data of a composite or a system. Modules are
necessary requirements for composites that result from the composition operation.

There is also one more case where modules are used to store data in Koala composites and systems.
Initialisation requirements for components are expressed via accessor methods in provides interfaces.
In composites, initialisation must also be performed using modules. The need for these modules is
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necessitated by the connection semantics of interfaces: a requires interface can receive many provides
interfaces, but a provides interface can only connect to one requires interface. That is, a function has
only one implementation that can be called by many interfaces. Figure 14 depicts a Koala compo-
nent that has one interface of each kind and how two modules are connected in a composite to satisfy
configuration and initialisation requirements. A component can have provides, requires, diversity and
initialisation interfaces (Fig. 14 (a)). Component B has a initialisation (Ini) and a diversity (div) inter-
face. Components A and C have initialisation interfaces. All initialisation interfaces for A, B and C
are connected to the module V. Component B diversity interface is implemented by module A, which
also implements configuration requirements of the connector that connects all the sub-components in
the composite (Fig. 14 (b)).

Provided

&5 oL

Diversity n u Required

Initialization
(a) An atomic Koala component (b) A composite Koala component

Figure 14: Data in Koala components.

It is clear that Koala supports data encapsulation at the level of composite components and sys-
tem templates. For atomic components, Koala hides attributes by enforcing their access via accessor
methods. No data declaration is allowed in Koala interfaces.

In PECOS, components are units that contain computation and data. The behaviour of a component
is represented by the activation of its computation part which consumes data available on the compo-
nent’s ports (or internal component data) and produces some data on its ports. A port is a reference to
data that can be read and written by a component and enables a component to be connected to another
component (through a connector). Clearly, ports act as public providers and receivers of data. Thus,
the data they hold is public at the level of atomic components. In the design phase, connectors are used
to build composite components where connectors describe data-sharing relationships between the ports
of sub-components. The composition operation results therefore in encapsulation of data on connected
ports. In Figure 15 (a), a digital clock system is presented. Any individual component encapsulates no
data, even in the sense of objects; data is public by virtue of the ports’ semantics. But, the composite (a
system in this case) encapsulates three data sets through connections: (Clock.msecs, DigitaDisplay.time-
in-msecs), (Clock.msecs, Display.time) and (EventLoop.started, DigitaDisplay.can-draw). However, the
encapsulation of a set breaks if any of its ports is exported to the environment (Fig. 15 (b)).

Furthermore, access to a sub-component (data port) from other components external to the compos-
ite is forbidden. In fact, access can only be establish via connectors determined at design time.

The above discussion leads to the conclusion that all models (in general) support data encapsulation
at the atomic level (except for PECOS and CCM transparent persistence). Only two component models
support data encapsulation at the composite level: Koala and PECQOS. In our discussion, we have ex-
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Figure 15: Data in PECOS.

posed important factors that influence encapsulation: these factors include (i) explicit data approaches
that are not a requirement for encapsulation in atomic components (few models do not have them), (ii)
the necessity for the definition of the composite entity in the model so that encapsulation becomes rele-
vant, and (iii) most importantly, the need to embed data semantics into the composition operators rather
than factoring it out in independent types such as data components.

Our component model provides one component type and adopts no explicit data approaches. It em-
beds the semantics of data 1/0 together with data initialisation and data finalisation into the semantics of
composition connectors. At the atomic level, components encapsulate data as part of their construction
process from computational units and invocation connectors. Composites encapsulate data as part of the
composition operation effected by the composition connectors equipped with data semantics. As more
composition is performed that may involve other composites at the design and deployment phase, data
continues to be encapsulated. We believe that our model goes beyond any other model in this regard,
particularly PECOS and Koala. The first does not encapsulate data at the atomic level, while the sec-
ond allows both components and connectors to access data modules. In our model, only composition
connectors can access data, setting a clear separation of concerns. PECOS and Koala do not define
composition in the deployment phase which restricts data encapsulation to the design phase only. Our
model places no restrictions on composition, and data encapsulation is a characteristic that is maintained
consistently with composition in design and deployment phases.

6 Conclusion

In this report we have presented a way to encapsulate data in a component model that already en-
capsulates control and computation. Our approach to encapsulating data is effected through changing
semantics of the composition connectors. The changes include the following: (i) allowing composition
connectors and invokers to perform 1/O operations and (ii) allowing each connector to have an initialisa-
tion and a finalisation sections for initialising and finalising data. With the new semantics, atomic com-
ponents encapsulate computation and data, and composite components additionally encapsulate control.
Our approached has resulted in encapsulating data at both levels: atomic components and composite
components. Further composition operations involving composites also maintain data encapsulation.
Not all current component models encapsulate data in both kinds of components. Two main cat-
egories have been observed in Section 5. One category provides encapsulation at the level of atomic
components (with two exceptions) which includes all current component models. The other, encapsu-
late data at the composite level and includes PECOS and Koala. Both models embed into composition
operations data semantics that results in data encapsulation. However, PECOS does not encapsulate
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data at the atomic level, and Koala allows connectors and components to access encapsulated data. Both
models do not support further data encapsulation in the deployment phase because composition is not
allowed.

The immediate benefits of our approach is encapsulation all of the elements of a software system:
computation, data and control; which leads to improved reusability, verifiability and amenability to
reasoning. Furthermore, the examples used in this report demonstrate modelling simplifications by
eliminating data I/O devices and data sources.

The resulting model is, to the best of our knowledge, the first model with encapsulation of control,
computation and data. Compared to related work, viz. component models, our work seems unique in
encapsulating the three elements: computation, control and data.
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