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Abstract

Today’s component models like EJB and CCM use containers to instantiate and manage
components. A component in these component models can originate control flow to other
components to fulfil its tasks, and control flow of the system is laid down at design time of
its components. The container can instantiate the system, given a set of such components.
As components originate control flow to each other, their reuse potential is limited because
they cannot be reused independently but need some other components they originate con-
trol to. The container does not take part in the system’s control flow construction at all,
leaving glue code for component connection in components themselves. In this report, we
present a container which can automatically construct control flow for a system consisting of
independent components not calling each other and exogenous connectors to connect them.
As the components do not call each other their reuse potential is much higher than that of
current component models. The container, unlike current containers, not only instantiates
the components but is also in charge of control flow construction of the component-based
system.
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1 Introduction

In component-based software development [28], composition is a central issue. A key challenge
is to design composition operators that are not only practical for component disentanglement,
but are also amenable to compositional reasoning, since the nature of components demands
reasoning about component behaviour both statically and dynamically, i.e. at build time as
well as at run time. Architecture description languages (ADLs) [27] provide connectors as
composition operators, and architectural reasoning has recently begun to be investigated, e.g.
[1]. However, traditional ADLs do not separate computation (components) from interaction
(connectors) as cleanly as intended, thus complicating architectural reasoning. Components not
only perform computation, but also initiate control, which is then passed by the connectors to
other components. To make compositional reasoning more tractable, we believe it is necessary to
improve encapsulation of computation (components) as well as control (connectors). To this end,
we have proposed exogenous connectors. These connectors provide composition mechanisms
different from those in existing component models (including ADLs) [18, 19], in that they
completely capture control, leaving components to encapsulate only computation. In this report,
we show that exogenous connectors allow for automatic control flow construction of a system.
To be useful in practice, connectors need to be generic, i.e. they should be not only instantiable,
but also reusable for different applications. ADL connectors are not generic in this sense, since
they are defined and created afresh for each application. Generic connectors enable users to
not only construct systems more easily but also to write (and therefore maintain) less code for
each application. We will show how exogenous connectors can be implemented in a generic
way, and how a container can be implemented that can use (generic) exogenous connectors to
automatically compose software components.

2 Exogenous Connectors

n [17], we present exogenous connectors for software components. In this section, we briefly
explain these connectors in the context of related work.

The distinguishing characteristic of exogenous connectors is that they encapsulate control.
In traditional ADLs, components are supposed to represent computation, and connectors in-

(a) Components and connectors ) Control flow

Figure 1: Traditional ADLs.

teraction between components [21] (Figure 1 (a)). Actually, however, components represent
computation as well as control, since control originates in components, and is passed on by
connectors to other components. This is illustrated by Figure 1 (b), where the origin of control
is denoted by a dot in a component, and the flow of control is denoted by arrows emanating
from the dot and arrows following connectors.

In this situation, components are not truly independent, i.e. they are tightly coupled, albeit
only indirectly via their ports.



In general, component connection schemes in current component models (including ADLs)
use message passing, and fall into two main categories: (i) connection by direct message passing;

B

A

Figure 2: Connection by direct message passing.

and (ii) connection by indirect message passing. Direct message passing corresponds to direct
method calls, as exemplified by objects calling methods in other objects (Figure 2), using
method or event delegation, or remote procedure call (RPC). Software component models that
adopt direct message passing schemes as composition operators are Enterprise JavaBeans [14],
CORBA Component Model [25], COM [6], UML2.0 [24] and KobrA [5]. In these models, there
is no explicit code for connectors, since messages are ‘hard-wired’ into the components, and so
connectors are not separate entities.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors, as exem-
plified by ADLs. Here, connectors are separate entities that are defined explicitly. Typically
they are glue code or scripts that pass messages between components indirectly. To connect a

K1 I component . connector
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Figure 3: Connection by indirect message passing.

component to another component we use a connector that when notified by the former invokes
a method in the latter (Figure 3). Besides ADLs, other software component models that adopt
indirect message passing schemes are JavaBeans [10], Koala [30], SOFA [26], PECOS [23], PIN
[15] and Fractal [7].

In connection schemes by message passing, direct or indirect, control originates in and flows
from components, as in Figure 1 (b). This is clearly the case in both Figure 2 and Figure 3.

By contrast, in exogenous connection, control originates in and flows from connectors, leav-
ing components to encapsulate only computation. This is illustrated by Figure 4. In Figure 4
(a), components do not call methods in other components. Instead, all method calls are initi-
ated and coordinated by exogenous connectors. The latter’s distinguishing feature of control
encapsulation is clearly illustrated by Figure 4 (b), in clear contrast to Figure 1 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate and coordi-
nate control (and data). With exogenous connection, components are truly independent and
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(b) Control flow

Figure 4: Connection by exogenous connectors.

decoupled.

Exogenous connection is not provided by any existing software component models (includ-
ing ADLs). However, exogenous connection has been defined as exogenous coordination in
coordination languages for concurrent computation [3]. Also, in object-oriented programming,
the courier pattern [12] uses the idea of exogenous connection whereby a courier object links a
producer-consumer pair of objects by calling the produce method in the producer object and
then calling the consume method in the consumer object with the result of the produce method.

2.1 Connector Type Hierarchy

The concept of exogenous connection entails a type hierarchy of exogenous connectors. Because
they encapsulate all the control in a system, such connectors have to connect to one another
(as well as components) in order to build up a complete control structure for the system. For
this to be possible, there must be a type hierarchy for these connectors. Therefore such a
hierarchy must be defined for any component model that is based on exogenous connection.
We are developing such a component model, and in this section we describe the connector type
hierarchy for our model.

In our component model,! components are units of computation linked by exogenous con-
nectors. A component is a unit of software with (i) an interface that specifies the services it
provides (i.e. its methods) and the services it requires, and the dependencies between the two
sets of services; and (ii) code that implements the provided services. In essence it is similar
to Szyperski’s definition [28]. However, our components do not invoke methods or services in
other components. Rather, they only perform their provided services (methods) when they are
invoked from outside, by connectors. Thus our components encapsulate computation.

'We do not give a full description; it is not necessary here.



Connectors are composition operators that compose components into systems. They are
exogenous, i.e. they initiate and coordinate method calls in components, and handle their
results. Thus they determine control flow and data flow, i.e. they encapsulate communication
in general, and control in particular.

In the connector type hierarchy for our component model, components are obviously a basic
type. Because components are not allowed to call methods in other components, we need an
exogenous method invocation connector. This is a unary operator that takes a component,
invokes one of its methods, and receives the result of the invocation.

To structure the control and data flow in a set of components or a system, we need other
connectors for sequencing exogenous method calls to different components. So we need n-ary
connectors for connecting invocation connectors, and n-ary connectors for connecting these
connectors, and so on. In other words, we need a hierarchy of connectors of different arities and

types.

o : o )

(c) Exogenous connection

Figure 5: Corresponding architectures.

For example, consider a system whose architecture can be described in the Acme [13] and C2
[29] ADLs by the architectures in Figure 5 (a) and (b) respectively. Using exogenous connectors
in our component model, the corresponding architecture is that shown in Figure 5 (c). In the
latter, the lowest level of connectors are unary invocation connectors that connect to single
components; the second-level connectors are binary and connect pairs of invocation connectors;
and the connectors at levels 3 and 4 are of variable arities and types. Note that at the top level,
there is only one connector.

In general, connectors at any level other than the first can be of variable arities; connectors
at any level higher than 2 can be of variable arities and types; and we can define any number of
levels of connectors. Connectors at level n for any n > 1 can be defined in terms of connectors
at levels 1 to (n —1).

The complete connector type hierarchy (omitting methods and their parameters) is shown
in Figure 6. Note that level-1 and level-2 connectors are not polymorphic, but connectors at
higher levels are.



Basic types: Component, Result;
Connector types:
L1 = Invocation
L2
L3

Component — Result;
L1 x...x Ll — Result;
L x...x L — Result
where L is either L1 or L2;

Figure 6: Connector type hierarchy.

2.2 Component Composition

Just as exogenous connection entails a connector type hierarchy, so the latter in turn entails a
strictly hierarchical way of constructing systems by composing components. As illustrated by
Figure 5 (c), in such a system, components form a flat layer, and the entire control structure
(of connectors) sits on top of this. Beyond level 1, the precise choice of connectors, the number
of levels of connectors, and the connection structure, depend on the relationship between the
behaviour of the individual components and the behaviour that the whole system is supposed
to achieve. Whatever the control structure, however, it is strictly hierarchical, which means
that there is always only one connector at the top level. This is the connector that initiates
control flow in the whole system.

2.2.1 The Bank Example

Consider a bank system, whose architecture is described in Acme in Figure 7 (a). The system has
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(a) Acme b) Exogenous connection

Figure 7: Architecture of the bank example.

just one AT'M that serves two bank consortia (BC'1 and BC2), each with two bank branches (B1
and B2, B3 and B4 respectively). The AT'M passes customer requests together with customer
details to the customer’s bank consortium, which in turn passes them on to the customer’s bank
branch. The bank branches provide the usual services of withdrawal, deposit, balance check,
etc.

In [17] we implement the bank system using exogenous connectors and the architecture in
Figure 7 (b) (a refinement of Figure 5 (c)). At level 1, each component has an invocation
connector. At level 2, there is a selector connector S1 that is used to select the customer’s
bank branch from banks Bl and B2, prior to invoking that branch’s methods requested by
the customer. Similarly, there is a level-2 selector connector S2 for choosing between B3 and



B4, prior to invoking their methods requested by the customer. To pass values from one bank
consortium to one of its banks we need a pipe connector; at level 3, we have two pipe connectors
P2 and P3, for BC'1 and BC?2 respectively. At level 4, S3 is a selector connector that selects
the customer’s bank consortium from consortia BC1 and BC2. Finally, at level 5, the top
level, the pipe connector P1 initiates the bank system’s operational cycle by passing customer
requests and card information to the AT'M, invoking the AT'M’s methods, and then passing the
resulting value to connector S3.

3 Automated Composition

In [17], we demonstrate the feasibility of implementing the hierarchy of exogenous connectors in
Figure 6, and using them to construct component-based systems. As an illustration, we manu-
ally construct the bank system in Figure 7 (b) using exogenous connectors. In this report, we
go a step further and show that using exogenous connectors we can automate component com-
position. As an illustration, we will show that the bank system can be composed automatically
by using exogenous connectors.

The key properties of these connectors that make this possible are separation of control flow
and computation, genericity and hierarchy. Separation of control flow and computation gives
us an additional degree of freedom in the system, which is not kept inside components like in
current component models but can be governed by a container. Genericity means connectors
can be implemented as application-independent templates, from which instances can be created
for specific applications. This is in contrast to connectors in current ADLs, whose components
expose methods rather than events. Systems employing event dispatching as communication
means of components, e.g. C2 ADL, have buses which are generic connectors. They do not
possess any application-specific code and can be used for dispatching of any events. C2 compo-
nents are nonetheless dependent on each other as they originate control to each other. Systems
employing method calls as communication means of components do not possess generic connec-
tors. Their code must be generated for each application. In Acme/ArchJava [4, 2], for instance,
when a system description is compiled into Java, the resulting code for the connectors is specific
to that system. This code cannot be (re)used for other systems, and the system developer has
to maintain it just for this system.

By contrast, exogenous connectors can be implemented in a generic manner, so that different
instances can be created from the same template. Furthermore, these instances can be created
automatically by a generic container from the system description for the particular application.
Consequently, from the system developer’s point of view, creating a system requires only giving
the container the system description (together with code for the components).

What makes the generic container possible is the use of generic exogenous connectors, and
their type hierarchy, which enforces a strictly hierarchical way of building the control structures
of component-based systems, as we have seen in the bank example in Section 2.2.1.

In this section, we describe an implementation of exogenous connectors together with a
generic container which can compose connectors and hence systems automatically.

3.1 Generic Exogenous Connectors

Now we show how we implement exogenous connectors in a generic way such that: (i) in the
design phase, generic connector templates can be defined and stored; (ii) in the deployment
phase, these connector templates can be deployed in the container; and (iii) in the runtime



phase, connector instances can be created (automatically) by the container and used to build
the control structure of any specified system (with exogenous connectors). In particular, we
want to do so for any connector at any level. In [17] we show an implementation in Java that
is generic only in the sense of (i), and that only defines connectors for specific levels. Here we
describe how we can define connectors at any level that are generic in the sense of (i), (ii) and
(iii). For reasons that will become apparently later, we use C# in .NET for the implementation.

We implement three kinds of connectors as a hierarchy of classes, with a base class Connector
(Figure 8).

Connector
/\

\
\ PipeConnectori * ‘

InvocatlonConnecitor}—’ ! — [SelectorConnector’s

A '

\Component \

Figure 8: Class hierarchy of exogenous connectors.

The invocation connector connects to a component and makes calls into it. It can only
appear at the bottom of the connector hierarchy, i.e. level 1.

The pipe connector connects either invocation connectors or other pipe or selector connec-
tors. It makes consecutive calls into connectors it connects in the order in which they are
connected to it. It can appear at any level greater than 1 in the connector hierarchy.

The selector connector connects either invocation connectors or other pipe or selector con-
nectors. It makes a call into one selected connector of the connectors it connects. It can appear
at any level greater than 1 in the connector hierarchy.

The Connector class has several Ezecute methods for executing either a single given method
(with its parameters) or a given set of methods (with their parameters):

public virtual void Execute (string method, object[] parameters);

public virtual void Execute (stringl[] methods, object[] parameters);

public virtual void Execute (int condition, string method, object[] parameters);
public virtual void Execute (int condition, string[] methods, object[] parameters)

Using the Connector class, we can define a generic connector at any level of the hierarchy. Such
a connector inherits from Connector, and implements the appropriate Ezecute method(s).

Only the invocation connector makes calls into components from within its Ezecute method.
This is done using the Invoke method of the MethodInfo class provided by .NET reflection, which
is used to call methods on class instances:?

public override void Execute(string method, object[] parameters);

{
MethodInfo methodInfo = myComponent.GetType() .GetMethod (method) ;
object anObj = methodInfo.Invoke(myComponent, parameters) ;
Result = anObj as object[];

}

%We only present simplified code.
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The invocation connector makes a method invocation with specified parameters on the com-
ponent it hosts in its Ezrecute method. It first obtains the MethodInfo class instance from the
component’s type, and then makes the invocation on that object returning a result.

The selector connector’s Execute method can be passed a list of methods. Consider the case
of just one method. In this case, the Ezecute method of a selector connector is used for calling
one method on the connector inside the selector which gets selected according to the condition
which is passed into the method. In our current implementation, the selection condition is an
integer but it can easily be extended to other types in future.

The selector assumes that all the connectors in it can in principle deal with the method
passed into it. Therefore it is also sufficient to provide only one list of parameters. Whichever
connector gets selected, the method method and parameters parameters will be passed to it:

public override void Execute(int condition, string method, object[] parameters)
{
Connector selectedConn = myConnectors[condition];
if (selectedConn is SelectorConnector)
{
object[] paramsWithoutFirstElement = GetParamsWithoutFirstElement (parameters) ;
selectedConn.Execute(Convert.ToInt32(parameters[0]), method, paramsWithoutFirstElement);

}

else
{
selectedConn.Execute (method, parameters);
}
Result = selectedConn.Result;
}

If the selected connector is a selector again, the first parameter from the parameter list passed
into the method gets extracted, and is used as a selection condition for that selector connector.
The rest of the parameters are passed as a parameter list into the selector connector. If the
selected connector itself is not a selector (but is either a pipe or an invocation connector), its
Ezecute method is just called passing the method and the parameters to the connector. Finally,
the invocation result is retrieved and returned. A similar Ezecute method is used for a list of
methods passed to a selector connector.

The Ezecute method of a pipe connector is represented by a loop, which sequentially pro-
cesses all the connectors in it. Basically, the pipe connector takes the first connector, makes
a call into it, obtains the result and makes a call into the second connector passing the result
obtained from the first connector as a parameter into the second one and so on until the end
of the loop is reached.

In the loop the first thing is to check whether we are at the beginning of the loop. If we
are, then the parameters passed into the Ezecute method can be used as they are, to be passed
into the first connector. On the other hand, if we are in the middle of the loop, the parameters
to be passed on to the next connector are the results from the previous one.

Next if the connector to be called in the current loop iteration of the pipe is a selector
connector, we have to extract the first parameter from the Fzecute method’s parameter list if
we are at the beginning of the loop, or the first element of the result array from the previous
invocation if we are in the middle of the loop, and pass it to the selector connector as a condition.

Then if we are at the first loop iteration we can call into the selector straight away, but
otherwise we have to adjust the method array and remove the first element from it because the

11



first method has already been processed in the previous loop iteration.

If the connector in the current loop iteration is not a selector, we do not have to bother
with the first element in the parameter list to be processed as a selection condition, and can
call the Ezecute method straight away considering the necessary method array adjustment for
each loop iteration.

Eventually the Result is retrieved from the connector processed in the current iteration, and
will be used in the next iteration as parameter list for the next connector in the pipe. Once the
end of the loop is reached, the Result is returned by the pipe.

The connectors we present here are generic because they are independent, self-contained
and can be used by any application. In fact, they do not have any dependencies except those
shown in Figure 8, and can even be thought of as light-weight components in the system.

Since exogenous connectors form a hierarchy they can contain one another. Thus, pipe and
selector connector can contain invocation, pipe or selector connectors. It is possible to add a
connector to the “host” connector after the “host” connector has been created when building a
connector hierarchy. This allows for “late-binding” of connectors, which is used by the generic
container introduced in the next section.

3.2 Generic Container

Having implemented exogenous connectors in a generic way, in this section we show how a
generic container can be constructed that can automatically compose components into a system,
using generic connectors, given a description of the control structure of the system, i.e. the
connection structure for the components.

Inputs to the container: Interface to the run—time system

(a) generic prodsh
connectors S

(b) XML description of A run-time system
connection structure - and its interface

generated automatically
by the container

(c) independent [ [

e L TR Y Y

Generic container

Figure 9: Input to and output of the generic container.

As depicted in Figure 9 the generic container takes as input 3 kinds of entities: (a) generic
exogenous connectors for component connection, (b) an XML component connection description
reflecting the control structure of the system and (c) independent components not calling each
other. These 3 entities are independent from each other, i.e. components can be connected
by any connectors depending on a specific system’s needs and connectors can take part in
any connection description reflecting the control structure of the system in question. The
output of the generic container is an ordered system constructed in accordance with the control
structure description along with the top-level connector exposed to interact with the system.
The system constructed provides for all control flow paths possible in the system specified by
(b). A particular request to the system may not use every control flow path available. It is
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however ensured on the system construction that the whole control flow of the system, i.e. all
possible control flow paths are available to serve all requests placed on the system through the
top-level connector.

Application-independent templates for connectors can be created as shown in Section 3.1and
reused for different applications by creating application-specific instances®. These generic exoge-
nous connectors can be deposited in a repository and retrieved on demand for each application.
Furthermore, for any specific application with an exogenous control or connection structure, the
generic connectors can be instantiated, on the fly, into the instances in the latter’s connection
structure. This means that it is possible to generate the control flow of a system dynamically
and automatically from its architecture.

To illustrate this, consider the connection structure of the Bank example in Figure 9. The
system contains three pipe connectors and three selector connectors (as well as seven invocation
connectors). Each of these connectors hosts different connector types (and in different numbers).
For example, the pipe P1 hosts a selector $3 and an invocation connector 74 for the component
ATM, whereas the pipe P2 hosts a selector S1 and an invocation connector I3 for the component
BC'1. Although the two pipes are doing completely different things, they have been constructed
from the same template. The template is generic enough to embody different instances. So, P1
is an instance of the pipe template that hosts the selector S3 and the invocation connector 14,
and P2 is an instance that hosts the selector S1 and the invocation connector I3.

The same applies to selector and invocation connectors (and indeed to any connector). A
selector connector template can take any number of any connectors, and an invocation connector
template can call any method on any component.

Thus we can automate the process of control flow construction for any system with an
exogenous connection structure by instantiating connector templates into instances in the latter.

What makes the generic container possible are exogenous connectors and the strictly hier-
archical nature of a system with exogenous connectors, in particular its unified system access
point provided by the top-level connector. As we saw in Section 2.2, in a system with exogenous
connectors there is always only one top-level connector which is responsible for initiating all
control flow in the system. Therefore it is possible to construct such a system automatically
(following the hierarchy) and to expose the top-level connector, which is constructed on the fly,
to the outside world as an interface for interacting with the system. Thus access to the system
is always normalised and non-typed.

Note that, by contrast, ADL systems do not have these properties. In such systems, con-
nectors are not generic but system-specific, and components, rather than connectors, form a
hierarchy. Access is via the top-level component, and is therefore typed and not normalised. As
far as we know, no generic container of the kind we are about to describe exists for implementing
ADL systems.

The generic container we have implemented: (a) automatically creates control flow paths
for a system, i.e. a component connection structure from a given system control structure
description; (b) provides a runtime environment for components and connectors; and (c) takes
charge of the lifecycle management of components and connectors.

3Template instances are not class instances in sense of object-oriented programming. When a template is
instantiated it gets adapted to the current place in the connector hierarchy.

13



3.2.1 System Control Structure Description

In order for the generic container to be able to build up a a connector structure on the fly,
it needs to process a system control structure description. We choose to write the description
in XML because: (a) XML itself is hierarchical, and so is particularly suited to expressing
our connector hierarchies; (b) the system description can be automatically checked against a
pre-defined XML schema, thus eliminating (some) errors right at the beginning; (c) there is
good tool support for XML, e.g. we use XMLSpy from Altova; (d) the system integrator can
be guided by a tool while developing a system control structure description according to the
XML schema; (e) XML schemas are extensible in a consistent manner [9]; this is important
because when the schema is extended to include new connector types, for instance, old system
descriptions, which have been checked against the old schema, will be able to pass the schema
check using the new schema.

<?7xml version="1.0" encoding="UTF-8"
standalone="yes"7?> <!--W3C Schema generated by XMLSpy v2005 rel. 3 U
(http://www.altova.com)--> <xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="ExogenousADL">
<xs:complexType>
<xs:sequence>
<xs:element ref="connector_types"/>
<xs:element ref="system"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="component">
<xs:complexType>
<xs:attribute name="name" use="required"/>
<xs:attribute name="type" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name='"connector_types'">
<xs:complexType>
<xs:sequence>
<xs:element name='"pipe">
<xs:complexType>
<xs:attribute name="type" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="selector">
<xs:complexType>
<xs:attribute name="type" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="invocation">
<xs:complexType>

14



<x8:

<xs:
<xs:
<xs:

<xs:
<xs:

<xs

<xs:
<xs:
<xs:

</xs:schema>

attribute name="type" use="required"/>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="invocation">

<x8s:

complexType>
<xs:sequence>

<xs:element ref="component"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="pipe'>

<x8s:

element
element
element

complexType>

<xs:sequence>

ref="pipe" minOccurs="0" maxOccurs="unbounded"/>
ref="invocation" minOccurs="0" maxOccurs="unbounded"/>
ref="selector" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

<xs:attribute name="name"/>

</xs:complexType>
</xs:element>
<xs:element name='"selector'>

<x8:

element
element

:element

complexType>

<xs:sequence>

ref="pipe" minOccurs="0" maxOccurs="unbounded"/>
ref="invocation" minOccurs="0" maxOccurs="unbounded"/>
ref="gselector" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

<xs:attribute name="name"/>

</xs:complexType>
</xs:element>
<xs:element name="system">

<xs:

element
element
element

complexType>

<xs:sequence>

ref="pipe" minOccurs="0" maxOccurs="unbounded"/>
ref="invocation" minOccurs="0" maxOccurs="unbounded"/>
ref="gselector" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

The XML schema we use for system control structure description is depicted in Figure 10.

The top-level XML element is called “ExADL” and has two child elements: (i) (connector_types)
and (ii) (system), in that order. (i) contains an extensible specification of exogenous connec-
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tor types which are generic and not system-specific; whilst (ii) contains a (system-specific)
specification of the system using these connector types.

pipe

—|,{:0nnec’tor_t5-1)es [TI]_(""' =

selector

gttributes

________

________

| ExADL {7

! - -
[=F -+ - 2 Jinvocation
S ey eyt 1 il
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1 Nor e et S e
I

1alnvocation

R A AL T

-aselector [+

_________________ - -t
-

Generated with XMLSpy Schema Editor www.altova.com

Figure 10: XML schema for system control structure description.

Connector types currently include invocation, pipe and selector connectors. They tell the
container where to find and how to instantiate them.

A system can contain any number of connector types which can contain one another. The
connector type hierarchy defined in the schema is of course the same one that we used for
implementing these connectors (Figure 8). Note that connector types presented in Figure 8
are not the only once possible. We show only these connector types here since they are used
in the Bank Example. In general, any exogenous connector types are conceivable. E.g. a
repeater connector, which repeats some invocations into a component, or a sequencer connector,
which has the semantics of the pipe connector but does not pipe values from one component to
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another one. What is important that all those connectors can be described using system control
structure description and instantiated by the generic container for exogenous connectors. I.e.
the infrastructure for building systems using exogenous connectors is defined by the extensible
XML schema for system control structure description and the generic container able to process
it and construct system’s control structure.

As an example of system control structure description, the bank system can be described by
the outline in Figure 11. This can be read as: ‘A pipe P1 contains an invocation connector and

<system>
<pipe name="P1">
<invocation>

<component name="ATM"
type="Components.ATM, Components"/>
</invocation>
<selector name="S3">
<pipe name="P2">
<invocation>
<component name="BC1"
type="Components.BankConsortium,
Components"/>
</invocation>
<selector name="S1">
<invocation>
<component name="B1"
type="Components.Bank,
Components"/>
</invocation>
<invocation>
<component name="B2"
type="Components.Bank,
Components"/>
</invocation>
</selector>
</pipe>
<pipe name="P3">
<invocation>
<component name="BC2"
type="Components.BankConsortium,
Components"/>
</invocation>
<selector name="S2">

</selector>
</pipe>
</selector>
</pipe>
</system>

Figure 11: System control structure description for the bank example.

a selector S3. The invocation connector contains a component AT'M. The selector S3 contains
a pipe P2, which contains a component BC1, and so on’.
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3.2.2 Container Implementation

Basically, the container provides an interface IContainer for interaction with the outside world,
which consists of: (i) a property SystemDescription which is used to feed the system control
structure description into the container; (ii) a method Init() which initiates the construction
of the connector hierarchy; (iii) a property TopLevelConnector for retrieving the top-level con-
nector of the system; and (iv) a method Dispose() which disposes of the connector hierarchy.

When the container is created, it is empty and does not contain any connectors or compo-
nents. The system control flow is constructed when the property SystemDescription is set and
the method Init is called. During the processing of the (system) element, the container first
retrieves the connector types and stores them for future use. A connector type is instantiated
each time a specific connector occurs in the system control structure description. For example,
each time a pipe element occurs in the XML description of the system, the container will create
an instance of a pipe from the information stored during the processing of connector_types.

The implementation we present here is for processing pipe, selector and invocation connec-
tors only. In reality the implementation can process any connector introduced in the connec-
tor_types section of system control structure description. In other words, hard-coded strings
“pipe”, “selector” and “invocation” do not occur in the real implementation, which is generic
and not restricted to these connectors. This makes the container extensible to new connector
types.

To describe the implementation, we follow the sequence of operations that are carried out to
process a system control structure description. First, the system control flow description gets
validated against the XML schema and gets loaded unless the description violates the schema.

XmlTextReader anXmlTxtReader = new

XmlTextReader (mySystemDescription) ;

XmlValidatingReader

anXmlValReader = new XmlValidatingReader (anXmlTxtReader) ;
anXmlValReader.ValidationType = ValidationType.Schema;
XmlDocument

doc = new XmlDocument(); doc.Load(anXmlValReader);

Second, the (connector_types) element is processed, and information about the location of each
connector class is stored for creating connector instances in future.

myPipeLoadConfig = doc.SelectSingleNode("//connector_types/pipe").
Attributes["type"] .InnerText;

mySelectorLoadConfig =

doc.SelectSingleNode("//connector_types/selector") .Attributes["type"].InnerText;
myInvocationLoadConfig =

doc.SelectSingleNode("//connector_types/invocation").

Attributes["type"] .InnerText;

We use XPath expressions to retrieve the XML nodes (e.g. “//connector_types/pipe”). The
information stored is a piece of text containing the class name and a .NET assembly name
containing the class. Using this information .NET runtime (CLR) can load the assembly into
a process and create an instance of the class inside. Third, the top-level connector is identified
and created,
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switch(mySystemLoadConfig.Name)
{
case "pipe":
mySystem = LoadObject (myPipeLoadConfig) ;
break;
case "selector":
mySystem = LoadObject (mySelectorLoadConfig) ;
break;
case "invocation":
mySystem = LoadObject (myInvocationLoadConfig) ;
break;

}

and after the whole system has been constructed, interaction with the system is possible by
retrieving the property TopLevelConnector.

public Connector TopLevelConnector
{

get

{

return mySystem as Connector;

}
}

The complete system is created in the container beneath the top-level connector, using
recursion:

private void LoadSystem(XmlNode theXmlNode, Connector theCurrentConnector)
{
foreach(XmlNode anXmlNode in theXmlNode.ChildNodes)
{
switch(anXmlNode.Name)
{

case 'pipe":

PipeConnector aPipe = LoadObject(myPipeLoadConfig) ;
theCurrentConnector.AddConnector (aPipe); LoadSystem(anXmlNode, aPipe);
break;
case "selector":

SelectorConnector aSelector = LoadObject (mySelectorLoadConfig) ;
theCurrentConnector.AddConnector (aSelector) ;

LoadSystem(anXmlNode, aSelector);

break;

case "invocation":

InvocationConnector anInv = LoadObject(myInvocationLoadConfig) ;
theCurrentConnector.AddConnector (anInv) ;

string aCompConf = anXmlNode.FirstChild.Attributes["type"].InnerText;
anInv.Component = Load0Object (aCompConf) ;

break;
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This recursive method has 2 parameters: (i) the current XML node in the system control
structure description to be processed; and (ii) the current connector, which will take the connec-
tors created from the child nodes of the XML node passed into the method as child connectors.
Thus when entering the method we always have a connector created in the previous iteration
and its XML representation. The method iterates through the child nodes of that node, creates
connectors out of them and puts each of these connectors as a child connector into the connector
passed into the method.

The recursion itself can only occur when processing either a pipe or a selector connector. An
invocation connector cannot cause the recursion since the only XML node that can be beneath
(invocation) is (component), according to the XML schema. On the other hand, we do not
know which XML node will occur after (pipe) or (selector). The schema only enforces that it
will be either (pipe), (selector) or (invocation). In order to investigate what is below a (pipe)
or a (selector) we engage in a recursion passing the necessary parameters, namely the current
connector and its XML representation, and in the next iteration explore the child nodes. The
recursion ends when an invocation connector is found.

Thus the system is constructed from top to bottom and from left to right. That is, we
process the nodes from the first child of the top-level connector to its last child (from top to
bottom in the XML description) and, when engaging in recursion, we process the nested nodes
(from left to right) until an invocation connector is found. Then the recursive call stack shrinks
again, and can extend again on processing the next node.

So, the first time the recursion is entered the first child of the (system) node is passed
into it as a first parameter, and the freshly created and empty top-level connector as a second
parameter.

To illustrate how this works, consider processing the system control structure description
for the bank example (Figure 11). The top-level connector is a pipe P1. When entered, the
method LoadSystem will first identify that P1 has 2 child nodes,

foreach(XmlNode anXmlNode in theXmlNode.ChildNodes)

and will start iterating through them. It will then try to detect the connector type of the first
child node,

switch(anXmlNode .Name)

and will detect that it is an invocation connector. Knowing this, it will carry out the following
command sequence:

case "invocation":

InvocationConnector anInv = LoadObject(myInvocationLoadConfig) ;
theCurrentConnector.AddConnector (anInv) ;

string aCompConf = anXmlNode.FirstChild.Attributes["type"].InnerText;
anInv.Component = LoadObject(aCompConf) ;

break;

An instance of the invocation connector is created from the information stored before.
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InvocationConnector anInv = LoadObject(myInvocationLoadConfig) ;

The current connector, which is the top-level connector P1 in this iteration, gets assigned the
newly created invocation connector.

theCurrentConnector.AddConnector (anInv) ;

The description of the component inside the invocation connector gets extracted and stored,
and a component AT'M gets created and assigned to the invocation connector.

string aCompConf =
anXmlNode.FirstChild.Attributes["type"].InnerText;

The component gets created and assigned to the invocation connector:
anInv.Component = LoadObject(aCompConf) ;

The second loop iteration (no recursion yet) will result in finding out that the connector to be
created as a second child of the top-level connector P1 is a selector S3. Therefore the following
code in the method LoadSystem executes:

case "selector":

SelectorConnector aSelector = LoadObject(mySelectorLoadConfig) ;
theCurrentConnector.AddConnector (aSelector) ;
LoadSystem(anXmlNode, aSelector);

break;

a selector connector gets created and stored.

SelectorConnector aSelector = LoadObject(mySelectorLoadConfig) ;

The top-level connector P1 gets assigned the selector connector as a second child.
theCurrentConnector.AddConnector (aSelector) ;

The method LoadSystem gets called recursively,

LoadSystem(anXmlNode, aSelector);

and passed the XML description of the selector connector S3 as well as its instance.

Now the method LoadSystem is entered again. First of all, a loop over S3’s child nodes is
started. It has 2 child nodes; therefore the loop will have 2 steps. In the first step, an XML
node is processed, which turns out to represent the pipe connector P2. So, the following code
executes:

case "pipe":
PipeConnector aPipe = LoadObject(myPipeLoadConfig) ;
theCurrentConnector.AddConnector (aPipe) ;
LoadSystem(anXmlNode, aPipe) ;
break;

a pipe connector gets created,

PipeConnector aPipe = LoadObject(myPipeloadConfig) ;
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and then the recursion is initiated again by calling LoadSystem and passing the XML node
containing the pipe and its instance.

Next an invocation connector will be created and assigned to P2 as a first child. The
invocation connector will get the component BC'1 injected. Afterwards, the selector connector
S1 will get created and assigned to the selector connector S1 as a second child. After that
the invocation connector for component B1 will be created and assigned to S1 as a first child,
and the invocation connector for component B2 will be created and assigned to S1 as a second
child. Then the recursive stack will diminish, and the loop started with creating the pipe P2
in the first iteration will be continued with the creation of the pipe P3 in the second and last
iteration. The loop for P3 is similar to that for P2.

Now the system control flow construction is complete, and the system is ready for use
via its top-level connector. In a concrete system created via the top-level connector, for any
connector, an instance of the generic connector is first created and later populated with whatever
connectors are beneath the connector in the system description, as we have seen before during
system construction. That is why the connector is generic: it can take any number of suitable
polymorphic connectors and can deal with them. Each connector has its own semantics, which
is considered when writing system control structure description. The container’s task is to
put the connectors together according to the system control structure description. All the
connectors build a type hierarchy, which makes it possible to treat them in a generic fashion by
the container.

User services in a concrete system can be implemented by retrieving the TopLevelConnector
property. When the system is used to perform such services, data and control flow starts going
through the system. In this context, it is important to understand how the control flow that
has been created automatically by the container works.

For instance, if a pipe (e.g. P1) finds an invocation connector and a selector inside itself
at runtime while processing a user request, it orders the invocation connector to call a method
from the method list provided as a parameter in the pipe’s Ezecute method, and propagates the
result to the selector connector along with the rest of the method list. The selector connector
chooses a connector using the result obtained as a selection criterion, and invokes the Ezecute
method of the selected connector with the method list obtained from the pipe and so on.

It should be obvious that the construction of a system’s control flow can be automated by
using such a generic algorithm.

The generic container lays down all possible control flow paths in the system during control
flow construction, while a particular request to the system does not necessarily makes use of all
of them but follows some paths necessary to answer the request.

3.2.3 Usage of Container

With the generic container, the process of system construction with exogenous connectors can be
mostly automated. The only code which has to be supplied by the system developer is that of the
components. No other code is required to construct the system because it is constructed by the
container in a generic fashion from a system control structure description on each system start.
After the construction of the connector structure, the container’s TopLevelConnector property
can be used to retrieve the top-level connector created by the container. This connector allows
interacting with the system.

Using the container thus fundamentally changes the programming methodology. The follow-
ing steps are necessary to build a system: (i) provide independent components not calling each
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other, (ii) provide an XML description of system’s control structure, (iii) feed the description
into the container. Note that current approaches to CBSD embed the control structure into
components making reuse less possible. Our components can be connected using various control
structures thus enhancing component reuse.

Furthermore, the system developer has far less code to maintain because the code for con-
nectors as well as glue code for connection of components to them is no longer his responsibility.
Constructing n systems with an ADL compiler (ArchJava) results in n code bunches, one per
system. The code for each system has to be maintained. With the generic container, there is
no code bunch to be maintained since the system will be constructed by the generic container
from the control structure description on every system start. The system description is used
only once by ADLs, whose components like ours are accessible through method calls, to get
system-specific templates for glue code, i.e. connectors, whereas our generic container uses it
each time the system starts but the glue code will be constructed on the fly by the generic
container. Thus, the reuse potential of our generic exogenous connectors is n times higher than
that of current ADL connectors, which connect to component interfaces (ACME/ArchJava)
and not event sinks (C2).

3.3 The Bank Example

Now we illustrate the use of exogenous connectors and the generic container for automated
composition, using the bank example in Section 2.2.1, with the architecture described in Figure 7
(b).

The first step is to implement the components. In our implementation, components are C#
classes with public methods (that can be invoked by the invocation connectors) for the usual
ATM operations like insert card, enter password, withdraw, deposit, check balance, etc. The
objects (of these classes) do not call methods in other components.

The second step is to specify the system in XML following the schema in Figure 10. We
have already done this in Figure 11.

The third step is to feed this system description to the container by setting the property
SystemDescription (and calling the Init() method). The result is the running system illustrated
by the debugger output in Figure 12, where the connector structure for the bank system has
been constructed. The generic container’s TopLevelConnector property is explored here in the
debugger. This property is exposed by the container and can be used outside, but the whole
content of the container has been generated automatically.

In Figure 12, the exogenous connector instance hierarchy is shown on the left, the corre-
sponding types on the right. The labels in italic have been added by hand to make clear what
is going on at each level of the hierarchy.

The top-level connector is the pipe P1 here. It contains 2 connectors: the first one is an
invocation connector containing the component AT' M, and the second one is a selector S3. Since
the invocation connectors with their components are always at the bottom of the hierarchy, the
invocation connector does not contain any other connector. This is of course enforced not by
the generic container itself but by the XML schema the system description is checked against.
The selector S3, in contrast, contains 2 connectors. The first one is a pipe connector P2.

P2 contains an invocation connector for component BC1 as well as a selector connector
S1. The selector S1 in turn contains 2 connectors, which are both invocation connectors for
components Bl and B2 respectively.

Clearly the running bank system is precisely the system specified by the system description

23



Name I | Value |
= ToplevelConnector Top Level Connector: Pipe PY {ExogenousConnectors. PipeConnector
=] [ExogenousConnectors.PipeConnector] {ExcgenousConnectors, PipeConnector
ExogenousConnectors.Connector {ExogenousConnectors. PipeConnector
[+ aConnectorsiist {Count=2}
=] myConnectors PL coniains 2 conneciors {Length=2}
] [0] £ condains an drvocadion connecior {ExagenousConnectors. InvocationCon
ExogenousConnectors, Connector {ExogenousConnectors. InvocationCon
myComponent fvecation connector for comp ATM  {Components, ATM}

=] [1] PLcontains a selecior connecior 53 {ExogenousConnectors. SelectorConne

I+ ExogenousConnectors. Connector {ExogenousConnectors, SelectorConne
aConnectorsList : {Count=2}
= myConnectors A3 caninins 2 cannacions {Length=2}

(=] [0] 523 cantains a pipe connccior P2 {ExogenousConnectors. PipeConnector
ExogenousConnectors, Connector 1ExogenousConnectors. PipeConnector
aConnectorsList {Count=2}

=] myConnectors P2 candains 2 conneciors {Length=2}

(-] [0] P2 cantains an invecation connectar  {ExogenousConnectors. InvocationCon
ExogenousConnectors. Cannector {ExogenousConnectors, InvocationCon
[+ myComponent iy, conn. for camp. 5CT {Components,BankConsortium}

(1 [1] £2 coninins o sclecior conmector 51 {ExogenousConnectors. SelectorConne
ExogenousConnectors, Connector {ExogenousConnectors, SeleckorConne
aConnectorsList {Count=2}

(=] myConnectors 51 coniains 2 conneciors {length=2}

[0] 51 coniains an invecation conn.  {ExogenousConnectars. InvocationCon
[+] ExogenousConnectars,Connector  {ExogenousConnectors, InvocationCon
myComponenty.com. for com. 81 {Components,Bank}

=] [1] 81 coninins an invecation cont  {EvogenousConnectors, InvocationCon
ExogenousConnectors. Connector  {ExcgenousConnectors. InvocationCon
mvCumpunent‘r’”’-m’Lfa’ AL EE{Cumpunents.Bm'k}

_El [1] 53 contains a pipe connccior P3 {ExogenousConnectors, FipeConnector

Figure 12: Running the bank system.

that is fed into the container. Of course a nice user interface could present the output in a
better way, but the whole system is constructed automatically by the container.

Now we briefly explain how this automatically generated bank system works, and therefore
how it can be used to provide services, by means of an example. Consider the service request
of getting the balance of an account. The get balance operation (illustrated for card 4711) is
implemented by retrieving the TopLevelConnector of the bank system, as follows:

myBankExample.TopLevelConnector .Execute(new stringl[]
{"GetBankConsortiumID_", "GetBranch_", "GetBalance"}, new object[]
{47113});

The top-level connector P1 gets a list of methods, namely GetBankConsortiumID_, GetBranch_
and GetBalance, and parameters to be propagated through the system. Only invocation con-
nectors in ATM, BC1 and Bl respectively call these methods. The connectors themselves
draw on various Ezecute methods offered by their base class Connector to propagate the neces-
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sary information down towards invocation connectors. Where the control flow passes (at which
connector and component) was specified before in the system description.
For the get balance operation, the control flow involved is shown in Figure 13. So the

Level 5 < p1 @ Get
R balance

Level 4

Level 3

Level 2

Level 1 L

Figure 13: Control flow for get balance.

sequence of events can be outlined as follows:

1.

The pipe P1 calls AT'M’s invocation connector to look up a bank consortium number for
the card inserted. AT'M looks up the bank consortium number in a data base and returns
it to its invocation connector, which returns the number to P1. Then P1 takes the value
supplied by the AT'M’s invocation connector and passes it on to the selector S3.

. S3 selects one of the connectors it contains and makes an invocation in the selected

connector. It looks at the value supplied by P1, which is a bank consortium number, and
chooses the pipe P2 to be called.

. P2 has 2 connectors in it. The first one is BC'1’s invocation connector, so P2 invokes it

to request the bank number to be used. BC1 retrieves the bank number from the data
base and returns it to its invocation connector, which in turn returns it to P2.

. P2 passes the bank number on to S1, which chooses B1’s invocation connector to be

called, to get the balance requested by the user. Bl retrieves the balance from the data
base and returns the value to its invocation connector, which returns it to the selector S1.

. S1 returns the balance to P2, which returns it to S§3, which returns it to the top-level

connector P1.

Note that the control flow for get balance operation does not use all possible control flow
paths laid down by the container on system construction but rather uses a part of them. Figure 9
shows that the container constructs all the possible control flow paths in the system. Figure 13
depicts control flow paths necessary for serving the request to get an account balance. Another
request may need completely different paths than those used when serving account balance
request.

Other operations to be performed by the Bank System like deposit and withdraw can be
implemented as follows:

Deposit $100 onto account the card 4711 belongs to:
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myBankExample.TopLevelConnector .Execute(new stringl[]
{"GetBankConsortiumID", "GetBranch", "Deposit"}, new object[]
{"100", n4711n});

Withdraw $100 from account the card 4711 belongs to:

myBankExample.TopLevelConnector .Execute(new stringl[]
{"GetBankConsortiumID", "GetBranch", "Withdraw"},
new object[] {"100", "4711"});

Finally, the bank system can be easily changed without writing any code. For instance,
suppose we want to introduce an additional bank consortium, BC3, and to allocate 2 new bank
branches, B5 and B6, to it. This can be done by simply adding the following XML snippet to
the system description:

<pipe name="P3">
<invocation>
<component name="BC3"
type="Components.BankConsortium, Components"/>
</invocation>
<selector name="S2">
<invocation>
<component name="B5"
type="Components.Bank, Components" />
</invocation>
<invocation>
<component name="B6"
type="Components.Bank, Components" />
</invocation>
</selector>
</pipe>

Of course any data base the components operate on will have to be extended as well, but the
system developer does not have to write any additional code to extend the system itself.
Conversely, to shrink a system, it only requires an XML snippet omitted in the specification.

4 Evaluation

The main contribution of the container is component composition by automated system control
flow construction. Whereas other approaches to component-based system composition involve
new code introduced by the connectors, our approach not only automates connector construction
but also eliminates the necessity of writing and maintaining glue code. So, all the control flow
paths in a system with exogenous connectors are automatically generated by the container on
the fly.

Beyond simplified system construction and deployment there are several other advantages
of employing the generic container for exogenous connectors:

e Exogenous connector hierarchy makes the system very modular because at any level there

is a top-level connector for that level. Therefore we can treat any level of the hierarchy
independently. This allows for simplified system testability as it is possible to test every
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connector with all its child connectors independently. With the generic container this
becomes even easier because it only takes a corresponding XML snippet to be fed into
the generic container to test a system part.

The amount of code in the system is reduced to the necessary minimum as glue code
for component connection is managed by the container through customised instances of
generic connectors. The system assembler does not have to write and maintain any glue
code any more, which simplifies system maintenance.

The generic container allows for easy system extension by adding new XML snippets to
the system control structure description.

System adaptation is also simplified. For example, components can be easily exchanged
by changing the system description. Changes take effect on the next system start.

Overall, the system is robust to extensions and change because no code changes at all can
be required to modify the system. Some changes require coding, of course.

Certain system semantics can be enforced and checked before the system construction by
checking XML system control structure description against XML schema.

As the container processes XML Files that conform to the XML schema, it can be im-
plemented in nearly any language. The language needs to support polymorphism, late-
binding and loading as well as introspection and reflection mechanisms, which are the key
features deployed by the component-oriented programming methodology identified by [28]
on Page 457.

Exogenous connectors construct a hierarchy of connectors. The top level connector is the
origin of the hierarchy and initiates all the control in the system. Essentially, there is no
other access to the system than via the top level connector. The top level connector has
an interface, which allows the system to be accessed via a web service. It has always been
a problem to access an object-oriented interface which can contain not only simple types
but rather self-defined types via a web service because of marshaling the values of self-
defined types. Simple types can be transmitted via network using existing frameworks
but self-defined types have to marshaled by the system developer itself, which can be
a non-trivial task. Since in a system with exogenous connectors all components are at
the bottom of the hierarchy and the top level connector is the only entity exposed to the
outside, it is easier to access such a system via web service self-defined types in component
interfaces notwithstanding.

As far as we know, the container we have implemented is unique because it generates

control flow of systems consisting of independent components automatically. ADLs do not have
generic and hierarchical connectors. Even XML-based ADLs like xADL 1.1 [16] and xADL 2.0
[8] do not have a generic container like ours. In component models that do have containers,

JavaBeans, EJB and CCM [19], the containers only instantiate and host components,

and do not generate systems control flow paths automatically at runtime. Work on runtime
reconfiguration, e.g. [20], is usually based on such containers, and does not support automated
component composition in the way exogenous connectors do.

The following containers exist in today’s component models and ADLs: EJB container for

hosting EJBs, CCM container for hosting CCM components, Bean Box for hosting Java Beans

27



component access to component control separation of
model component composition origin business logic
by container from user interface
EJB by method call no component yes
CCM by method call no component yes
Java Beans by event yes component no
C2 by event yes component no
Exogenous | by method call yes connector yes

Table 1: Comparison of current containers with the container for exogenous connectors.

and Bootstrapper in C2 ADL. All these containers can instantiate and manage components
they host. In the following we compare all these containers with our container for exogenous
connectors.

EJB container. An EJB container instantiates enterprise beans and provides services to com-
ponents like persistence management or look up for other beans via JNDI etc. The com-
ponents are composed (get to know each other) at their design time through method calls
and the container does not do any composition.

CCM container A CCM container is like EJB container. It instantiates CORBA compo-
nents and provides them with various services. It is also not responsible for component
composition. Component composition is done using method calls at component design
time.

Java Bean Box. Java Bean Box loads independent Java Beans and composes them by com-
pilation of corresponding adaptor classes. A Java Bean emits events, which are caught by
another bean if the corresponding adaptor class is available. The communication in Java
Beans is always asynchronous using events. Composition is done at bean deployment time
using system-specific adaptor classes, which is in contrast to our generic connectors.

C2 Bootstrapper. The Bootstrapper in C2 ADL is responsible for instantiation of compo-
nents and bus connectors and their composition. The bus connector in C2 is the only one
available and is generic. It is instantiated whenever a connection between C2 components
is needed. C2 components originate events to each other, which are dispatched to com-
ponent event sinks. The component communication is like in Java Beans asynchronous
through event dispatching.

Table 1 summarises the component models with containers and shows the differences to our
proposed model. The comparison shows clearly that our system is the only one where not
components but connectors originate control in the system. Furthermore, our system is the
only one where the container does component component composition of components which
are accessible via method calls. Systems whose components are accessible through method
calls (EJB and CCM) do not use container for component composition. Their components are
tightly coupled as they use method calls from within components to connect them. Our system is
distinct as although our components are accessible through methods calls, they are nevertheless
independent of each other through the use of exogenous connectors. Furthermore, our container
does component composition by generating control flow of the system automatically (Figure 15).
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Moreover, components in systems, which have containers for component composition (Java
Beans and C2), encapsulate business logic with UI, making it impossible to represent the busi-
ness logic in a different way as suggested by the classic Model View Controller pattern [11].
Our components do not have to contain UI logic as it can be constructed above the top-level
connector. This enables system developer to present the business logic in several ways using
different user interfaces. That is, the reuse potential of our components is higher than those in
Java Beans and C2.

Control flow C4
built into components

Cc2

C3

L — S|

Figure 14: Component instantiations in current containers.

C6

To summarise, containers like EJB and CCM can be illustrated as shown in Figure 14.
They construct hierarchies of dependent components. The links are set up by components even
before component deployment into containers. We take another approach and let our container
construct hierarchies of connectors, thus leaving the components independent. As components
do not know each other at all, the links in Figure 15 have to be set by the container.

Control flow ?"c' ]
i - Con
outside components 1 ‘ S

[ -

EEEEE

Figure 15: Container for exogenous connectors.

Our container is generic, which means that we can be confident about its wide applicability,
even though we have only demonstrated its promise with a single example. In this regard, the
choice of .NET as an implementation platform is a particularly good one. It allows compo-
nents implemented in different .NET languages to be loaded into our container, thus enabling
programming language interoperability. For instance, in the bank example, a bank component
can be implemented in VB.NET, a bank consortium in Managed C++, an ATM in Eiffel, and
the whole lot can be loaded into the generic container programmed in C#. Furthermore, our
container could also run in Linux, using the CLR provided by Mono [22].
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It could be argued that it does not really matter to the system developer how many con-
nectors the system consists of, since the generic container automatically takes care of them.
However, the foot print of the system gets larger, the more connectors there are in the system.
Using the generic container as a loader of the system can increase system start time because
connectors as well as components are loaded on the fly. However, if connectors and components
are not scattered over many binaries, this time can be significantly reduced because a binary
with its entire content is loaded into the container only once.

Another issue is whether exogenous connection can be used to describe layered systems.
Exogenous connectors as they are presented here somewhat prevent software layering. As
shown above, all the method names to be called on the components at the lowest level of the
hierarchy have to be supplied as parameters of the top level connector’s Execute method. For
example, deposit $100 onto account the card 4711 belongs to:

myBankExample.TopLevelConnector.Execute(new stringl[]
{"GetBankConsortiumID", "GetBranch", "Deposit"}, new object[]
{"100", n4711n});

In a truly layered system a layer doesn’t know anything about layers which are not immediately
next to it. So, software layer N only knows software layer N — 1 and knows nothing about the
layers 0 < K < N —1. In the system with exogenous connectors there are no direct dependencies
of the highest layer on the lowest layer containing components in terms of calling their methods
but there are dependencies on method names of component’s at the lowest layer to be called by
invocation connectors. Moreover, the more components are involved the more method names
have to be supplied to the top level connector as strings, thus increasing coupling. Interestingly,
the number of layers does not contribute to coupling strength.

ADLs (in particular C2) can describe layered systems well, as illustrated by Figure 5 (a)
and (b). It will be interesting to study and compare the dependencies between ADL layers and
those between levels in the exogenous connector hierarchy.

Other issues include concurrency and distribution. Currently we have only synchronous
calls, and we have not investigated distributed systems. It will be interesting to see whether
exogenous connectors can be used for asynchronous calls as well, and if so, whether it is (also)
possible to automate asynchronous composition. In this context, the use of inheritance for the
connector hierarchy and reflection for method calls may be problematic. Higher-order languages
for concurrency and (distributed) composition may be more appropriate.

Finally, we should also examine how our approach relates to work in web services and
service-oriented architectures for web information systems, where service orchestration seem-
ingly exhibits a flavour of exogenous connection.

5 Conclusion

In [17] we introduce exogenous connectors for encapsulating control, believing that by separating
control from computation, we can make compositional reasoning more tractable. However, if
exogenous connectors are not practical at all, then we will not even get a chance to verify
our claim. So in this report we have set out to show that not only are exogenous connectors
practical, but they in fact allow for automated component composition. The generic container
we have described in this report provides the evidence.

Of course, this is only a start, and in the long run, we do want to be able to reason about all
aspects of systems with exogenous connectors. Clearly, the container we have implemented will
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have a crucial role to play in reasoning. Therefore, in the mean time, we will continue to work
on (exogenous connectors and) the generic container, and investigate what aspects of reasoning
the container can support.

One thing we are working on are so-called deployment contracts for software components.
Currently, our components are just classes, so they cannot be properly unloaded on demand. A
deployment contract can provide various kinds of deployment information, e.g. dependencies,
security infrastructure, invocation types, licensing mode, etc. With this kind of information,
we will be able to reason about component composition by providing a reasoning framework for
static conflict detection and prevention. This framework can be employed during the creation
of composite components as well as during component selection for the system. It can also be
applied while loading components into the system, which is a special case deserving attention:
using the framework will increase system start time, but it could be crucial for highly secure
systems.

Harnessing the components in a container makes it possible to investigate versioning issues.
Component versioning information can be included in system descriptions and used for version
control. Moreover, connectors themselves could also be versioned. A combinatorial versatility
needs to be investigated, but having the generic container, which controls and harnesses the
whole system, is a step in the right direction because it is the very part of the system which
can enforce some rules.

The container could also propagate system-wide events to components, An example of such
an event is dynamic system reconfiguration (e.g. [20]). However, such event handling tightens
the coupling between the components and the container, which rather defeats the advantage of
independent components that exogenous connectors proffer.
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