Yy
er

The Universit
of Manchest

MANCHESTER
1824

April 2005

Computer Science

nnnnnnn ity of Manchester

A Survey of Software Component
Models

Kung-Kiu Lau and Zheng Wang

School of Computer Science
The University of Manchester
Preprint Series
CSPP-30

A Survey of Software Component Models

Kung-Kiu Lau and Zheng Wang

April 2005

Abstract

In Software Engineering, Component-based Development (CBD) is an important emerg-
ing topic, promising long sought after benefits like increased reuse and reduced time-to-
market (and hence software production cost). However, there are at present many obstacles
to overcome before CBD can succeed. For one thing, CBD success is predicated on a stan-
dardised market place for software components, which does not yet exist. In fact currently
CBD even lacks a universally accepted terminology. Existing component models adopt dif-
ferent component definitions and composition operators. Therefore much research remains
to be done. We believe that the starting point for this endeavour should be a thorough
study of current component models, identifying their key characteristics and comparing
their strengths and weaknesses. A desirable side-effect would be clarifying and unifying the
CBD terminology. In this report, we present a clear and concise exposition of all the cur-
rent major software component models, including a taxonomy. The purpose is to distill and
present knowledge of current software component models, as well as to present an analysis
of their properties with respect to commonly accepted criteria for CBD. The taxonomy also
provides a starting point for a unified terminology.

Keywords: software component model, repository, life-cycle, component syntax, compo-
nent semantics, component composition, predictable assembly

Copyright (© 2005, The University of Manchester. All rights reserved. Reproduction (electronically or by other
means) of all or part of this work is permitted for educational or research purposes only, on condition that no
commercial gain is involved.

Recent preprints issued by the School of Computer Science, The University of Manchester, are available on
WWW via URL http://www.cs.man.ac.uk/preprints/index.html or by ftp from ftp.cs.man.ac.uk in the
directory pub/preprints.

Contents

1 Introduction 3
2 An Abstract Software Component Model 4
2.1 The Syntax of Software Components 4
2.2 The Semantics of Software Components 4
2.3 The Composition of Software Components 6
2.3.1 The Life Cycle of Components 6
2.3.2 Composition in the Design Phase 7
2.3.3 Composition in the Deployment Phase 8

3 Current Software Component Models 8
3.1 JavaBeans e e e e 8
3.1.1 The Semantics and Syntax of Java Beans 8
3.1.2 Composition of Java Beans 0oL 9
3.1.3 Summary e e e e e 11

3.2 Enterprise JavaBeans L Lo 11
3.2.1 The Semantics and Syntax of Enterprise Java Beans 11
3.2.2 Composition of Enterprise Java Beans 15
3.23 Summaryo e e e e e 16

3.3 Component Object Model Lo 17
3.3.1 The Semantics and Syntax of COM Components 17
3.3.2 Composition of COM Components 18
3.3.3 Summary e e e e e 20

3.4 CORBA Component Model 20
3.4.1 The Semantics and Syntax of CORBA Components 20
3.4.2 Composition of CORBA Components 22
3.4.3 Summary L e e e e e e e e 23

3.5 Koala e 23
3.5.1 The Semantics and Syntax of Koala Components 23
3.5.2 Composition of Koala Components 26
3.5.3 Summary L e e e e e e e 27

3.6 SOFA . . . e 27
3.6.1 The Semantics and Syntax of SOFA Components 27
3.6.2 Composition of SOFA Components 29
3.6.3 Summary e e 30

3.7 KobrA . . . e e 30
3.7.1 The Semantics and Syntax of KobrA Components 30
3.7.2 Composition of KobrA Components 31
3.7.3 Summary L e e e 32

3.8 Architecture Description Languages 32
3.8.1 The Semantics and Syntax of ADL Components 32
3.8.2 Composition of ADL Components 32
3.8.3 Summary L e e e e e e 34

3.9 UML 2.0 o . e e 35
3.9.1 The Semantics and Syntax of UML 2.0 Components 35

3.9.2 Composition of UML 2.0 Components 37
3.9.3 Summary e 37
3.10 PECOS e e e e e e 38
3.10.1 The Semantics and Syntax of PECOS Components 38
3.10.2 Composition of PECOS Components 39
3.10.3 Summary L e e e e e e e e e e e e e e 41
311 Pin . . . e e e e e e e e e e 41
3.11.1 The Semantics and Syntax of Pin Components 41
3.11.2 Composition of Pin Components 42
3.11.3 Summary L e e e e e e 44
3.12 Fractal L o e e 44
3.12.1 The Semantics and Syntax of Fractal Components 44
3.12.2 Composition of Fractal Components 45
3.12.3 Summary L e e e e e e e e e e e e e 46
Towards A Taxonomy 46
4.1 Categories based on Component Syntax 46
4.2 Categories based on Component Semantics 48
4.3 Categories based on Component Composition 48
4.4 A Taxonomy of Software Component Models 50
4.5 Discussion Lo e e e 51
Conclusion 52
Acknowledgements 53
References 53

1 Introduction

In Software Engineering, Component-based Development (CBD) is widely accepted as a promis-
ing approach that could potentially yield the long sought after benefits of software reuse, reduced
time-to-market (and hence software production cost), interoperability, as well as tractable qual-
ity certification [49]. However, the success of CBD in realising these benefits is predicated on
a standardised market place for software components, and at present there are many obstacles
to overcome before this can be achieved.

As yet, there is not even a universally accepted terminology for CBD [9]. In particular
there are no standard criteria for what constitutes a software component, and current major
component technologies do not all use the same kind of components.

The cornerstone of any CBD methodology is its underlying component model, which defines
what components are, how they can be constructed, how they can be composed or assembled,
how they can be deployed and how to reason about all these operations on components. This
is exemplified by Heineman and Councill’s definition of a component [29] as:

“A [component is a] software element that conforms to a component model and
can be independently deployed and composed without modification according to a
composition standard.”

However, at present the more widely adopted definitions of components tend to be given without
component models, whilst at the same time, the more widely used component models do not
adopt these definitions properly. For example, the widely accepted definition due to Szyperski
[49]:

“A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties”

is not given in the context of a component model, and neither is the following definition due to
Meyer [35]:

“A component is a software element (modular unit) satisfying the following condi-
tions:

1. It can be used by other software elements, its ‘clients’.

2. It possesses an official usage description, which is sufficient for a client author to
use it.

3. It is not tied to any fixed set of clients.”

At the same time, standard component models like EJB [25, 36], COM [8] and CCM [6, 40]
adopt slightly different component definitions from ‘standard’ ones like Szyperski’s, and from
each other.

For future research it would therefore be crucial to clarify and unify the CBD terminology
and its definition. We believe that the starting point for this endeavour should be a thorough
study of current component models. In this report, we take this first step and present a clear
and concise exposition of these component models, including a taxonomy. The purpose is to
distill and present knowledge of current software component models, as well as to present an
analysis of their properties with respect to commonly accepted criteria for CBD. The taxonomy
also provides a starting point for a unified terminology.

The report is organised as follows. In Section 2 we present an abstract component model
which will serve as a reference model. In Section 3 we give a clear and concise exposition of all
the major current software component models. This is done in a uniform manner, following the
abstract model. Based on this exposition, in Section 4, we propose and discuss a taxonomy of
current software component models. In Section 5 we make our conclusion.

2 An Abstract Software Component Model

First we present an abstract component model as a reference framework for current component
models, which defines (and explains) terms of reference that we will use throughout this report.
The definitions are general, and should therefore be universally applicable. Furthermore, by and
large they follow (what we perceive as) consensus views, and therefore should not be contentious
or controversial.

A software component model should define:

e the syntar of components, i.e. how they are constructed and represented;
e the semantics of components, i.e. what components are meant to be;
e the composition of components, i.e. how they are composed or assembled.

We will consider the following software component models: JavaBeans [48], EJB, COM,
CCM, Koala [51, 50], KobrA [5], SOFA [42, 43], Architecture Description Languages [20, 34],
UML 2.0 [39, 16], PECOS [28, 37|, Pin [30] and Fractal [11, 12, 10].

2.1 The Syntax of Software Components

Obviously the language used for constructing components determines the syntactic rules for the
components. In a component model, therefore this language should be specified.

In current component models, the language for components tends to be a programming
language. For example in both JavaBeans and EJB, a component, respectively a bean and an
enterprise bean, is defined as a Java class.

2.2 The Semantics of Software Components

A generally accepted view of a software component is that it is a software unit consisting of
(i) a name; (ii) an interface; and (iii) code (Figure 1 (a)). The code implements the services

Name
Interface Name
Code Required > ,,,,,,,,,,,,,,, } Provided
Services Services

(a) (b)

Figure 1: A software component.

provided, or operations performed, by the component, and is not visible or accessible from
outside. The interface is the only point of access to the component, so it should provide all the

4

information that is necessary to use the component. In particular, it should specify the services
required by the component in order to produce the services it provides (Figure 1 (b)). Roughly
speaking, the provided services of a component are its output, while the required services are
its input. Required services are typically input values for parameters of the provides services.
The interface of a component thus specifies the dependencies between its provided and required
services. To specify these dependencies precisely, it is necessary to match the required services to
the corresponding provided services. This matching could be expressed by listing corresponding
services as ordered pairs (r1,p1),-.., (Tn,Pn), where each r; and p; is a set of services. In the
example in Figure 1 (b) this matching is made explicit by a dotted line joining corresponding
services.!

Note that in Figure 1 (b), our notation, whilst similar to UML, is different from UML.
Whereas in UML, every required service (represented by a socket) and every provided service
(represented by a lollipop) is regarded as a separate interface, we regard the interface as a
single entity that is the combined specification of all the required and provided services. Another
difference with UML is that we can explicitly specify dependencies (using a dotted line, as shown
in Figure 1 (b)) between provided and required services, whereas in UML such intra-component
dependencies cannot be represented.

Components are (sub)parts of a system, and as such are incomplete functional units. A sys-
tem, on the other hand, is a functionally complete unit that can be deployed in an environment.
In a system, the required services of a component may be provided by other components, but
they may also be inputs that must come from sources outside the system, i.e. they may be
system inputs. Similarly, the provided services of a component may go to other components,
or they may go outside the system, i.e. they may be system outputs. 1t is useful to distinguish
these services, so we will use the notation in Figure 2.

(a) component required service (b) component provided service —P
(c) system required service)= (d) system provided service —
(system input) (system output)

Figure 2: Required and provided services.

For example, the component in Figure 3 (a) has both component required and component
provided services, whereas the component in Figure 3 (b) behaves like a system by itself.

Name T
- D Name
L System input)}—---------- —) System output

(a) (b)

Figure 3: Examples of components.

Note that a component can have multiple required and multiple provided services, with
various combinations of dependencies. For example, the component in Figure 3 (a) requires a

'For simplicity we have just one (set of) required and one (set of) provided service(s) in this example.

system input for a service it provides for another component, and it requires a component service
for a system output it provides. For simplicity, in this report, we will use simple components
with just one required and one provided service.

In current component models, components tend to be objects in the sense of object-oriented
programming. The methods of these objects are the provided services. Because they cannot
specify their required services, these objects are usually hosted in an environment, e.g. a
container, which handles access to, and interactions between, components. As a result, the
semantics of these components is an enhanced version of that of the corresponding objects; in
particular they can interact with one another via mechanisms provided by the environment.

For example, in JavaBeans and EJB, although syntactically they are both Java classes, Java
beans and enterprise Java beans are different semantically. Semantically a Java bean is a Java
class that is hosted by a container such as BeanBox [47]. Java beans interact with one another
via adaptor classes generated by the container. Adpator classes link beans via events. An
enterprise Java bean, on the other hand, is a Java class that is hosted and managed by an EJB
container provided by a J2EE server [46], via two interfaces, the home interface and the remote
interface, for the enterprise bean. KEnterprise beans interact directly via method delegation
within the EJB container, and, through their remote and home interfaces, with remote clients,
also via method delegation.

2.3 The Composition of Software Components

In CBD, composition is a central issue, since components are supposed to be used as building
blocks from a repository and assembled or plugged together into larger blocks or systems. In
order to define composition, we need a composition language, e.g. [32]. The composition lan-
guage should have suitable semantics and syntax that are compatible with those of components
in the component model. In most of the current component models, there is no composition
language. JavaBeans, EJB, COM, CCM have no composition languages. Koala uses connectors
(and glue code) for composition. KobrA and UML 2.0 use UML notation. Architecture de-
scription languages (ADLSs) are of course (formal) composition languages [4], and PECOS and
Pin have ADL-like composition languages, viz. CoCo [28] and CCL [55] respectively.

In order to reason about composition, we need a composition theory (see discussion in [24]).
Such a theory allows us to calculate and thus predict the result of applying a composition
operator to components. Current component models tend not to have composition theories,
even those with a composition language.

2.3.1 The Life Cycle of Components

Composition can take place during different stages of the life cycle of components [18]. We
identify two main stages in this cycle, the design phase and the deployment phase.

e Design Phase.

In this phase, components are designed and constructed, and then may be deposited in
a repository if there is one. Components constructed in this phase are stateless, since
they are just templates (like classes) that cannot execute. The only data that they can
contain at this stage are constants. Nevertheless, (unlike classes) they can be composed
into composite components. If there is a component repository, then the constructed
components, including composite ones, have to be catalogued and stored in the repository
in such a way that they can be retrieved later, as and when needed.

e Deployment Phase.
In this stage, component instances are created by instantiating (composite) components
with initial data, so that they have states and are ready for execution. If there is a
component repository, then components have to be retrieved from the repository before
instantiation.

2.3.2 Composition in the Design Phase

In the design phase, components can be composed into composite components or system tem-
plates. A composite component is one with component required and component provided services
only, and is built from components that also only have component required and component pro-

CompositeName
NameK NameM

(a) A composite component.

SystemName
CompositeName
Namel NameK NameM NameN
= T 3 B 1D

(b) A system template.

Figure 4: Design phase composition.

vided services (Figure 4 (a), where composition is represented by the connector 2). A composite
component is therefore a component of the type shown in Figure 1 (b). Composite components
form sub-parts of a system, and as such are useful for designing a system.?

A system template is a composition of (possibly composite) components which forms a
system, i.e. with system inputs and system outputs only (Figure 4 (b)). A system template is
therefore a component of the type shown in Figure 3 (a).

Composite components and system templates are both stateless, and can be stored in the
repository, and retrieved later. Composite components form sub-parts of a system, and are
therefore useful for designing a system. A system template represents the design of a whole
system. Therefore, composition in the design phase is concerned with the design of systems
and their sub-parts. If there is a component repository, then composite components can also be
stored in the repository, and retrieved later, like any components. In the design phase, a builder
tool can be used to (i) construct new components, and then deposit them in the repository;
and (ii) retrieve components from the repository, compose them and deposit them back in the
repository.

For example, in JavaBeans, the container provides a repository for beans, e.g. ToolBox
in the Beans Development Kit (BDK) [47, 45], which are stored as JAR files. However, no
composition is possible in the design phase, and therefore no composite beans can be formed.

2 Again, for simplicity the composite component here has only one (set of) required and provided service(s).

2.3.3 Composition in the Deployment Phase

In the deployment phase, composite components and system templates are retrieved from the
repository, and instantiated with data. These instances are thus initialised with states and
are ready for execution (like objects). Following UML, we use underlined names for instances
(Figure 5).

i:Name i:Name
Required component ——) Provided component System input)}~ —) system output
services services
(a) A component instance. (b) A system.

Figure 5: Instances of components.

Composition of these instances is done in the same way as component composition in the
Design Phase (Figure 6).

i:SystemName

i:CompositeName

i:Namel i:NameK i:NameM i:NameN

Figure 6: Deployment phase composition.

Component instances can be composed by an assembler tool and the result of composition
is a whole executable system. Instances of components or systems cannot be stored in the
repository. Rather, they are the end result of system design (design phase) and implementation
(deployment phase).

For example, in JavaBeans, in the deployment phase, bean instances are created from beans
in the repository, and these can be composed (linked) graphically using the builder tool.

3 Current Software Component Models

In this section, we describe existing software component models. Qur description of each model
follows that of the abstract model in the previous section. For each model, we also give an
example to illustrate the semantics and syntax of the components, and component composition
in both the design and deployment phases. Thus we describe all the models in a uniform way.

3.1 JavaBeans

3.1.1 The Semantics and Syntax of Java Beans

In Java Beans, a component is a bean, which is just any Java class that has:
e methods

e events

e properties.

A bean is intended to be constructed and manipulated in a visual builder tool.

Example 3.1.1 For example, consider a simple bean MessageBox that displays a message
when it is notified of the event ‘mousePressed’ by another bean. The MessageBox bean is a
Java class that has a method for displaying a message, mouse events such as ‘mousePressed’,
and the message it displays is a property of the bean which can be set by the programmer.

Note that MessageBox can be a complete system by itself, and this is true of any bean in
general.

Properties are local to a component, so do not figure in the bean’s interface. Events can be
source or target events. Source events in one bean can trigger (target) methods in another bean.
More precisely, an event listener (for a target event) in a bean, when notified by an external
source event (i.e. a source event in another bean), triggers a corresponding method in the bean.
Thus in a bean, target events and methods are provided services in the bean’s interface, and
external source events are the required services, i.e. required services are event sinks (Figure 7

(a)).

BeanName BeanName

. Event source / : Event source /
Event sink »——=-=--=-- —P Target methods Event sink)|—=-=--=---- —1) Target methods

Figure 7: Java beans.

Event sinks and event sources (and target methods) may also be system required services
and system provided services respectively. In particular, a bean may be a complete system by
itself (Figure 7 (b)).

So even though in general, in object-oriented programming, classes and objects just provide
services (methods) without specifying their required services (methods), in JavaBeans the beans
can specify their required services as events.

3.1.2 Composition of Java Beans

Individual Java beans are constructed as Java classes in a Java programming environment such
as Java Development Kit, and deposited in the ToolBox of the BDK, which is the repository for
Java beans. To execute or compose Java beans, the beans have to be dragged into a container
like BeanBox. More precisely, for each bean, a JAR file containing the bean implementation
class, the event state object and the event listener interface is deposited in the ToolBox of BDK.
Instances of a bean can be created by dragging the bean from the ToolBox, and these can be
executed or composed in the BeanBox.

Although the ToolBox acts like a repository, it does not support composition of beans.
So the only composition possible in JavaBeans is the composition of bean instances in the
deployment phase.

Deployment phase composition is handled by the Java delegation event model, which spec-
ifies how a bean sends a message to other beans without knowing the exact methods that the

other bean implements. To compose two chosen Java bean instances in BeanBox, one bean in-
stance must act as a source bean that can generate a source event, and a method must be chosen
in the other (target) bean instance which will be triggered by the source event. Of course, the
target method of the target or listener bean must match the event type of the source bean’s
method. The communication between the source and target beans is indirect, but is handled by
BeanBox automatically: BeanBox generates, compiles, and loads an event adaptor class, that
routes messages from the source bean to the target bean, to connect the source bean’s event to
the target bean’s event handler method (Figure 8).

BeanBox
SourceBean TargetBean
Generate Target

vent Method
E\EventAdaptor
Notify NotifiedEvent Trigger

Event Target Method
Call

Target Method

Figure 8: Deployment phase composition of Java beans.

Example 3.1.2 Consider the composition of two beans MessageBoxA and MessageBoxB,
which are examples of the MessageBox bean in Example A.1. In the design phase, these two
beans are developed and deposited into the ToolBox of BeanBox. No composition is possible
at this stage.

In the deployment phase, suppose an instance of MessageBoxA, which we will call Bean A,
is created with the property ‘Hello, I'm Bean A’, and an instance of MessageBoxB, which we
will call Bean B, is created with the property ‘Hello, I'm Bean B’, by dragging MessageBoxA
and MessageBoxB from the ToolBox (Figure 9 (a)).

¥ | BeanBox - %

File Edic | view seruices Help

Figure 9: Example of bean composition in JavaBeans.

To compose Beans A and B in BeanBox, we need to choose a bean to be the event source,
and the other the event target. Suppose we choose Bean B to be the event source (and therefore
Bean A is the event target). To do so, we select Bean B (indicated by highlighted border). Then
a source event in Bean B is chosen. Suppose the chosen event is ‘mousePressed’ (Figure 9 (b)).

10

% | BeanBox - M X . ¥ BeanBox M x
3 3 5 % EventTargetDialog x 3 5 =
File Edit Miew Seruices Help File Edit Wiew sefuices Help

Please chose atarget method;

remouenotify

tepaint
FEQUESLFOCHS

Helle, I'm bean A

show Test v
/ stop
.................... transferFacus S
4 o ualidate 7| | ks
¢ ’ - v "
’) v’ v o’
r) v el :
Y Y cancel oK ” I

(c) (d) (e)

Figure 10: Example of bean composition in JavaBeans (continued).

Next Bean B is linked to Bean A (Figure 10 (c)). To do this a target event or method in
Bean A is chosen that will be a listener for the source event that has been selected in Bean B.
BeanBox shows all the candidate target events or methods in Bean A in the EventTargetDialog
box (Figure 10 (d)). Suppose the target method ‘showText’ is chosen.

The composition of Beans A and B is now complete, and BeanBox effects this composition
by automatically generating and compiling an adaptor class that connects Beans A and B. More
precisely, BeanBox creates a class that calls the ‘showText’ method in the target bean (Bean A)
whenever the event ‘mousePressed’ occurs in the source bean (Bean B). It then associates the
source and target beans with this “adaptor” object. The adaptor class thus serves as a connector
that calls the method ‘showText’ defined in Bean A whenever the event ‘mousePressed’ is fired
in Bean B (see also Figure 10). Therefore, when Bean B is selected and the mouse is pressed,
Bean A displays the message ‘Hello, I'm beanA’ (Figure 10 (e)).

Conversely, if Bean B is chosen as the event target, and Bean A the event source, then
Bean B will display the message ‘Hello, I'm bean B’, when Bean A is selected and the mouse is
pressed.

3.1.3 Summary

In JavaBeans, a component is a Java class with methods, events and properties, intended to be
constructed and used in a visual builder tool. In the design phase, Java beans can be constructed
in a Java programming environment such as Java Development Kit and JAR files containing
class files for Java beans are deposited in the ToolBox of the BDK, which is the repository for
Java beans. There is no bean composition in the design phase. In the deployment phase, the
assembler is the BeanBox of the BDK, which can be used to compose bean instances by the
Java delegation event model.

3.2 Enterprise JavaBeans
3.2.1 The Semantics and Syntax of Enterprise Java Beans

In Enterprise JavaBeans (EJB), a component is an enterprise bean, which is a Java class that
is hosted and managed by an EJB container provided by a J2EE server. An EJB container
manages the execution of enterprise beans and handles security, transaction management, Java
Naming and Directory Interface (JNDI) lookups, and remote connectivity. JNDI lookup services

11

provide support for a client to locate the target enterprise beans. The J2EE remote connectivity
model handles the remote communication between the client and enterprise beans. Figure 11
shows an overview of EJB.

Client Machine J2EE Server

Client
Application

Client Application | |
Container Bean Bean

Figure 11: Overview of EJB.

Database

The Java class for an enterprise bean defines the methods of the bean. It must be accom-
panied by code for two interfaces, the home interface and the remote interface, that the EJB
container uses to manage and run the bean. These interfaces expose the capabilities of the bean
and provide all the methods needed for (remote) client applications to access the bean (over
a network). The home interface represents the life-cycle methods of the bean such as create,
destroy and locate a bean instance, while the remote interface represents the tasks performed
by the bean.

There are three different kinds of enterprise beans [25]:

e Entity beans
Entity beans model business data; they are Java objects that cache database information.
An entity bean represents a persistent business object whose data is stored in a database,
and adds behaviour specific to that data.

e Session beans
Session beans model business processes; they are Java objects that act as agents per-
forming tasks. A session bean represents a business process or an agent that performs a
service. It is different from an entity bean in that it does not represent persistent data.

e Message-Driven beans
Message-driven beans model message-related business processes; they are Java objects
that act as message listeners. A message-driven bean represents a business process that
can only be triggered by receiving messages from other beans. It is different from a session
bean in that it cannot be accessed through an interface.

Entity beans represent business objects in a persistent storage mechanism. Persistence
means that the entity bean’s state exists beyond the lifetime of the application. Typically, each
entity bean has an underlying table in a relational database, and each instance of the bean
corresponds to a row in that table. Entity beans can be shared by multiple clients and each
entity bean has a unique object identifier that is its primary key in the database. There are
two types of entity beans, corresponding to Container-Managed Persistence (CMP) and Bean-
Managed Persistence (BMP). With CMP, the container manages the persistence of the entity
bean. With BMP, the entity bean contains database access code and is responsible for reading
and writing its own state to the database.

Session beans are used to manage interactions with entity beans, access resources, and
generally perform tasks on behalf of the client. There are two types of session bean: Stateless

12

and Stateful. The state of an object consists of the values of its instance variables. Stateless
session beans do not even maintain a conversational state for the client, while stateful beans
retain conversational state for the duration of the client-bean session. The state is held in
secondary storage and is not persistent.

Message-Driven beans act as a Java Message Service (JMS) listeners that allow J2EE appli-
cations to process messages asynchronously. They are similar to event listeners except that they
receive JMS messages instead of events. A message-driven bean has only a bean implementation
class without home and remote interfaces.

Example 3.2.1 Consider a book store which wishes to maintain a database of its book stock.
Suppose books can be purchased and have their details added to the database by any shop
assistant. Then the book store can use a set of enterprise beans to implement a system that
allows multiple clients to access and update the database. For example, an entity bean, like the
one in Figure 12, can represent the table of books in a database.

BookBean
+isbn : String
+bookname : String
BookHome +author : String
+create(isbn : String) : Book +publisher : String
+findByPrimaryKey(isbn : String) : Book +price : double
—ctx : EntityContext
+ejbCreate(isbn : String) : String
Book +ejbPostCreate(isbn : String) : void
+getBookName() : String +getBookName() : String
+setBookName(bookname : String) : void +setBookName(bookname : String) : void
+getAuthor() : String +getAuthor() : String
+setAuthor(author : String) : void +setAuthor(author : String) : void
+getPublisher() : String +getPublisher() : String
+setPublisher(publisher : String) : void +setPublisher(publisher : String) : void
+getPrice() : double +getPrice() : double
+setPrice(price : double) : void +setPrice(price : double) : void

+setEntityContext(ctx : EntityContext) : void
+unsetEnityContext() : void

+ejbActiviate() : void

+ejbPassivate() : void

+ejbLoad() : void

+ejbStore() : void

+ejbRemove() : void

Figure 12: Entity bean for book store example.

The entity bean in Figure 12 consists of one class and two interfaces: (a) BookBean is the
Java class that defines the methods of the entity bean; (b) BookHome is the home interface of
the entity bean; and (c) Book is the remote interface of the entity bean. Each instance of this
entity bean represents a row of the table of books in a database. Methods defined in the home
interface BookHome are life-cycle methods: ‘create’ and ‘findByPrimaryKey’. Thus, the home
interface helps to create an instance of this entity bean and locate an instance of BookBean by
its primary key (isbn). Methods in BookBean correspond to methods defined in both the home
interface BookHome and the remote interface Book.?

Note that this entity bean can behave like a system by itself. For instance, when adding a
book into the table of books, the client can call the method ‘create’ defined in the home interface

3Persistence is managed by the bean if the ‘ejbLoad’ and ‘ejbStore’ methods in BookBean are implemented
by the bean provider. Otherwise, persistence is managed by the EJB container by default.

13

BookHome, which returns an instance of the remote interface Book, and then the client can
call the ‘set’ methods defined in Book to set BookName, Author, Publisher and Price of this
book, resulting in a new row inserted into the table of books in the database.

For this example, apart from the above entity bean, there may also be a session bean, like
the one in Figure 13, consisting of the class BookStoreBean, the home interface BookStoreHome

BookStoreHome BookStoreBean
+create() : BookStore —c : SessionContext
+addBook(boos : Books[]) : void
BookStore +setSessionContext(c:SessionContext):void
) +ejbCreate() : void
+addBook(books : Books]]) : void +ejbActivate() : void

+ejbPassivate() : void
Books +ejbRemove() : void
+isbn : String
+bookname : String
+author : String
+publisher : String
+price : double

+toString() : String

Figure 13: Session bean for book store example.

and the remote interface BookStore (and its helper class Books). BookStoreBean is used to
add details of a set of books into the table of books in the database. It therefore defines tasks
performed on the table of books. Since the latter is represented by the entity bean BookBean,
BookStoreBean is a stateless session bean that calls methods in the entity bean to complete
its tasks. The only method defined in the home interface BookStoreHome of BookStoreBean
is a life-cycle method: ‘create’, which creates an instance of BookStoreBean. The only method
defined in the remote interface BookStore of BookStoreBean is a task performed to add details
of a set of books into the database: ‘addBook’. As in an entity bean, method in a session bean
correspond to methods in its home and remote interfaces.

Note that although BookStoreBean cannot behave like a system by itself, in general a ses-
sion bean can do so if it does not have to perform tasks on the database, i.e. if it does not have
to call the methods of an entity bean. For example, if a session bean computes some numbers
and outputs them directly to the client, then it behaves like a system.

In general, in EJB a client can access an enterprise bean only through the methods defined in
the bean’s home and remote interfaces. These interfaces thus specify the provided services of an
enterprise bean. Some session beans may require methods defined in other beans to accomplish
a task, so the required services of an enterprise bean are external method calls (Figure 14 (a)).

EJBName EJBName Methods
External Methods in External ethods in
method >—---------—- —J) home and remote method) home and remote
calls interfaces calls interfaces

Figure 14: Enterprise Java beans.

Instead of coming from other beans, external method calls may come from a client, i.e. they
may be system required services. Similarly, methods in home and remote interfaces can also
produce outputs for the client or the database, i.e. they can be system provided services. So,

14

a single enterprise bean may behave like a system by itself (Figure 14 (b)).

More precisely, an entity bean can take method calls from a client or another enterprise
bean. It can call the methods of another enterprise bean, but it must send its output to the
database. A session bean can take method calls from a client or from another enterprise bean,
and it can call the methods of another enterprise bean and send outputs to the client.

3.2.2 Composition of Enterprise Java Beans

Enterprise beans are Java classes and interfaces, and bean composition is by delegation of
method calls. In the design phase, enterprise beans can be constructed in a Java programming
environment such as Eclipse [26] and their JAR files containing the enterprise bean implemen-
tation class, the home and remote interfaces, and the deployment descriptor 4 are deposited in
an EJB container on a J2EE server that is the repository of enterprise beans. If a bean, say
bean B, contains method calls to another bean, say bean A, then A must be deposited in the
container before B can be deposited (and A and B must be linked by a JNDI name). This is of
course to avoid dangling method calls, and it implies that in an empty EJB container, the first
bean that can be deposited must not contain method calls to other beans, i.e. it must be a bean
that only produces outputs (to the client or the database). Thus in the design phase, compo-
sition of enterprise beans must happen successively as one bean is added to the container at a
time, in such a way that the end result is a bean assembly that is a complete system template,
with input from and output to the client or database. The EJB container in Figure 15 shows
an example of design phase composition of two session beans, SessionBeanA and SessionBeanB,
and one entity bean, EntityBean, into a system template: SessionBeanA takes client calls and
EntityBean writes to the database.

J2EE Server
EJB Container
ClientApplicationA SessionBeanA

ClientApplicationB 8
-

ClientApplicationC
Figure 15: Design phase composition of enterprise Java beans.

In the design phase, although bean composition can produce composite beans ‘on the fly’
in the EJB container, it is not possible to store such a bean with its own identity and reuse it
as a single bean (with this identity) for further composition. However, individual beans in the

4 Apart from the class files for the bean and its home and remote interfaces, a JAR file also contains the XML
deployment descriptor, an XML Document Type Definition which is used to specify security, persistence and
transactions for the bean.

15

container in the repository phase are reusable, in the sense that every bean is accessible to clients
in the deployment phase, regardless of what other beans it is linked to, and whatever method
a client calls, the correct links will be automatically followed. This is illustrated by Figure 15.
When ClientApplicaitonA calls methodl in SessionBeanA, this causes SessionBeanA to call
methodl in SessionBeanB, which in turn causes SessionBeanB to call methodl in EntityBean.
Finally, EnitityBean writes to the database.

When ClientApplicationB calls methodM in SessionBeanB, the latter writes directly to an
output device.

When ClientApplicationC calls methodN in EntityBean, the latter writes to the database.

Thus although it is a repository for enterprise beans that supports design phase composi-
tion, the EJB container does not support the storage or retrieval of composite components as
identifiable units. The reason is that the container is also the execution environment for beans.

In the deployment phase, bean instances are created and executed in the EJB container;
there is no composition for bean instances.

Example 3.2.2 Consider the book store example in Example 3.2.1 again. In the design phase,
a system is deposited into the EJB container, consisting of an assembly of the session bean
BookStoreBean and the entity bean BookBean. The composition is defined by BookStoreBean
calling the methods ‘create’ and ‘set’ defined in the home interface BookHome and the remote
interface Book of BookBean (Figure 16).

J2EE server

EJB container

BookClient BookHome

BookStoreClient

BookStoreHome

BookStore

delegate
—_—

Figure 16: Example of EJB composition.

In the deployment phase, this system is looked up and instantiated. In this instance of
the system, the BookStoreClient calls the method ‘create’ defined in the home interface Book-
StoreHome of the BookStoreBean, which returns an instance of BookStore, the remote interface
of the BookStoreBean. Then the BookStoreClient calls the ‘addBook’ method defined in the
remote interface BookStore of the BookStoreBean. Within this call, the BookStoreBean adds
three books by iteratively calling the method ‘create’ defined in the home interface BookHome
of the BookBean, which returns instances of the remote interface Book of the BookBean. Then
the BookStoreBean calls the ‘set’ methods defined in the remote interface Book of the Book-
Bean to set BookName, Author, Publisher and Price of these books iteratively, resulting in
three rows of books inserted into the table books.

3.2.3 Summary

In EJB, a component is an enterprise Java bean, which is a Java class in an EJB container on a
J2EE server, together with two Java interfaces that the container uses to manage and execute
the Java class and its instances. Enterprise beans can be constructed in a Java programming

16

environment such as Eclipse. In the design phase, enterprise beans are composed by method
and event delegation, and JAR files for enterprise beans that are assembled into complete
system templates are deposited in the EJB container, which is the repository of enterprise
beans. In the deployment phase, bean instances are created and used by client applications.
No new composition is possible (see e.g. [17]), and so there is no assembler. The EJB container
provides the run-time environment for the bean instances.

3.3 Component Object Model
3.3.1 The Semantics and Syntax of COM Components

In Microsoft’s COM (Component Object Model), a component is a unit of compiled code (binary
object) on a COM server. The code of a COM component provides some services, possibly by
invoking the services provided by other components.® The language for the source code of a
component can be any programming language that supports function calls via pointers, e.g.
C, C++ and Ada.5 Services in a component are invoked via pointers to the functions that
implement the services.

A COM component has an interface [33] for every service it provides (it is said to implement
the interface), and the set of interfaces is the only point of access to the component’s services.
In COM, a component is a box with lollipops that represent the interfaces it implements, e.g.

IUnknown

Component
— Ifun2

Ifunl

Figure 17: A COM component.

the component in Figure 17 implements 3 interfaces.” COM interfaces are specified in Microsoft
IDL [8] (also known as COM IDL). Each interface specifies the signatures of the functions it
implements. A COM component is identified by globally unique identifier (GUID) that is either
a CLSID (a unique identifier for a component/class) or an IID (an identifier for an interface)
[22].

A COM component can implement multiple interfaces. Every component must implement
an IUnknown interface (e.g. the component in Figure 17). IUnknown is a special interface that
implements some essential functionality such as reference counting methods that can determine
if a component is being called by other components, and query methods that allow users to
dynamically discover what interfaces a component supports.

Example 3.3.1 For example, consider a spell checker system that is used to check the spelling
of a word. When a word is typed into the spell checker, it firstly looks for the corresponding
correctly spelt word in its dictionary, then compares the input word with this correct one, and
finally tells the user whether the input word is spelt correctly or not. This spell checker sys-
tem comprises a checker component and a dictionary component (Figure 18). The interfaces

SSomewhat confusingly, a COM component is called a component object, although it is not necessarily an
object in the object-oriented sense.

5Implementation language of COM components should be supported by Microsoft IDL.

"In COM, all interface names start with ‘I’ by convention.

17

of the checker and dictionary components are specified in Microsoft IDL. From the interfaces

import "unknwn.idl";
[object, uuid(CAB357AE-1204-4783-AC3F-A7E4CA19EF6C)]
interface I1SpellCheck : lUnknown {
HRESULT CheckSpelling([in, string] char *word,
[out, retval] BOOL *isCorrect);

}
[uuid(OEE7AE7-A357-4a04-B6D6-CE4DFD5CCAAF)]
library SpellcheckerLib {
[uuid(49FA65CD-8CF6-4876-8443-37A75A267A7D)]
coclass CSpellCheck {
interface 1SpellCheck;
}
h

import "unknwn.idl";
[object, uuid(D66AB784-75C8-4f52-8EB2-C5BE9796ABEF)]
interface IUseCustomDictionary : lUnknown {
HRESULT UseCustomDictionary([out, retval] vector <string>* dict);

[uuid(1C381680-CF29-46b1-8060-1237C36EA6C7)]

library CustomdictionaryLib {
[uuid(C51815AF-CB06-4028-956C—-C5F3E5781780)]

coclass CCustomDictionary {
interface IlUseCustomDictionary;

h

Checker component interface - ISpellCheck

Dictionary component interface — IUseCustomDictionary

Figure 18: Examples of COM components.

of the checker and dictionary components, it is clear that they both implement the IlUnknown
interface. The ISpellCheck interface of the checker component specifies the signature of the
CheckSpelling function that the checker component implements. The IUseCustomDictionary
interface of the dictionary component specifies the signature of the UseCustomDictionary func-
tion that the dictionary component implements.

In general, in COM, functions defined in a component’s interfaces are services provided
by the component, whilst external function calls from other components via interface pointers
are required services (Figure 19 (a)). Of course, external function calls maybe made by client
applications and the results returned to the clients, in which case a component behaves like

COMComponent)
Functions

S —) defined in

COM inteface

COMComponent)
Functions

| —{) defined in

COM inteface

External function
_ calls through
interface pointer

External function
 calls through
interface pointer

Figure 19: COM components.

a complete system, with client function calls as system required services and the functions it
implements as system provided services (Figure 19 (b)).

3.3.2 Composition of COM Components

COM components cannot directly interact with each other. Components always access other
components through interface pointers. An interface pointer is a pointer through which the
client of the component can access its functions in the interface. So, an interface of a component
is the only thing that can be publicly visible and the only point of communication with other
components. Thus, COM components are composed via method calls through their interface
pointers (Figure 20).

In the design phase, COM components are constructed in a programming environment such
as Microsoft Visual Studio .NET [53] and they are deposited in the COM server, which is the
repository of COM components. Components are composed by method calls through interface
pointers in the design phase. In the deployment phase, no new composition is possible, so there
is no assembler, and the COM server provides the run-time environment.

18

IUnknown IUnknown

__Componentl — Component2

Client
Reference

Figure 20: Composition of COM components.

As shown in Figure 20, COM components can be composed to a composite component or
a system template in the design phase. However, because the COM server does not support
storage of composite components and retrieval of components, so only atomic components and
system templates are exist in the repository. Component instances are not possible to composed
again in the deployment phase.

Example 3.3.2 Consider the spell checker system in Example 3.3.1 again. In the design
phase, a system is deposited into the COM server, consisting of an assembly of the checker
and dictionary component. The composition is defined by the checker component calling the
method ‘UseCustomDictionary’ defined in the interface IUseCustomDictionary of the dictionary
component (Figure 21).

#include <string.h> #include <fstream>

CSpellCheckimpl :: CSpellCheckimpl() { } r—>rCCustombDictionarylmpl :: CCustomDictionarylmpl() { }

CSpellCheckimpl :: ~CSpellCheckimpl() { } CCustomDictionarylmpl :: ~CCustomDictionarylmpl() { }

STDMETHODIMP_(ULONG) CSpellCheckimpl :: AddRef(void) { STDMETHODIMP_(ULONG) CCustomDictionarylmpl :: AddRef(void) {

} }

STDMETHODIMP_(ULONG) CSpellCheckimpl :: Release(void) { STDMETHODIMP_(ULONG) CCustomDictionarylmpl :: Release(void) {

} }

STDMETHODIMP CSpellCheckimpl :: Querylinterface(REFIID riid, void** ppv) { ~STDMETHODIMP CCustomDictionarylmpl :: QuerylInterface(REFIID riid, void** ppv) {
} }

STDMETHODIMP CSpellCheckimpl :: CheckSpelling(unsigned char* word, BOOL* isCorrect) { ~STDMETHODIMP CCustombDictionarylmpl :: UseCustomDictionary(vector<string>* p) {|
,,,,,,,,, » o *p = dictionary;

CCustombDictionary* pc = 0; returm NOERROR:

pc = new CCustomDictionarylmpl();
IUseCustomDictionary* pi = 0;
HRESULT hr;

hr = pc —> QueryInterface(lID_IUseCustomDictionary, (void**) &pi);
if(FAILED(hr)) return ERROR;

pi —> UseCustomDictionary(&m_dictionary);

Checker component implementation Dictionary component implementation
Figure 21: Example of composition of COM component.

In the deployment phase, this system is looked up and instantiated. In this instance of the
system, the spell checker client defines an interface pointer of the interface ISpellCheck of the
checker component, through which the client calls the function ‘CheckSpelling’ implemented
by the checker component. Then the checker component instance calls the function ‘UseCus-
tomDictionary’ implemented by the dictionary component through an interface pointer of the
interface IUseCustomDictionary of the dictionary component. Within this call, the checker
component compares the spelling of the input word with the words provided the dictionary
iteratively, and tells the user that the correctness of the spelling of the word input.

As an aside, we give a summary of COM-based technologies. Distributed Component Object
Model (DCOM) [44] is that part of COM that is concerned with enabling COM-based software

19

components to be used over a network. DCOM is quite similar to COM but with security
functionalities. Microsoft Transaction Server (MTS) [15] is distributed runtime environment for
COM or the COM application server. Windows Distributed InterNet Applications Architecture
(Windows DNA) [7] is a distributed applications development model that uses COM as its
integration technology, and uses Internet Information Server (IIS) [23], MTS, and Internet
Explorer to provide integration with the World Wide Web. COM+- [41] is the second generation
of COM. It includes a new set of features that integrate DCOM and MTS. ActiveX [14] is a
COM-based technology that has utility on the World Wide Web. OLE [14] is COM compound
document technology. .NET [56] is the platform for COM components and COM based products
to develop and deploy. So, the definition of component and the mechanisms of assembly for all
those COM related Microsoft technologies are the same as COM. Therefore, in this survey, we
present COM as a standard Microsoft software component model.

3.3.3 Summary

In COM, a component is a piece of compiled code that provides some services, that is hosted
by a COM server. COM components are constructed in a programming environment such
as Microsoft Visual Studio .NET. In the design phase, COM components are composed by
method calls through interface pointers and they are deposited in the COM server, which is the
repository of COM components. In the deployment phase, no new composition is possible, so
there is no assembler, and the COM server provides the run-time environment.

3.4 CORBA Component Model
3.4.1 The Semantics and Syntax of CORBA Components

In CORBA Component Model (CCM), a component is a CORBA meta-type that is an extension
and specialisation of CORBA Object, that is hosted by a CCM container on a CCM platform
such as OpenCCM [38]. Component types are specific, named collections of features that can
be described in OMG IDL 3. A component is denoted by a component reference, which is
represented by an object reference. A component definition is a specialisation and extension of
an interface definition, but only supports single inheritance. A component type encapsulates
its internal state and implementation. A component type can be instantiated to create concrete
entities (instances) with state and identity. Components can be constructed in any object-
oriented programming languages that have mappings from OMG IDL 3.

Component interfaces are made up of ports through which clients and other components
may interact with them (Figure 22). The CORBA Component Model supports four kinds of

eventsink = — — facet
event source §— —(receptacle

Figure 22: A CORBA component.
ports:

e Facets are distinct named interfaces provided by the component for client interaction.
They are the provided operation interfaces of the component.

20

e Receptacles are named connection points that describe the component’s ability to use
a reference supplied by some external agent. They are the required operation interfaces
of the component.

e Event Sources are named connection points that emit events of a specified type to one
or more interested event consumers, or to an event channel. They publish or emit events.

e Event Sinks are named connection points into which events of a specified type may be
pushed. They consume events.

CORBA components have homes that are component factories to manage a component
instance life cycle including creation, destruction, and retrieval of component instances. Every
component instance must be managed by a home instance.

Example 3.4.1 Consider a simple bank system which has just one ATM that serves one
bank consortium. The bank consortium has two bank branches Bankl and Bank2. This bank
system is being implemented by ATM, BankConsortium, Bankl and Bank2 components (Fig-
ure 23). The attributes, facets, receptacles, event sinks and event sources of components ATM,

interface Bank { enum BankState {
string getBanklID(string cardno); IsCustomer, NotCustomer
void deposit(string cardno); }

void withdraw(string cardno); eventtype Accountinfo {
void checkBalance(string cardno); public string cardno;
} public BankState customerinfo;
component ATM { h
attribute string atmid,;
uses Bank getBankID;
consumes Accountinfo customer; component BankConsortium {

h attribute string bankconsortiumid;
home ATMhome manages ATM { provides Bank getBankiD;

factory new(in string atmid); uses Bank deposit;

k uses Bank withdraw;

provides Bank checkBalance;
publishes Accountinfo customer;

component Bank {
attribute string bankid;

prov?des Bank dc.eposit; home BankConhome manages BankConsortium {
provides Bank withdraw; factory new(in string bankconsortiumid);
provides Bank checkBalance; Y

h
home Bankhome manages Bank {
factory new(in string bankid);

Figure 23: Examples of CORBA components.

BankConsortium, Bankl and Bank?2 are specified in OMG IDL 3 respectively. The instantiation
of those components are managed by their component homes.

In general, the provided services of a CORBA component are specified in its Facets and
Event Sources and the required services of a CORBA component are specified in its Receptacles
and Event Sinks. A CORBA component may have its local state consisting of the values of its
variables. Thus in CORBA Component Model, facets and event sources are provided services

21

in a CORBA component interface, whilst receptacles and event sinks are required services
(Figure 24 (a)). A component in CCM may have system inputs and system outputs, so a

CORBAComponent CORBAComponent
Facets and ; 77777777777777777 ' Receptacles and Facets and E 77777777777777777 B Receptacles and
Event Sources Event Sinks Event Sources Event Sinks

Figure 24: Required and provided services of CORBA components.

CORBA component can behave like a system by itself (Figure 24 (b)).

3.4.2 Composition of CORBA Components

In CCM, components are constructed in a programming environment such as Open Production
Tool Chain hosted and managed by a CCM platform such as OpenCCM. The repository of
CORBA components is a CCM container hosted and managed by an application server, and
CORBA components are assembled by method and event delegations in a way that facets
match receptacles and Event sources match Event sinks in the design phase (Figure 25). In

Y

&)

7‘7
Figure 25: Composition of CORBA components.

the deployment phase, the CCM container provides the run-time environment. The CCM
container encapsulate CORBA components from client applications. Any component access is
done through a CCM container provided by an application server that provides system services
like a run-time environment, multiprocessing, load-balancing, device access, provide naming and
transaction services and make containers visible. CORBA components use a CCM container to
implement component access to system services.

There are two basic types of containers:

e transient containers that may contain transient, non-persistent components whose
states are not saved at all; and

e persistent containers that contain persistent components whose states are saved be-
tween invocations.

Containers are defined in terms of how they use the underlying CORBA infrastructure and
thus are capable of handling services like transactions, security, events, persistence, life-cycle
services, and so on.

The container is a running piece of code that is installed on the server machine. CORBA
components are server-side objects; the system administrator installs components into the con-
tainer, which takes charge of them when they run. CCM containers are transactional, se-
cure, and persistent (Figure 26). Client applications find the CCM container that contains the
CORBA component through CORBA COS Naming Service. They create, or obtain a reference
to the component’s container through the component’s home interface. They then make use of
the CCM Container to invoke the component methods.

22

Client Machine Application Server

Client
Application

Figure 26: CCM container.

Example 3.4.2 Consider the simple bank system in Example 3.4.1 again. In the design phase,
components ATM, BankConsortium, Bank1l and Bank2 are constructed and deposited into a
CCM container. Components are composed by method and event delegations in a way that
facets match receptacles and Event sources match Event sinks in the design phase (Figure 27).
The composition of CORBA components is specified in Component Assembly Descriptor® that

e _—
/ (— Bankl
g _—
A\
| @ | /
ATM ~ BankConsortiu
- "&/ B
A\
\(— Bank2
e _—
A\

Figure 27: Example of composition of CORBA components.

is an XML file (Figure 28). In the deployment phase, instances of ATM, BankConsortium,
Bankl and Bank2 components are composed within the assembler in the same manner as their
composition in the design phase. The CCM container provides the run-time environment for
CORBA component instances.

3.4.3 Summary

In CORBA Component Model (CCM), a component is a CORBA meta-type that is an extension
and specialisation of CORBA object, that is hosted by a CCM container on a CCM platform
such as OpenCCM. In the design phase, components are constructed in a programming envi-
ronment such as Open Production Tool Chain hosted and managed by a CCM platform such as
OpenCCM. The repository of CORBA components is a CCM container hosted and managed by
an application server, and CORBA components are assembled by method and event delegations
in a way that facets match receptacles and Event sources match Event sinks in the design phase.
In the deployment phase, the CCM container provides the run-time environment for CORBA
component instances.

3.5 Koala
3.5.1 The Semantics and Syntax of Koala Components

In Koala (C[K]omponent Organizer and Linking Assistant) component model, a component is a
unit of design which has a specification and an implementation. Koala components are defined

8Because OMG IDL 3 cannot specify the actual components assembly. A component assembly descriptor is
a file, which is in XML, describing a set of component files, component instantiation and their assembly.

23

<?xml version = "1.0"?>
<IDOCTYPE component assembly BANKSYSTEM "“componentassembly.dtd">

<component assembly id = "banksys">

<description> bank assembly descriptor</description>

<componentfiles>
<componnetfile id = "ATM component™>
<filearchive name = "ATM.csd">
</componentfile>
<componnetfile id = "BankConsortium component">
<filearchive name = "BankConsortium.csd">
</componentfile>

<componnetfile id = "Bank component">
<filearchive name = "Bank.csd">
</componentfile>
</componentfiles>
<partitioning>
<homereplacement id = "ATMHome">
<componentfileref idref = "ATM Component"/>
<componentinstantiation id = "atm">
<registerwithnaming name = "ATMHome"/>
</homereplacement>
<homereplacement id = "BankConsortiumHome">
<componentfileref idref = "BankConsortium Component"/>
<componentinstantiation id = "bankconsortium">
<registerwithnaming name = "BankConsortiumHome"/>
</homereplacement>

<homereplacement id = "BankHome">
<componentfileref idref = "Bank Component"/>
<componentinstantiation id = "bank1">
<componentinstantiation id = "bank2">
<registerwithnaming name = "BankHome"/>
</homereplacement>
</partitioning>

<connections>
<connectinterface>

<usesport>
<usesidentifier>getBankiD</usesidentifier>
<componentinstantiationref idref = "atm"/>
<usesidentifier>deposit</usesidentifier>
<usesidentifier>withdraw</usesidentifier>
<usesidentifier>checkBalance</usesidentifier>
<componentinstantiationref idref = "bankcon"/>

</usesport>

<providesport>
<providesidentifier>getBankiD</providesidentifier>
<componentinstantiationref idref = "bankcon"/>
<providesidentifier>deposit</providesidentifier>
<providesidentifier>withdraw</providesidentifier>
<providesidentifier>checkBalance</providesidentifier>
<componentinstantiationref idref = "bank"/>
</providesport>
</connectinterface>
<connectevent>

<publishesport>
<publishesidentifier>customer</publishesidentifier>
<componentinstantiationref idref = "bankcon"/>
</publishesport>

<consumesport>
<consumesidentifier>customer</consumesidentifier>
<componentinstantiationref idref = "atm"/>
</consumesport>

</connectevent>
</connections>
</component assembly>

Figure 28: The component assembly descriptor of the bank system.

in its Interface Definition Language (IDL), Component Definition Language (CDL) and Data
Definition Language (DDL) that are similar to Architecture Description Languages (ADLs).
Koala IDL is used to specify Koala component interfaces, its CDL is used to define Koala
components and its DDL specifies local data of Koala components. Semantically, components
in Koala are units of computation and control (and data) connected together in an architecture.
Syntactically, components in Koala are defined in an ADL-like language. Koala components
definitions are compiled by Koala compiler to their implementations in a programming language,
e.g. C.

In Koala, a component is represented as Figure 29. Interfaces are represented as squares
with triangle, the tip of triangle represents the direction of function call. A Koala component’s
interface specifies the signature of a set of functions implemented by the component.

24

v

Figure 29: A Koala component.

Example 3.5.1 For example, consider a Stopwatch device that is used to count down from
a specific number, e.g. 100. The Stopwatch device comprises a Countdown component and a
Display component. The interfaces of the Countdown and Display components are specified
in Koala IDL and their component definitions are in Koala CDL (Figure 30). The ICount

interface ICount {
int count(int x);
}
interface 1Signal {
void display(int signal);
interface ICount { }
int count(void); component Display {
} requires ICount dr;
provides ISignal dp;
componen_t Countdown { contains module d_impl present;
provides Icount cp; —d imnl-
. . . connects dr = d_impl;
contains module c_impl present; . o
= d_impl = dp;
connects cp = c_impl; }
Countdown component Display component

Figure 30: Examples of Koala components.

interface of the Countdown component specifies the signature of the function ‘count’ that the
Countdown component implements. The Countdown component definition defines its provides
interface ICount and its implementation ‘s_impl’. The ICount and ISignal interfaces of the
Display component specify the signatures of the function ‘count’ and ‘display’ that the Display
component implements. The Display component definition defines its requires and provides
interfaces and its implementation ‘d_impl’.

In general, in Koala, the provided services of a Koala component are its provides interfaces
and the required services of a Koala component are its requires interfaces as shown in Figure 31
(a). Alternatively, provides interfaces can also be system provided services, requires interfaces

Koala Component Koala component

Requires>7 ,,,,,,,,,,,,,,, 4} Provides Requires Eﬁ ,,,,,,,,,,,,,,, %} Provides

interfaces interfaces interfaces interfaces

Figure 31: Required and provided interfaces of Koala components.

can also be system required services. A Koala component may behave like a system by itself
(Figure 31 (b)).

25

3.5.2 Composition of Koala Components

In Koala, components are definition files that represent design units in the Koala language. The
repository for Koala components is the KoalaModel Workspace, which is a file system. In the
design phase, Koala components are composed by method calls through connectors. There are
three kinds of connectors: binding, glue code and switch.

e Binding is used to connect the required interface of a component to the provided interface
of the same type of another component.

¢ Glue code serves as an adaptor that connects the required interface of a component to
a provided interface of a different type of another component.

e Switch is a special glue code that switches binding between components.

Any combination of components is again a component, so, in fact, the combination of
components is a composite component. A Koala configuration is a list of components (part
list) and a list of connectors (net list) between components. In fact, a configuration is a system
template.

In Koala, connector binding is represented as a line, glue code is represented as a note with
“m” (for modules) and a switch connector is represented as a “switch” note. So, a composite
component is represented as shown in Figure 32.

I i

b 4 ¥
b]
— €«

i

Figure 32: Composition of Koala components.

Koala components are constructed as component definition files and deposited into KoalaM-
odel Workspace in the design phase. Koala components can also be retrieved from KoalaModel
Workspace and composed with other components to a composite component or a system tem-
plate that is then deposited back to the repository.

In the deployment phase, Koala components are compiled into a programming language,
e.g. C, and executed in the run-time environment of that language. No new composition of
component instances is possible.

Example 3.5.2 Consider the Stopwatch device in Example 3.5.1 again. In the design phase,
the Stopwatch device (Figure 33) is implemented by constructing a new Countdown component
and composing it with a Display component from the repository. The definition files for the
Display component are retrieved from the repository. (Definition files contain the definitions

26

Stopwatch

Countdown <] Display [«

Figure 33: Stopwatch device.

of interfaces, components and data.) Then the definition files for the Countdown component
are constructed. Using their definition files, Countdown and Display are composed by method
calls. This yields a definition file for Stopwatch (Figure 34). The definition files for Countdown
and Stopwatch are deposited into the KoalaModel WorkSpace.

component Stopwatch {
contains component Countdown c;
contains component Display d;
connects d.dr = c.cp;

}

Stopwatch configuration
Figure 34: Example of composition of Koala components.

In the deployment phase, the definition files of Stopwatch, Countdown and Display are com-
piled by the Koala compiler to C header files. Then the programmer has to write C files and
compile these with the header files to binary C code for Stopwatch.

In general, Koala component model is used to build a product population for consumer
electronics from repositories of pre-existing components, i.e. product lines.

3.5.3 Summary

In Koala, a component is a unit of design which has a specification and an implementation.
Koala components are constructed as component definition files and deposited into KoalaM-
odel Workspace, which is the repository of Koala components. In the design phase, Koala
components are composed by method calls through connectors. Koala components can also be
retrieved from KoalaModel Workspace and composed with other components to a composite
component or a system template that is then deposited back to the repository in the design
phase. In the deployment phase, no new composition is possible, so there is no assembler, and
Koala components are compiled into a programming language, e.g. C, and executed in the
run-time environment of that language.

3.6 SOFA
3.6.1 The Semantics and Syntax of SOFA Components

In SOFA (SOFtware Appliances) component model, a component is a unit of design which has
a specification and an implementation. A SOFA component is specified by its frame and archi-
tecture. The frame defines provides and requires interfaces, and properties of the component.
The frame can be implemented by more than one architecture. The architecture describes the

27

structure of the component. Semantically, components in SOFA are units of computation and
control (and data) connected together in an architecture.

SOFA components are defined in its Component Definition Language (CDL) that is similar
to Architecture Description Languages (ADLs). SOFA CDL is used to define interfaces, frames
and architectures of SOFA components. Syntactically, components in SOFA are defined in an
ADL-like language. SOFA components definitions are compiled by SOFA CDL compiler to their
implementations in a programming language, e.g. Java.

In SOFA, a component is represented as Figure 35. Interfaces are represented as rectangle
with black rectangle for provides interfaces and white rectangle for requires interfaces.

Figure 35: A SOFA component.

Example 3.6.1 For example, consider a Stopwatch device that is used to count down from
a specific number, e.g. 100. The Stopwatch device comprises a Countdown component and a
Display component. The Countdown and Display components are specified in SOFA CDL (Fig-
ure 36). The CountInterface of the Countdown component specifies the signature of the function

interface Countinterface {
int count(int x);

inter’face Signalinterface {
void display(int signal);

interface Countinterface { b
int count(void);
J5
frame Countdown {
provides:

frame Display {

requires:
Countinterface Count;

provides:

CountInterface Count;
5
architecture CUNI Countdown
version "1.0" primitive;

Signalinterface Signal;
I3

architecture CUNI Display
version "1.0" primitive;

Countdown component

Display component

Figure 36: Examples of SOFA components.

‘count’ that the Countdown component implements. The Countdown component frame defines
its provides interface Count. The CountInterface and Signallnterface of the Display compo-
nent specify the signatures of the function ‘count’ and ‘display’ that the Display component
implements. The Display component frame defines its requires and provides interfaces Count
and Signal. Since both Countdown and Display are primitive components in SOFA, so their
architectures only specify their version rather than their structure.

In general, in SOFA, the provided services of a SOFA component is its provides interfaces
and the required services of a SOFA component is its requires interfaces as shown in Figure 37
(a). Alternatively, provides interfaces can also be system provided services, requires interfaces
can also be system required services. A SOFA component may behave like a system by itself
(Figure 37 (b)).

28

SOFA Component SOFA component

Requires ; 7777777777777777 ' Provides Requires E 777777777777777 E Provides
interfaces interfaces interfaces interfaces

Figure 37: Required and provided interfaces of SOFA components.

3.6.2 Composition of SOFA Components

In SOFA, components are constructed in the builder tool SOFAnode. The repository of SOFA
components is the Template Repository. In the design phase, SOFA component composition is
by method calls through connectors. There are three types of predefined connectors: CSProc-
Call, EventDelivery and DataStream, and users can define their own connectors as well. A
combination of components can be a composed component, which is a composite component
and can also be a system, which is a system template.

In SOFA, connector is represented as an arrow, the direction of an arrow from a requires
interface to a provides interface represents the direction of method calls. So, a composite
component is represented as shown in Figure 38.

=

Figure 38: Composition of SOFA components.

In the deployment phase, SOFAnode provides the run-time environment for SOFA compo-
nents.

Example 3.6.2 Consider the Stopwatch device in Example 3.6.1 again. In the design phase,
the Stopwatch device (Figure 39) is implemented by constructing a new Countdown component

Countdown I<—U Display I

Stopwatch Architecture

Figure 39: Stopwatch device.

and composing it with a Display component from the repository. The definition files for the
Display component are retrieved from the repository. (Definition files contain the definitions of
interfaces, frames and architectures.) Then the definition files for the Countdown component
are constructed. Using their definition files, Countdown and Display are composed by method
calls. This yields a definition file for Stopwatch (Figure 40). The definition files for Countdown
and Stopwatch are deposited into the Template Repository.

In the deployment phase, the definition files of Stopwatch, Countdown and Display are
compiled by the SOFA CDL compiler to its default implementation, and it is complied to
binary code for Stopwatch.

29

system CUNI Stopwatch version "1.0" {

inst Countdown aCountdown;

inst Display aDisplay;

bind aDisplay.Count to aCountdown.count using CSProcCall;

L

Stopwatch device

Figure 40: Example of composition of SOFA components.

3.6.3 Summary

In SOFA, a component is a unit of design which has a specification and an implementation.
SOFA components are constructed as component definition files and deposited into Template
Repository of SOFAnode, which is the repository of SOFA components. In the design phase,
SOFA components are composed by method calls through connectors. SOFA components can
also be retrieved from Template Repository and composed with other components to a composite
component or a system template that is then deposited back to the repository in the design
phase. In the deployment phase, no new composition is possible, so there is no assembler,
SOFAnode provides the run-time environment for SOFA components.

3.7 KobrA
3.7.1 The Semantics and Syntax of KobrA Components

In KobrA Component Model, a component is a UML component. Every KobrA component
has a specification, which describes what a component does, and an implementation, which
describes how it does it. The specification of a KorbrA component describes all the properties
of its instances that are visible to other component instances, including the set of services
that the instances make available to other components (supplied or server interface), and the
set of server instances that the component instances need to acquire (imported, supplied or
used interface). So, the specification of a component is the interface of this component. The
specification of a component also defines the behaviour of the component including its local
state.

In KobrA, a component is represented in UML notation that is used as a kind of architecture
description language.

Example 3.7.1 For example, consider a book store which wishes to maintain a database
of its book stock and sell its books by an Automatic Teller Machine (ATM). Suppose books
details can be added to the database by any shop assistant. The specification of the BookStore

« subject >
BookStore

noOfBooks : Integer := 0

addBook(Book b)
addBooks(Book][] blist)
viewBooks()
deletBook(Book b)
findBook(Book b)

Figure 41: BookStore component.

30

component is in UML class diagram that specifies what the BookStore component does (Figure
41), it specifies the signature of methods that this BookStore component implements and also
its local state (instance variable noOfBooks).

In general, the provided services of a KobrA component is its supplied or server interfaces.
The required services of a KobrA component is its imported, supplied or used interfaces (Figure
42 (a)). Alternatively, imported, supplied or used interfaces can also be system required services,

g KobrAComponent Suoplied/ d KobrAComponent Suoplied/

Imported, upplie Imported, upplie

supplied/used »——---------------—- —) Server supplied/used)}—------------——-- —) Server
interfaces interfaces interfaces interfaces

Figure 42: KobrA components.

supplied or server interfaces can also be system provided services. A KobrA component may
behave like a system by itself (Figure 42 (b)).

3.7.2 Composition of KobrA Components

In KobrA, components are composed by direct method calls in the design phase. KobrA com-
ponents can be constructed in a visual builder tool such as Visual UML [52]. The repository
of KobrA components is a file system that stores a set of UML diagrams. It is not possible to
form a composite component in KobrA.

In the deployment phase, component implementations can be refined from their specifica-
tions. No new composition of component instances is possible.

Example 3.7.2 Consider the book store in Example 3.7.1 again, suppose the book store
system is being implemented by constructing a new ATM component and composing it with
BookStore and Book components from the repository. The specifications of the BookStore and
Book component are retrieved from the repository. Then the specification of the ATM com-
ponent is constructed. The components ATM, BookStore and Book are composed by direct

<« Komponent >

ATM « subject >
1) 1
* | Book
findBook(Book b) BookStore -

purchaseBook(Book b)

[y

Figure 43: Example of composition of KobrA components.
method calls to a book store system (Figure 43).
In general, KobrA component model is used to build a product family from repositories
of pre-existing components, i.e. product lines. KobrA systems are represented with many

commonalities and few differences. This idea captures the variability of system which enables
it to cope with evolution.

31

3.7.3 Summary

In KobrA, a component is a UML component. KobrA components are constructed as component
specifications and deposited into the repository, which is a file system that stores a set of UML
diagrams. In the design phase, KobrA components are composed by direct method calls. KobrA
components can also be retrieved from the repository and composed with other components to
a system template that is then deposited back to the repository in the design phase. It is not
possible to form a composite component in KobrA. In the deployment phase, no new composition
is possible, so there is no assembler, and KobrA component implementations are refined from
their specifications into a programming language and executed in the run-time environment of
that language.

3.8 Architecture Description Languages
3.8.1 The Semantics and Syntax of ADL Components

In Architecture Description Languages (ADLs), a component is an architectural unit that rep-
resents a primary computational element and data store of a system. Obviously in all ADLs,
components are defined in architecture description languages.

Component interfaces are defined by a set of ports through which their functionalities are
exposed. Each port identifies a point of interaction between the component and its environment.
A component may have multiple interfaces by using different types of ports, which express a
set of operations available on that component (Figure 44). Types are mechanisms for the

¥

Figure 44: An ADL component.

specification of recurring component, connector, port and role structures. Types of components
and their ports can be defined in a family that is a set of type definitions, which define the
design vocabulary of a system. Both functional and extra-functional attributes of a component
can be specified by property types defined in that component.

Example 3.8.1 Consider a simple bank system which has just one ATM that serves one
bank consortium. The bank consortium has two bank branches Bankl and Bank2. This bank
system is implemented by the ATM, BankConsortium, Bankl and Bank2 components in Acme
(Figure 45). Components ATM, BankConsortium, Bankl and Bank2 specify their ports, and
Bankl and Bank2 specify their bankid properties.

In general, the required services of a component are input ports and the provided services
of a component are output ports in ADL (Figure 46 (a)). Alternatively, input ports can also
be system required services and output ports can also be system provided services. An ADL
component can behave like a system by itself (Figure 46 (b)).

3.8.2 Composition of ADL Components

In ADLs, components are composed by connectors that model communication and interac-
tion between components. Connectors mediate the communication and coordination activities

32

Component BankConsortium = {
Component ATM = { Port receieve;
Port send; Port send;
} }
ATM component BankConsortium component
Component Bankl = { Component Bank2 = {
Port receieve; Port receieve;
Property bankid : String = Property bankid : String =
"Bank 1"; } "Bank 2";
Bankl1 component Bank2 component

Figure 45: Example of an ADL component in Acme.

ADLComponent ADLComponent
Input ports »>——-----—--------- —J Output ports System input) —-----------———- —J) System output

Figure 46: ADL components.

among components. Similar to components, connector interfaces are defined by a set of roles.
Each role of a connector defines a participant of the interaction represented by the connector.
There are both binary and n-nary connectors. A connector may have multiple interfaces by
using different types of roles. The types of connectors and their roles may be defined in a family.
Both connector and role attributes can be specified by property types defined in that connector.

In ADLs, there is no repository. In the design phase, components and connectors are (possi-
bly) constructed in a visual builder tool, e.g. AcmeStudio [13]. Unlike other component models,
component instances and their composition are not always defined, and their implementation
is not always specified. In the deployment phase, the implementation of components and con-
nectors can be done in various programming languages, and so the run-time environment in the
deployment phase is that for the chosen programming language.

Example 3.8.2 Consider the simple bank system in Example 3.8.1 again. In the design
phase, the architecture for the whole system is designed (Figure 47). This is done by using

[Ar-eie)

7D)
A = ATM component

B = BankConsortium component
C = Bank component 1
B = Bank component 2

Figure 47: Architecture of bank system.

components and connectors in Acme (Figure 48): components are units of computation (and
storage), whereas connectors define the interactions between the units (Figure 49).

In the deployment phase, implementations of the components and connectors in the system
are constructed from scratch, or alternatively mapped from specifications in Acme to imple-
mentations in ArchJava [1, 2] that can be compiled to instances of the components [3]. Then

33

Connector ATMtoBankCon = {

Role request;
Role produce;

}

Connector BankContoB1 = {

Role request;
Role produce;

}

Connector BankContoB2 = {

Role request;
Role produce;

}

Figure 48: Examples of ADL connectors in Acme.

instances of ATM, BankConsortium, Bankl and Bank2 are composed within the assembler in
the same manner as their composition in the design phase. If ArchJava components are used,
then the run-time environment is the Java Virtual Machine.

In general, in the design phase, components can be assembled by connectors to a composite
component or a system template.

For a composite component, a binding provides a way of associating a port on that com-
ponent with some port within its representation (components that form this composite com-
ponent). System templates may define properties which describe system-level attributes and
represent properties of the environment in which systems are operating. The graph of a system
(how everything is connected) is defined by a set of attachments. Each attachment represents
an interaction between a port and some role of a connector.

The ADL type model dictates that all instances of a type must define the properties declared
by the type, and include any structure mandated by the type. Typically, a family may define
a set of design rules that constrain how components can be assembled together by a set of
connectors, and they are encoded as properties, for using the family.

An Open Semantic Framework may be provided for reasoning about ADL specification such
as Acme [27]. In this framework, an ADL specification represents a derived predicate, called its
prescription. This predicate can be reasoned about using standard first-order logical machinery
or it can be compared for fidelity with real world artifacts that the specification is intended to
describe.

3.8.3 Summary

In Architecture Description Languages (ADLs), a component is an architectural unit that rep-
resents a primary computational element and data store of a system. Obviously in all ADLs,
components are defined in architecture description languages. Components are composed by
connectors that mediate the communication and coordination activities among components. In
ADLs, there is no repository. In the design phase, components and connectors are constructed
possibly in a visual builder tool. Components can be assembled by connectors to a represen-
tation (composite component) or a configuration (system template) in design phase. In the
deployment phase, no new composition is possible, so there is no assembler, the implementa-
tion of components and connectors can be done in various programming languages, and so the

34

System BankSys = {
Component ATM ={
Port send;
h
Component BankConsortium = {
Port receieve;
Port send;
h
Component Bankl = {
Port receieve;
Property bankid : String =
"Bank 1";
h
Component Bank2 = {
Port receieve;
Property bankid : String =
"Bank 2";
h
Connector ATMtoBankCon = {

Role request;
Role produce;

I

Connector BankContoB1 = {
Role request;
Role produce;
h
Connector BankContoB2 = {
Role request;
Role produce;
h
Attachments {
ATM.send to ATMtoBankCon.request;
ATMtoBankCon.produce to BankConsortium.receieve;
BankConsortium.send to BankContoB1.request;
BankContoB1.produce to Bankl.receieve;
BankConsortium.send to BankContoB2.request;
BankContoB2.produce to Bank2.receieve;

Figure 49: Example of composition of ADL components in Acme.

run-time environment in the deployment phase is that for the chosen programming language.

3.9 UML 2.0
3.9.1 The Semantics and Syntax of UML 2.0 Components

In UML2.0, a component is a modular unit of a system with well-defined interfaces that is
replaceable within its environment. A component defines its behaviour by one or more required
and provided interfaces (ports), every required service is represented by a socket and every
provided service is represented by a lollipop as shown in Figure 50. The required and provided
interfaces specify a formal contract of services for the component that requires from other
components in the environment or provides to its clients. Thus, they are the only access points
to components. In other words, components encapsulate services through their required and
provided interfaces. In UML2.0, a component is represented in UML notation that is used as a
kind of architecture description language.

35

[S5 —O
4<

Figure 50: A UML component.

Example 3.9.1 Consider a simple bank system which has just one ATM that serves one
bank consortium. The bank consortium has two bank branches Bankl and Bank2. This bank
system is implemented by ATM, BankConsortium, Bankl and Bank2 components (Figure 51).
Components ATM, BankConsortium, Bankl and Bank2 specify their required and provided

<< component >>
ATM

<< component >>
BankConsortium

<< provided interfaces >>
GetCardNo

<< required interfaces >>
CheckBankID

<< provided interfaces >>

CheckBankID
<< required interfaces >>

GetCardNo
Withdraw
Deposit
CheckBalance

<< component >>

<< component >>

Bankl Bank2
<< provided interfaces >> << provided interfaces >>
Withdraw Withdraw
Deposit Deposit
CheckBalance CheckBalance

Figure 51: Examples of UML 2.0 components.

interfaces.

In general, the required services of a component are defined by its required interfaces and
the provided services of a component are defined by its provided interfaces (Figure 52 (a).
Alternatively, provided interfaces can also be the system provided services and required inter-

UMLComponent UMLComponent
Required > ,,,,,,,,,,,,,,, } Provided Required } ,,,,,,,,,,,,,,, > Provided
interface interface interface interface

Figure 52: Required and provided services of UML 2.0 components.

faces can also be the system required services. A UML 2.0 component can behave like a system
by itself (Figure 52 (b)).

36

3.9.2 Composition of UML 2.0 Components

In UML2.0, components can be constructed in a visual builder tool such as Visual UML. In
the design phase, UML components are composed by UML connectors (Figure 53). Generally,

] E: O =]
]\% 4% O\[}O

Figure 53: Composition of UML 2.0 components.
there are two kinds of connectors:

¢ Assembly connector is used to connect the required interface of a component to the
provided interface of another component.

e Delegation connector is used to forward requested operations from the environment of
a component and provides services outside the component.

Like some ADLs, UML2.0 only specifies components and connectors, but does not provide
support for their implementation in the deployment phase.

Example 3.9.2 Consider the simple bank system in Example 3.9.1 again. In the design
phase, the architecture for the whole system is designed. This is done by using components and
assembly connectors (Figure 54).

SN

h

—O)— Bank1
= 2=
ATM BankConsortium\{O =

Oi
Oi

Bank2
Figure 54: Example of composition of UML components.

In the deployment phase, implementations of the components and connectors in the system
are constructed from scratch, or alternatively mapped from specifications in UML2.0 to imple-
mentations in a programming language, and so the run-time environment in the deployment
phase is that for the chosen programming language.

3.9.3 Summary

In UML 2.0, a component is a modular unit of a system with well-defined interfaces that
is replaceable within its environment. Components are represented in UML notation that

37

is used as a kind of architecture description language. In UML 2.0, there is no repository.
In the design phase, components can be constructed in a visual builder tool such as Visual
UML. Components are composed by UML connectors: delegation connectors and assembly
connectors. Components can be composed by assembly connectors to a composite component
or by delegation and assembly connectors to a system template. In the deployment phase, no
new composition is possible, so there is no assembler, the implementation of components and
connectors can be done in various programming languages, and so the run-time environment in
the deployment phase is that for the chosen programming language.

3.10 PECOS
3.10.1 The Semantics and Syntax of PECOS Components

In PECOS (Pervasive Component Systems) Component Model, a component is a unit of design
which has a specification and an implementation. The inputs and outputs of a component are
represented as ports. Components are composed by linking their ports with connectors. The
model is used for specifying and developing embedded systems of field devices represented as

software components.

Figure 55: A PECOS component in PECOS notation.

Every component in PECOS has a name, a number of property bundles,’ a set of ports,
and behaviour. In PECOS, a component is represented by a box with ports (Figure 55). Ports
are for data exchange, which is the only form of interaction between components with their
environment (and hence other components). A port is specified with a unique name within a
component, the type of the data passed over the port, the range of values that can be passed
on this port and the direction of the port, viz. in, out and inout. A port can only be connected
to another port having the same type and complementary direction.

The behaviour of a component is a function or an algorithm that takes data available on the
component ports, or some internal data, and produces data on the component ports. Depending
on how their behaviour is triggered and where they are run, components are classified into three
kinds:

e Passive Components
A passive component does not have its own thread of control. Passive components are typ-
ically used to encapsulate a piece of behaviour that executes synchronously and completes
in a short time-cycle.

e Active Components
An active component is a component with its own thread of control. Active components
are typically used to model either very fast or very slow activities such as reading out
hardware registers or writing to slow memory.

9Used to store meta information about the component, such as worst-case execution times, memory consump-
tion, or scheduling information.

38

¢ Event Components
An event component is like an active component, but the execution of the behaviour is
triggered by an event. Whenever the event fires, the behaviour is executed immediately.

In PECOS, the CoCo language (Component Composition Language) [28] is used to specify
components. Like ADLs, CoCo specifies only the properties and ports of a component,'® but
not its behaviour. The behaviour of a component has to be filled in (implemented) by the
programmer.

Example 3.10.1 A clock component may be specified in CoCo as follows [28]:

component Clock {
properties {
memSize = 32;
description = "This is my first clock.";
}
output long msecs;

}

This is a passive component with two properties attached, viz. memSize and description, and
an output port msecs of type long.

PECOSComponent
Input ports >—EEEEEEEEEEEEEE— —) Output ports

Figure 56: PECOS components.

The PECOS component model is thus data-flow oriented: components exchange data with
their environment (and hence other components) through ports. The ports of a component are
the only means of interaction with other components. Thus a component’s interface is given
by its set of ports. The required services of a component are its input ports and the provided
services of a component are its output ports (Figure 56). Note, however, that because ports are
data channels, there may be no explicit dependency between input and output ports. Note also
that components may have no input ports or no output ports. For example, a component like a
clock in Example 3.10.1 simply outputs time at regular intervals, without any inputs, whilst a
display unit may take inputs from the clock, display the time, but not send any data to another
component.

3.10.2 Composition of PECOS Components

In PECOS, there is no component repository. Each system or component is specified in CoCo in
a top-down manner, in terms of compositions of sub-components. Since CoCo does not specify
the behaviour of components, the CoCo specification of the entire system is a syntactic specifi-
cation of the composition of the sub-components. Since there is no repository, this composition
is design-time composition, rather than repository phase composition. The (sub)components
have no implementation at this stage.

0 And connectors, in the case of composite components.

39

Components are composed by connectors that link their ports. A connector describes a
data-sharing relationship between ports. It is described by its name, its type and a list of
ports it connects. A connector may only connect two ports if the in-port and the out-port have
compatible data types. Ports of components can only be connected if they belong to the same
parent component, i.e. connectors may not cross component boundaries.

A complete system typically represents a device running in a control loop. It must have a
schedule that specifies the order in which its behaviour and the behaviour of its sub-components
are run. Therefore, in the deployment phase, to realise an executable system from its CoCo
specification, the behaviour of sub-components has to be implemented by the programmer,
and a schedule must then be provided for the system, and any subsystem that contains sub-
components. No new composition is possible at this stage.

Example 3.10.2 Figure 57 shows a PECOS system, called Device, with the following CoCo
specification:

active component Device {
Clock clock;
Display display;
DigitalDisplay digitalDisplay;
EventLoop eventLoop;

connector time (clock.msecs, display.time, digitalDisplay.time_in_msecs) ;
connector eventLoop_started (eventLoop.started, digitalDisplay.can_draw) ;

Device
(active component, period = 1000 msecs)

Clock <)msecs time< > Display

Digital
Display

EventLoop " time_in_msecs
(active component)
(aperiodic)

started can_draw

Figure 57: Example of design time composition in PECOS.

There are four sub-components in this device: Clock, Display, EventLoop and DigitalDisplay.
The Clock component is used to provide the time. The Display component is used to display
the time. The EventLoop component is an active component used to handle graphical events
such as mouse click and repaint events. The DigitalDisplay component is used to display the
time digitally. The CoCo specification of these components are as follows:

component Clock { component Display {
output long msecs; input long time;

} }

active component EventLoop { component DigitalDisplay {

40

output bool started; input long time_in_msecs;
} input bool can_draw;

}

The system Device has no ports because it is the application to be run. The application is
complete when all the components have been implemented (in Java or C++), and a schedule
has been provided for Device.

3.10.3 Summary

In PECOS, a component is a unit of design which has a specification and an implementation.
Components are defined in an ADL-like language called CoCo and constructed in a program-
ming environment such as Eclipse. In the design phase, components are composed by linking
their ports with connectors. There is no repository in PECOS. Implementation of PECOS com-
ponents is usually done in Java or C++, and so the run-time environment in the deployment
phase is that for Java or C++.

3.11 Pin
3.11.1 The Semantics and Syntax of Pin Components

In Pin component model, a component is an architectural unit that specifies a stimulus-response
behaviour by a set of ports (pins). Components are defined in CCL (Construction and Composi-
tion Language) [55] that is essentially an architecture description language. In Pin, a component
is represented by a set of sink pins and source pins together with the component’s behaviour
(Figure 58). Like ports of ADLs, pins are the interaction points of components. Sink pins are

,,,,,,,,,,,,

Figure 58: A Pin component in Pin notation.

used to receive communication (stimuli) and source pins are used to initiate communication
(responses) with its environment. Each pin has a data interface that describes the data type,
which has a parameter-passing mode, where mode is one of In, Out, InOut. The behaviour of
a component is described by parallel or interleaved composition of its reactions that specify the
stimulus-response behaviour of a component on its sink and source pins.

Example 3.11.1 Consider a simple component AComp as shown in Figure 59. The compo-
nent AComp is specified with both structural and behavioural aspects in CCL. Structurally, it
has one asynchronous sink pin, receive, and two synchronous (unicast) source pins, send and
publish. Behaviourally, it has a threaded reaction mission (a thread is a unit of concurrency)
that takes receive, send and publish as parameters. A threaded reaction represents state tran-
sitions: when an event is observed, the corresponding action is taken.

In general, the required services of a component in Pin are sink pins and the provided
services are source pins (Figure 60 (a)). Alternatively, sink pins can also be system required

41

component AComp() {
sink asynch receive();
source unicast send();
source publish();
threaded react mission (
receive, send, publish) {

start —> ready { }

ready —> work {
trigger “receive();
action “send();

work —> log {

trigger "send();
action “publish();

log —> ready {

trigger “publish();
action “receive();

}
}
}

Figure 59: An example of a Pin component.

PINComponent PINComponent

Sink pins »>——=-------------- —) Source pins Sink pins)|—--------------- —{) Source pins

Figure 60: Required and provided services of Pin components.

services, source pins can also be system provided services. A component in Pin component
model may behave like a system by itself (Figure 60 (b)).

3.11.2 Composition of Pin Components

In Pin, components can not directly interact with each other. Components always access other
components through their pins. In the design phase, components are composed by connectors
that link source pins of one component to the sink pins of another (Figure 61). Generally there

Figure 61: Composition of Pin components.

are two kinds of connectors in Pin:

42

e Synchronous connector is used to connect one source pin of a component to one sink
pin of another;

e Asynchronous connector is used to connect one source pin of a component to multiple
sink pins of another.

An assembly (composite component) can be composed by components and connectors in
the design phase. The source and sink pins of an assembly defines the services that are provided
to and required from its environment. Only components within the same assembly can interact
with each other. The pins of an assembly are connected with the pins of its components by
assembly junctions. Generally there are two kinds of assembly junctions:

e null junctions are used to connect components having the same environment type;

e gateway junctions are used to connect components in different types of environments.

In Pin, components and connectors are specified in CCL and so their implementations are
usually generated by the CCL processor. There is no repository in Pin. In the deployment
phase, components are executed in the Pin run-time environment.

Example 3.11.2 Consider the simple bank system in Example 3.11.1 again. In the design
phase, components compl and comp2 of type AComp are composed by connectors that link
compl’s source pin, send, to comp2’s sink pin, receive, to an assembly AComposite. Both
compl and comp?2 function within the same environment (viz. E) as the assembly AComposite
(Figure 62).

enviroment E {

service Receive() {

source unicast receive();)
threaded react received(receive) {

start —> ready {};

ready —> work {; assembly AComposite() (E) {
action “‘receive; assume {
} E: Send compositesend();
} work —>ready {}; E: Receive compositereceive();
, }
service Send() { . AComp compl(), comp2();
sink asynch send(); . compositesend:receive ~> compl:receive;
threaded react sending(send) { complL:send ~> comp2:receive;
start > ready {}; compl:publish ~> compositesend,;
ready —> work {; . .
. comp2:publish ~> compositesend,;
action “send; }
}

work —> ready {};

}

Figure 62: Example of composition of Pin components.

In the deployment phase, implementations of the components and connectors are generated
by the CCL processor and executed in the Pin run-time environment.

43

3.11.3 Summary

In Pin, a component is an architectural unit that specifies a stimulus-response behaviour by a
set of ports (pins). Components are defined in CCL that is essentially an architecture descrip-
tion language. In the design phase, components are composed by connectors that link source
pins of one component to the sink pins of another. There is no repository in Pin. In the de-
ployment phase, implementations are usually generated by the CCL processor and components
are executed in the Pin run-time environment.

3.12 Fractal
3.12.1 The Semantics and Syntax of Fractal Components

In Fractal, a component is a run-time entity that behaves like an object. Interface Definition
Languages (e.g. OMG IDL) are used to define generic interfaces that can be implemented by
components in specific programming languages. Current Fractal API is extended and modified
from Java API with JavaBeans-like introspection facilities.

A Fractal component comprises a content and a controller (Figure 63). The content of a

content

controller

Figure 63: A Fractal component.

component contains its interfaces and implementation. The interfaces of a component are the
only access points for other components to invoke operations defined by the component. The
controller of a component defines the control behaviour associated with this component. In
particular, it intercepts incoming and outgoing operation invocations and operation returns
targeting or originating from the component’s content it controls.

A Fractal component can implement multiple interfaces. A parametric component is a com-
ponent whose attributes can be set by its clients. A parametric component should implement
an AttributeController interface.

Example 3.12.1 For example, consider a Stopwatch device that is used to count down from
a specific number, e.g. 100. The Stopwatch device comprises a Countdown component and a
Display component (Figure 64). The component Countdown provides an interface to output
the number that it is counting. It can be parameterised by one attribute: a “total” attribute to
configure the initial number that it starts to count down from. The other component Display
uses the Countdown component to print the number that the Countdown component is counting,.

In general, in Fractal component model, functions defined in a component’s interfaces are
services provided by the component, whilst external function calls from other components via
interfaces are required services (Figure 65 (a)). Of course, external function calls may be made
by client applications and the results returned to the clients, in which case a component behaves
like a complete system, with client function calls as system required services and the functions
it implements as system provided services (Figure 65 (b)).

44

public interface Count {
void count ();

public interface ControlTotal extends AttributeController {
int getTotal ();
void setTotal (int total);

public class Countdown implements Count, ControlTotal

private int total = O;
public void count () {
for (inti=total;i>0; i—-) {
System.out.print(i);
}
}
public int getTotal () {
return total;
}

public void setTotal (final int total) {

public interface Signal {
void display ();

public class Display implements Signal, BindingController {
private Count count;
public void display () {
count.count();

public String[] listFc () {
return new String[] {"c"};
}
public Object lookupFc (final string disstr) {
if (disstr.equals("c")) {
return count;

} return null;

public void bindFc (final string disstr, final Object countobj) {
if (disstr.equals("c")) {
count = (Count)countobyj;
}
public void unbindFc (final string disstr) {
if (disstr.equals("c")) {

. count = null;
this.total = total;
} }
} }
Countdown component Display component
Figure 64: Examples of Fractal components.
. FractalComponent

External FractalComponent Fufr.lctlons External Functions
function oL) defined in function H—---------------- —{) defined in
calls via component calls via component
interface interface interface interface

Figure 65: Required and provided interfaces of Fractal components.

3.12.2 Composition of Fractal Components

In Fractal, components are constructed in a programming environment with Fractal APIs.
Fractal components are composed by method calls through connectors in the design phase
(Figure 66). In the deployment phase, no new composition is possible, so there is no assembler,

the Java Virtual Machine serves as the run-time environment for Fractal components.

Example 3.12.2 Consider the Stopwatch device in Example 3.12.1 again. In the design phase,
the Stopwatch device (Figure 67) is implemented by constructing and composing Countdown
component and Display component. Component instances (objects) are created and instanti-
ated from component templates. The instances of Countdown and Display are composed by

method calls (Figure 68).

In the deployment phase, no new composition of component instances is possible, and the

Java Virtual Machine serves as the run-time environment for Fractal components.

45

Figure 66: Composition of Fractal components.

[}

—{ Countdown F —{ Display }—

Signal

Figure 67: Stopwatch device.

3.12.3 Summary

In Fractal, a component is a run-time entity that behaves like an object. Components are
constructed in a programming environment with Fractal APIs. In the design phase, Fractal
components are composed by method calls through connectors. In the deployment phase, no
new composition is possible, so there is no assembler, and Java Virtual Machine provides the
run-time environment.

4 Towards A Taxonomy

Having described current software component models in a uniform way, i.e. with reference
to the abstract model (Section 2), we can now attempt a taxonomy. Clearly, we can classify
existing models according to component syntax, semantics or composition. This classification
should provide the basis for a meaningful taxonomy. In this section, we first present the three
categories based on component syntax, component semantics, and component composition, and
then argue that a meaningful taxonomy should be based on component composition, because
it is central to CBD. We then present such a taxonomy.

4.1 Categories based on Component Syntax

Based on component syntax, current models fall into three categories: (i) models in which
components are defined by object-oriented programming languages, (ii) those in which an IDL
(interface definition language) is used and in which components can be defined in programming
languages with mappings from the IDL; and (iii) those in which components are defined by
architecture description languages (Figure 69).

Component models that belong to (i) are JavaBeans and EJB, where components are im-
plemented in Java.

46

Component boot = Fractal.getBootstrapComponent();

TypeFactory tf = (TypeFactory)boot.getFcInterface("type—factory");

ComponentType deviceType = tf.createFcType(new InterfaceType][] {
tf.createFcltfType("s", "Signal", false, false, false);

ComponentType displayType = tf.createFcType(new InterfaceType[] {
tf.createFcltType("s", "Signal", false, false, false),
tf.createFcltType('c", "Count", true, false, false)});

ComponentType countdownType = tf.createFcType(new InterfaceType]] {
tf.createFcltType("c", "Count", false, false, false),
tf.createFcltType("total-controller”, "ControlTotal", false, false, false)});

GenericFactory cf = (GenericFactory)boot.getFcInterface("generic—factory");

Component deviceTmpl = cf.newFclnstance(deviceType, "deviceTemplate",
new Object[] {"composite”, "Device"});

Component displayTmpl = cf.newFclnstance(displayType, "displayTemplate",

new Object[] {"primitive", "Display"});
Component countdownTmpl = cf.newFclnstance(countdownType, "countdownTemplate"”,

new Object[] {"parametricPrimitive", "Countdown'?});

ControlTotal ct = (ControlTotal)countdownTmpl.getFcInterface("total-controller");
ct.setTotal(100);
ContentController cc = (ContentController)deviceTmpl.getFclnterface("content—controller");
cc.addFcSubComponent(display Tmpl);
cc.addFcSubComponent(countdownTmpl);
((BindingController)deviceTmpl.getFcInterface("binding—controller")).bindFc("s", displayTmpl.getFcinterface("s"));
((BindingController)displayTmpl.getFcinterface("binding—controller")).bindFc("c", countdownTmpl.getFcinterface('c"));
Component stopwatchdevice = ((Factory)deviceTmpl.getFcInterface("factory")).newFcInstance();

(LifeCycleController)stopwatchdevice.getFclInterface("lifecycle—controller")).startFc();
((Signal)stopwatchdevice.getFcinterface("s").display();

Stopwatch Device

Figure 68: Example of composition of Fractal components.

Component models that belong to (ii) are COM, CCM and Fractal. These models use IDLs
to define generic interfaces that can be implemented by components in specific programming
languages. COM uses the Microsoft IDL [8], CCM uses the OMG IDL [40], whereas Fractal
can use any IDL.

Component models that belong to (iii) are ADLs, UML2.0, KobrA, Koala, SOFA, PECOS
and Pin. Obviously in all ADLs, components are defined in architecture description languages.
In UML2.0 and KobrA, the UML notation is used as a kind of architecture description language,
and components are defined by UML diagrams. In Koala and SOFA, components are defined in
ADL-like languages. In PECOS, components are defined in CoCo, whilst in Pin, components
are defined in CCL. CoCo and CCL are composition languages that are essentially architecture
description languages.

The main difference between these categories is that components in (i) and (ii) are directly

executable, in their respective programming languages, whereas components in (iii) are only
specifications, which have to be implemented somehow using suitable programming languages.

47

Component Syntax Models
Object-oriented Programming Languages |JavaBeans, EJB

Programming Languages with IDL mappings | COM, CCM, Fractal

Architecture Description Languages ADLs, UML2.0, KobrA, Koala,
SOFA, PECOS, Pin

Figure 69: Categories based on component syntax.

4.2 Categories based on Component Semantics

Based on semantics, component models can be grouped into three categories: (i) component
models in which components are classes; (ii) models in which components are objects; and (iii)

Component Semantics Models

Classes JavaBeans, EJB

Objects COM, CCM, Fractal

Architectural Units ADLs, UML2.0, KobrA, Koala, SOFA, PECOS, Pin

Figure 70: Categories based on component semantics.

those in which components are architectural units (Figure 70).

Component models that belong to (i) are JavaBeans and EJB, since semantically compo-
nents in these models are special Java classes, viz. classes hosted by containers.

Component models that belong to (ii) are COM, CCM and Fractal, since semantically com-
ponents in these models are run-time entities that behave like objects. In COM, a component
is a piece of compiled code that provides some services, that is hosted by a COM server. In
CCM, a component is a CORBA meta-type that is an extension and specialisation of a CORBA
object, that is hosted by a CCM container on a CCM platform such as OpenCCM. In Fractal,
a component is an object-like run-time entity in languages with mappings from the chosen IDL.

Component models that belong to (iii) are ADLs, UML2.0, KobrA, Koala, SOFA, PECOS
and Pin. Semantically, components in these models are units of computation and control (and
data) connected together in an architecture. In ADLs, a component is an architectural unit
that represents a primary computational element and data store of a system. In UML2.0, a
component is a modular unit of a system with well-defined interfaces that is replaceable within
its environment. In KobrA, components are UML components. In Koala, SOFA and PECOS,
a component is a unit of design which has a specification and an implementation. In Pin, a
component is an architectural unit that specifies a stimulus-response behaviour by a set of ports

(pins).

4.3 Categories based on Component Composition

To define categories based on composition, we first consider composition in an ideal life cycle.
This will provide a basis for comparing composition in existing component models. An idealised
version of the component life cycle that we described in Section 2 is one where a repository is
available in the design phase, and component composition is possible in both the design and
the deployment phases.

48

Design Deployment

[] component instance
@ design phase H deployment phase

- component

composition operator composition operator

Figure 71: The idealised component life cycle.

It is depicted in Figure 71. We believe this view of the ideal component life cycle is the
commonly accepted one in CBD, and not just our own subjective view: all existing component
models reflect this ideal life cycle to varying degrees, as we will show later.

In the design phase of the idealised life cycle, a builder tool can be used to (i) construct
new components, and then deposit them in the repository, e.g. A in Figure 71; (ii) retrieve
components from the repository, compose them and deposit them back in the repository, e.g.
in Figure 71, B and C are composed into a composite BC' that is deposited in the repository.

In the deployment phase of the idealised life cycle, instances of components in the repository
are created, and an assembler tool can be used to compose them into a complete system, e.g. in
Figure 71, instances of A, B, D and BC are created and composed into a system. The system
is then executable in the run-time environment of the deployment phase.

The idealised component life cycle provides a basis for comparing and classifying composition
in existing component models. For instance, some component models do not have composition
in the design phase, whilst some models do; some have composition in the deployment, whilst

| i
insB| & _nse_|

Category 1 Category 2
(JavaBeans) (EJB,COM, CCM)
|
InsB
Category 3 Category 4
(Koala, SOFA, KobrA) (ADLs, UML2.0, PECOS, Pin, Fractal)

Figure 72: Categories based on component composition.

some do not. Thus many categories are possible. Figure 72 gives four categories that cover all
major existing component models.
In Category 1, in the design phase, there is a repository but there is no composition: compo-

49

nents are constructed individually by the builder and stored separately in the repository. The
builder can only construct new components, and cannot retrieve components from the reposi-
tory. In the deployment phase, components are retrieved from the repository, and instantiated,
and the assembler can be used to compose the instances. The sole member of this category is
JavaBeans.

In Category 2, in the design phase, there is also a repository, but composition is possible.
Like in Category 1, the builder can only construct new components, and cannot retrieve compo-
nents from the repository. Moreover, no composite component can be stored in the repository.
Therefore composition has to be performed by the builder and then has to be stored ‘as is’
in the repository, i.e. as a set of individual components together with the links between them
defined by the composition. As a result, this composition has to be retained even in the deploy-
ment phase, since it is only possible to instantiate the individual components (and not their
composite). Consequently, composition is not possible, and therefore there is no assembler, in
the deployment phase. This category includes EJB, COM and CCM.

Category 3 is the same as Category 2 except that in Category 3 the builder can retrieve
(composite) components from the repository, e.g. in Figure 72, A is retrieved from the reposi-
tory; and the repository can store composite components, e.g. in Figure 72, AB is a composite.
No new composition is possible in the deployment phase, and so there is no assembler. Koala,
SOFA and KobrA belong to this category.

In Category 4, there is no repository. In the design phase, the builder has to construct
a complete system of components and their composition. Unlike the other categories, where
component instances are well-defined, in Category 4 component instances and their composition
are not always defined, and their implementation is not always specified (with the exception of
Fractal). Therefore in the deployment phase, the task of implementing the whole system often
remains. All ADLs belong to this category, as well as ADL-like models, viz. UML2.0, PECOS,
Pin and Fractal.

4.4 A Taxonomy of Software Component Models

The three groupings of categories in the previous section are based on syntax, semantics and
composition. The question is whether it is possible or meaningful to combine them into a single
taxonomy. Looking at the categories based on syntax (Figure 69) and those based on semantics
(Figure 70), it is obvious that they can be merged straightforwardly into two groups:

e object-based: JavaBeans, EJB, COM, CCM and Fractal;

e architecture-based: ADLs, UML2.0, KobrA, Koala, SOFA, PECOS and Pin.

However, comparing these two groups with the categories based on composition in the
component life cycle (Figure 72), it is clear that there is no meaningful way of merging the
former with the latter. Of the object-based group of the former, EJB, COM and CCM belong
to different categories from JavaBeans and from Fractal in the latter. Of the architecture-
based group of the former, KobrA, Koala and SOFA belong to different categories from ADLs,
UML2.0, PECOS and Pin in the latter. Conversely, the categories based on composition are not
simply divided between object-based models and architecture-based models. For example, in
these categories, Fractal, which is object-based, belongs to the same category as the architecture-
based models ADLs, UML2.0, PECOS and Pin.

50

In view of this, we believe the only meaningful taxonomy is one based on composition in
the component life cycle. Composition is the central issue in CBD after all. Moreover, in
the ideal life cycle, composition takes place in both the design and deployment phases. By
contrast, object-based models and architecture-based models tend to be heavily biased towards
one phase or the other. In object-based models like COM, CCM and Fractal, where components
are objects that are executable binaries and are therefore more deployment phase entities than
design phase entities. On the other hand, in architecture-based models like ADLs and UML2.0,
components are expressly design entities by definition, with or without well-defined instances
in the deployment phase.

So we propose the taxonomy of software component models shown in Figure 73, based on

Characteristics

Category Models DRIRR|CS [DC | CP
1 JavaBeans VX X XV
2 EJB, COM, CCM VX VXX
3 Koala, SOFA, KobrA VIV VIV X
4 ADLs, UML2.0, PECOS, Pin, Fractal | X | X | v | X | X

DR In design phase new components can be deposited in a repository

RR In design phase comgonents can be retrieved from the repository

CS Composition is possible in design phase

DC In design phase comgosite components can be deposited in the repository
CP Composition is possible in deployment phase

Figure 73: A taxonomy based on composition.

component composition in the ideal component life cycle, as discussed in the last section.

In Category 1, in the design phase, new components can be deposited in a repository,
but cannot be retrieved from it. Composition is not possible in the design phase, i.e. no
composites can be formed, and so no composites can be deposited in the repository. In the
deployment phase, components can be retrieved from the repository, and their instances formed
and composed.

In Category 2, in the design phase, new components can be deposited in a repository,
but cannot be retrieved from it. Composition is possible, i.e. composites can be formed, but
composites cannot be deposited in (and hence retrieved) from the repository. In the deployment
phase, no new composition is possible; the composition of the component instances is the same
as in that of the components in the design phase.

In Category 3, in the design phase, new components can be deposited in a repository, and
components can be retrieved from the repository. Composition is possible, and composites can
be deposited in the repository. In the deployment phase, no new composition is possible; the
composition of the component instances is the same as in that of the components in the design
phase.

In Category 4, in the design phase, there is no repository. Therefore components are all
constructed from scratch. Composition is possible. In the deployment phase, no new compo-
sition is possible; the composition of the component instances is the same as in that of the
components in the design phase.

4.5 Discussion

The basis for the taxonomy in Figure 73 is the ideal component life cycle, discussed in Sec-
tion 4.3. This can be justified by the commonly accepted desiderata of CBD: (i) components

51

are pre-existing reusable software units — this necessitates the use of a repository; (ii) compo-
nents can be produced and used by independent parties — this requires builder and assembler
tools that can interact with a repository; (iii) components can be copied and instantiated —
this means components should be distinguished from their instances, and hence the distinction
between the design phase and the deployment phase; (iv) components can be composed into
composite components which in turn can be composed with (composite) components into even
larger composites (or subsystems), and so on — this requires that composites can be deposited
in and retrieved from a repository, just like any components. All the models in the taxonomy
reflect these criteria, to greater or lesser degrees.

Given this, it is interesting to note that models in Category 3 meet the requirements of
the ideal life cycle better than the other categories. This is not surprising, since Koala and
KobrA use product line engineering, which has proved to be the most successful approach for
software reuse in practice [19]. The main reason for its success is precisely its use of repositories
of families of pre-existing components, i.e. product lines.

At the other end of the scale, models in Category 4 do not ‘perform’ so well mainly because
they are ADL-based and are therefore focused on designing (systems and) components from
scratch, rather than reusing existing components.

Models in Categories 1 and 2 are ‘middle of the road’. They also use repositories, but
they behave differently from those in Category 3 in that the former store binary compiled code
whereas the latter store units of design in the repository, which are more generic and hence
more reusable.

Finally, the taxonomy reveals that no existing model has composition in both the design
and the deployment phase. No model can retrieve composites for further composition in the
deployment phase, not even those in Category 3. So there is room for improvement, and
better component models are possible. To define such models would require new composition
operators, or connectors. For example, we are experimenting with ezogenous connectors [31]
that encapsulate control and thus minimise coupling between components.

5 Conclusion

In this report, we have presented a survey of software component models in which all the
models are described in a uniform manner, i.e. all with reference to the same abstract model.
Undoubtedly this is an important starting point for clarification and unification of the CBD
terminology. In the survey, we have deliberately avoided adopting terminology from any one
component model. For example, we use the term ‘builder’ in the design phase and the term
‘assembler’ in the deployment phase to refer to composition tools in these phases, rather than
‘builder tools’ specific to some component models because the latter do not follow a unified
terminology.

The survey provides a clear exposition of each model, with examples to illustrate syntax,
semantics and composition. It also provides the basis for a taxonomy. The taxonomy reveals
clearly the strengths and weaknesses of existing component models. In addition to what we
discussed in the previous section, no existing component model supports predictable assembly
[64, 55], which is the ultimate goal of CBD. To address this, new component models have to
be developed. The on-going model Pin [21] is one such, and we ourselves, and no doubt others
too, are working on other models.

52

6

Acknowledgements

We wish to thank Ivica Crnkovic, David Garlan, Dirk Muthig, Oscar Nierstrasz, Bastiaan
Schonhage and Kurt Wallnau for information and helpful discussions.

References

1]

[10]

[11]

[12]

J. Aldrich, C. Chambers, and D. Notkin. Architectural reasoning in ArchJava. In Proc. 16th
FEuropean Conference on Object-Oriented Programming, pages 334-367. Springer-Verlag,
2002.

J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting software architecture to
implimentation. In Proc. ICSE 2002, pages 187-197. IEEE, 2002.

J. Aldrich, D. Garlan, B.R. Schmerl, and T. Tseng. Modeling and implementing software
architecture with acme and archjava. In Proc. OOPSLA Companion 2004, pages 156-157,
2004.

R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions
on Software Engineering and Methodology, 6(3):213-249, 1997.

C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wiist, and J. Zettel. Component-based Product Line Engineering with UML.
Addison-Wesley, 2001.

BEA Systems et al. CORBA Components. Technical Report orbos/99-02-05, Object
Management Group, 1999.

C. Blexrud, M. Bortniker, J. Crossland, D. Esposito, J. Hales, W. Hankison, V. Honnaya,
T. Huankison, S. Kristich, E. Lee, R. Lhotka, B. Loesgen, S. Mohr, S. Robinson, A. Rofail,
B. Sherrell, S. Short, and D. Wahlin. Professional Windows DNA: Building Distributed
Web Applications with VB, COM+, MSMQ@, SOAP, and ASP. Wrox Press Inc, September
2000.

D. Box. Essential COM. Addison-Wesley, 1998.

M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree, M. Stal,
and C. Szyperski. What characterizes a software component? Software — Concepts and
Tools, 19(1):49-56, 1998.

E. Bruneton, T. Coupaye, and M. Leclercq. An open component model and its support in
Java. In Proceedings of 7th CBSE, pages 7-22. Springer -Verlag, 2004.

E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and Dynamic Software Composi-
tion with Sharing. In Proceedings of 7th International Workshop on Component-Oriented
Programming. ECOOP02, 2002.

E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal component model. Technical
Report Specification V2, ObjectWeb Consortium, 2003.

53

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Carnegie Mellon University. AcmeStudio 2.1 User Manual. http://www-2.cs.cmu.edu/
~“acme/Manual/AcmeStudio-2.1.htm.

D. Chappell. Understanding ActiveX and Ole. Microsoft Press, January 1996.

D. Chappell. How Microsoft Transaction Server changes the COM programming model.
Microsoft Systems Journal, January 1998.

J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying
Component-Based Software. The Component Software Series. Addison-Wesley, 2000.

Y. Choi, O. Kwon, and G. Shin. An approach to composition of EJB components using
C2 style. In Proc. 28th Euromicro Conference, pages 40-46. IEEE, 2002.

B. Christiansson, L. Jakobsson, and I. Crnkovic. CBD process. In I. Crnkovic and M. Lars-
son, editors, Building Reliable Component-Based Software Systems, pages 89—-113. Artech
House, 2002.

P. Clements and L.M. Northrop. Software Product Lines: Practices and Patterns. Addison
Wesley, 2001.

P.C. Clements. A survey of architecture description languages. In 8th Int. Workshop on
Software Specification and Design, pages 16-25. ACM, 1996.

CMU SEI. A Snapshot of the Pin Component Model. http://www.sei.cmu.edu/pacc/.
COM web page. http://www.microsoft.com/com/.

Microsoft Corporation. Microsoft Internet Information Server Resource Kit. Microsoft
Press, January 1998.

I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau. 6th ICSE workshop on component-
based software engineering: automated reasoning and prediction. ACM SIGSOFT Software
Engineering Notes, 29(3):1-7, May 2004.

L.G. DeMichiel, L.U. Yalcinalp, and S. Krishnan. Enterprise JavaBeans Specification Ver-
sion 2.0, 2001.

Eclipse web page. http://www.eclipse.org/.

D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-
based systems. In M. Sitaraman G.T. Leavens, editor, Foundations of Component-Based
Systems, pages 47-68. Cambridge University Press, 2000.

T. Genssler, A. Christoph, B. Schulz, M. Winter, C.M. Stich, C. Zeidler, P. Miiller,
A. Stelter, O. Nierstrasz, S. Ducasse, G. Arévalo, R. Wuyts, P. Liang, B. Schénhage, and
R. van den Born. PECOS in a Nutshell. http://www.pecos-project.org/, September
2002.

G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001.

54

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Ivers, N. Sinha, and K.C Wallnau. A Basis for Composition Language CL. Technical
Report CMU/SEI-2002-TN-026, CMU SEI, 2002.

K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software com-
ponents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering,
LNCS 3489, pages 90-106, 2005.

M. Lumpe, F. Achermann, and O. Nierstrasz. A formal language for composition. In
G. Leavens and M. Sitaraman, editors, Foundations of Component Based Systems, pages
69-90. Cambridge University Press, 2000.

A. Major. COM IDL and Interface Design. John Wiley & Sons, February 1999.

N. Medvidovic and R. N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1):70-
93, January 2000.

B. Meyer. The grand challenge of trusted components. In Proc. ICSE 2003, pages 660-667.
IEEE, 2003.

R. Monson-Haefel. Enterprise JavaBeans. O’Reilly & Associates, 4th edition, 2004.

O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Miiller, C. Zeidler,
T. Genssler, and R. van den Born. A component model for field devices. In Proc. 1st
Int. IFIP/ACM Working Conference on Component Deployment, pages 200-209. ACM
Press, 2002.

ObjectWeb — Open Source Middleware. OpenCCM User’s Guide. http://openccm.
objectweb.org/doc/0.8.1/user_guide.html.

OMG. UML 2.0 Superstructure Specification. http://www.omg.org/cgi-bin/doc?ptc/
2003-08-02.

OMG. CORBA Component Model, V3.0, 2002. http://www.omg.org/technology/
documents/formal/components.htm.

T. Pattison. Programming Distributed Applications with COM+ and Microsoft Visual
Basic 6.0. Microsoft Press, June 2000.

F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trading
and dynamic updating. In Proc. ICCDS98, pages 43-52. IEEE Press, 1998.

F. Plasil, M. Besta, and S. Visnovsky. Bounding Component Behavior via Protocols. In
Proc. Technology of Object-Oriented Languages and Systems 99, pages 387-398. IEEE,
1999.

F.E. Redmond. DCOM: Microsoft Distributed Component Object Model. John Wiley &
Sons Inc, September 1997.

Sun Microsystems. The Bean Builder. https://bean-builder.dev.java.net/.

Sun Microsystems. Java 2 Platform, Enterprise Edition. http://java.sun.com/j2ee/.

55

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]

Sun Microsystems. JavaBeans Architecture: BDK Download. http://java.sun.com/
products/javabeans/software/bdk_download.html.

Sun Microsystems. JavaBeans Specification, 1997. http://java.sun.com/products/
javabeans/docs/spec.html.

C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, second edition, 2002.

R. van Ommering. The Koala component model. In I. Crnkovic and M. Larsson, editors,
Building Reliable Component-Based Software Systems, pages 223-236. Artech House, 2002.

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component
model for consumer electronics software. IEEE Computer, pages 78-85, March 2000.

Visual Object Modelers. Visual UML. http://www.visualobject.com/default.htm.
Microsoft Visual Studio Developer Center. http://msdn.microsoft.com/vstudio/.

K.C. Wallnau. Volume III: A Technology for Predictable Assembly from Certifiable Com-
ponents. Technical Report CMU/SEI-2003-TR-009, CMU SEI, 2003.

K.C. Wallnau and J. Ivers. Snapshot of CCL: A Language for Predictable Assembly.
Technical Report DRAFT-CMU/SEI-2003-TN-025, CMU SEI, 2003.

A. Wigley, M. Sutton, R. MacLeod, R. Burbidge, and S. Wheelwright. Microsoft .NET
Compact Framework(Core Reference). Microsoft Press, January 2003.

56

