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Abstract—In Software Product Line Engineering (SPLE), in
the problem space, variability in a product family is specified in
an enumerative manner (by a feature model), i.e. all valid variants
are enumerated. However, in the solution space, current SPLE
approaches use parametric variability (variability parameterised
on features occurring in a single product variant) instead. In this
paper, we take a closer look at enumerative variability, show how
it can also be used in the solution space, and briefly discuss why
it may be advantageous to do so.
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I. INTRODUCTION

Software Product Line Engineering (SPLE) traditionally

proceeds in two phases: (i) domain engineering and (ii) appli-
cation engineering [1]. Domain engineering is concerned with

the problem space: analysing/capturing domain requirements

and then creating domain artefacts accordingly. Application

engineering is concerned with the solution space: using do-

main artefacts from the domain engineering phase to construct

products in the domain, i.e. the product family [2].

The central issue in SPLE is variability. In the problem

space, variability in a product family is specified by a feature

model, and in the solution space, product variants are created

according to this variability. Variability defined by a feature

model (in problem space) is enumerative in nature, as it in-

cludes all valid variants. In contrast, in solution space, current

SPLE approaches use parametric variability, i.e. variability

parameterised on features occurring in a single product variant,

and configure code (from a code base) for one product variant

at a time.

This divergence is due to the perception that enumerative

variability is merely a model whereas parametric variability

deals with implementation, i.e. real code. In this paper, we

study enumerative variability more closely. We show how it

can also be implemented in the solution space, and why this

may bring certain advantages.

II. RELATED WORK

A. Enumerative Variability in Problem Space

The standard way to define variability in the problem space

is to use a feature model (or feature tree). Fig. 1 shows a simple

example for a family of ‘hello world’ systems. A feature

model names all the available features and sub-features, and

Mandatory Alternative Or

HelloSystem

Hello Attribute

Beautiful Wonderful

Object

Planet Earth

<requires>

Optional

Fig. 1: Feature model for ‘Hello World’ product family.

shows all the valid combinations thereof in the product family

[3]. Features and their sub-features are depicted as parent-

child relationships, and variability is defined by variation
points: mandatory, optional, alternative (exclusive ‘or’), or
(inclusive ‘or’); and may be constrained by cross-tree relation-

ships, e.g. ‘feature PLANET requires feature ATTRIBUTE’ [4]. In

Fig. 1, valid variants include: ‘HELLO EARTH’, ‘HELLO BEAUTI-

FUL EARTH’, ‘HELLO WONDERFUL EARTH’, ‘HELLO BEAUTIFUL

PLANET’ and ‘HELLO WONDERFUL PLANET’, but not ‘HELLO

PLANET’, due to the ‘PLANET requires ATTRIBUTE’ constraint.

A feature model enumerates all the valid combinations of

features, i.e. all the valid product variants. In Fig. 1, there

are a total of 7 valid variants: the five mentioned above, plus

the following two specified by the or variation point: ‘HELLO

BEAUTIFUL PLANET EARTH’ and ‘HELLO WONDERFUL PLANET

EARTH’. The variability defined by a feature model is thus

enumerative variability. It provides a configuration model for

all product variants to be constructed in the solution space.

However, a feature model does not say anything about

behaviour, i.e. how the features are to be implemented. Enu-

merative variability defined by a feature model is thus by itself

insufficient for constructing product variants in the solution

space.

B. Parametric Variability in Solution Space

In solution space, SPLE approaches construct code for valid

product variants specified by the feature model. The behaviour

of the features (and hence the product variants) has to be

implemented according to their functional requirements. The

behaviour of features that interact with one another needs

particular attention. This is known as feature interaction:

“a feature interaction occurs in a system whose complete
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behavior does not satisfy the separate specifications of all its

features” [5]. For example, in the feature model in Fig. 1, so far

we have assumed that the features PLANET and EARTH do not

interact, so that when they are combined we get the variants

‘HELLO BEAUTIFUL PLANET EARTH’ and ‘HELLO WONDERFUL

PLANET EARTH’. Suppose they do interact in such a way that

when combined they no longer output either ‘PLANET’ or

‘EARTH’, but just ‘WORLD’ instead; then these two variants will

become ‘HELLO BEAUTIFUL WORLD’ and ‘HELLO WONDERFUL

WORLD’.

The general approach to code construction is to start with a

code base that consists of code for all the mandatory features

(i.e. the base system), with extension points for excluding

or including code fragments or modules that implement the

variable features. Then for a chosen valid variant specified

by the feature model, i.e. an instance of the feature model,

called a configuration for this product, code is constructed

from the code base by excluding code for unselected features,

or including code for selected features. Approaches based

on code exclusion and inclusion are said to adopt negative
variability and positive variability respectively [6].

void print () {
class HelloSystem {

System.out.print("Hello");
//#ifdef Beautiful
System.out.print(" Beautiful");
//#elif Wonderful
System.out.print(" Wonderful");
//#endif
//#ifdef Planet
System.out.print(" Planet");
//#endif
//#ifdef Earth
System.out.print(" Earth");
//#endif

}
static void main (String[] args) {

new HelloSystem().print();
}

}

(a) Code base (150% model)

HelloSystem

Hello Attribute

Beautiful Wonderful

Object

Planet Earth

<requires>

Variant: Hello Beautiful Planet

Configuration: Wonderful=false, Earth=false

(b) Variant configuration

Fig. 2: Negative (parametric) variability in solution space.

Negative variability and positive variability are illustrated

in Fig. 2 and Fig. 4 respectively for the ‘hello world’

family. Fig. 2a shows the code base for ‘hello world’. It

includes code fragments for all features, both mandatory and

variable, i.e. more than will appear in any valid variant (for

this reason this kind of code base is called a 150% model).

Code fragments for variable features are placed at extension

points annotated by boolean conditions which define feature

selection (e.g. #ifdef Beautiful) and are to be excluded for non-

selected features.

Fig. 2b shows a specific configuration, i.e. a valid variant

specified by the feature model, which excludes the features

WONDERFUL and EARTH; it is the variant: ‘HELLO BEAUTIFUL

PLANET’. The code for this variant is constructed from the code

base in Fig. 2a by excluding code fragments for WONDERFUL

and EARTH.

It should be noted that the code base in Fig. 2a assumes that

there is no feature interaction. If, for example, PLANET and

EARTH interact in the manner described above, i.e. to produce

just WORLD, then the last part of the code base should be

modified by the code fragment in Fig. 3, for any configuration

in which both PLANET and EARTH are selected.

//#ifdef Planet && Earth
System.out.print(" World");
//#elif Planet
System.out.print(" Planet");
//#elif Earth
System.out.print(" Earth");
//#endif

Fig. 3: Code fragment for Planet-Earth interaction.

Negative variability is adopted by annotation-based SPLE

approaches [7], which are widely used in industry [8], with

leading commercial tools such as pure::variants [9] and Gears

[10]. The example in Fig. 2 is annotated by C preprocessor
(cpp) [11].

SPLE approaches based on architectural description lan-

guages (ADL), e.g. Koala [12] and xADL 2.0 [13] use boolean

connectors to compose components and to exclude unselected

ones in a configuration. Therefore, these approaches also adopt

negative variability.

In positive variability, the code base is the base model

consisting of code for mandatory features only. Fig. 4b shows

an Aspect-oriented Programming (AOP) [14] example. The

base model is just the HelloSystem class that prints ‘HELLO’.

For the configuration in Fig. 4a, code fragments for the

selected features BEAUTIFUL and PLANET are added to the

base model by aspect weaving at explicitly defined extension

points (after), as shown in Fig. 4b. The Beautiful class extends

the HelloSystem class to give a class that prints ‘HELLO

BEAUTIFUL’, and the Planet class extends this class further

to give a class that prints ‘HELLO BEAUTIFUL PLANET’.

In case of feature interaction (e.g. between PLANET and

EARTH as described above), a code fragment for the interaction

feature (e.g. Planet+Earth), has to be created and used for any

configuration in which all interacting features (e.g. PLANET)

and EARTH, are selected; instead of code fragments for the

original features.

AOP-based SPLE approaches include XWeave [15] and

AFM [16]. Aspect weaving is a form of superimposition

(merging code fragments). Other superimposition-based SPLE

approaches can handle both positive and negative variability.

These include Delta-oriented Programming [17] and Feature-
oriented Programming [18].

In summary, in parametric variability, the feature model is

instantiated to create one configuration at a time, and code is
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HelloSystem

Hello Attribute

Beautiful Wonderful

Object

Planet Earth

<requires>

Variant: Hello Beautiful Planet

Configuration: Attribute=true, Beautiful=true, World=true

(a) Variant configuration

void print () {
class HelloSystem {

System.out.print("Hello");
}
static void main (String[] args) {

new HelloSystem().print();
}

}

Hello

Beautiful

after(): call(HelloSystem.print()) {
aspect Beautiful {

System.out.print(" Beautiful");
}

}

Planet

after(): call(HelloSystem.print()) {
aspect Planet {

System.out.print(" Planet");
}

}

Base model

Feature code

Feature code

(b) Base model + code fragments for selected features

Fig. 4: Positive (parametric) variability in solution space.

constructed for this one product variant (in solution space). In

the next section, we will show how we can use the enumerative

variability defined by the feature model (in problem space) to

construct all the products in a family at once, and not just one

at a time (in solution space).

III. ENUMERATIVE VARIABILITY IN SOLUTION SPACE

In parametric variability, variation points in the feature

model are not implemented. A variation point specifies multi-

ple variants: 2 for optional(F ), n for alternative(F1, . . . , Fn),

and (2n − 1) for or(F1, . . . , Fn), where F s denote features.

In parametric variability, the programmer can configure and

implement only one variant at a time. If we could implement

variation points in their entirety, i.e. all the variants together,

then we would be able to construct code for all the variants

at once; that is, we would be able to adopt enumerative

variability, as opposed to parametric variability, in solution

space. In this section, we present an approach for doing so.

As far as we know, this has not been done before, and in

Section V we will discuss its pros and cons.

Our approach is to use a component model [19] that can

be used to model and construct product families, rather than

single products. We have defined and implemented such a

component model, called FX-MAN [20], as a Model-driven

Engineering tool [21] for developing families of component-

based systems.1 Here we will show how FX-MAN can be used

1A full account of FX-MAN is not necessary here.

to (model and) implement enumerative variability in solution

space.

A. Features

In parametric variability approaches, features identified in

the feature model (in problem space) are implemented as code

fragments (in problem space). The mapping of features to

code fragments is m-to-n, m,n ≥ 1, in general, reflecting the

fact that a feature may be implemented by multiple fragments

whilst a code fragment may appear in the implementation of

multiple features [22]. For example, annotative approaches like

pure::variants usually use a 1-to-n, n > 1, mapping, whilst

FOP and AOP use a 1-to-1 mapping. Obviously, a 1-to-n
mapping is easier to manage than a m-to-n mapping, but not

as easy to manage as a 1-to-1 mapping. Conversely a 1-to-1

mapping is not as easy to define as a 1-to-n or m-to-n mapping

[23]. More crucially, any mapping must be accompanied by

a strategy to deal with feature interaction [24] when features

and their corresponding code fragments are combined.

Using FX-MAN, code fragments can be implemented by

either components or services provided by components. A

component in FX-MAN provides multiple services (Fig. 5a),

which are implemented by its methods. Mapping a feature

Service1

Service2

. . .

i

i

o

o

i

o
input
output

(a) Components

. . . . . .
SEQ SEL

Sequencer Selector

(b) Composition connectors

i
o
input
output

Service1
Service2

. . .

i

i

o

o

Service1
Service2

. . .

i

i

o

o

. . .

(c) Composite components

Fig. 5: FX-MAN: Components and composition connectors.

1-to-1 to a component would achieve a 1-to-1 mapping, but

since a component contains n services, it would mean a 1-to-n
mapping between features and services. We choose a 1-to-1

mapping. Obviously if all components have only one service

each, then components and services coincide.

For the Hello World example, we can indeed map features

to one-service components, as shown in Fig. 6.

Hello o Beautiful o Wonderful o Planet o Earth o

Fig. 6: Hello World: Feature-to-service mapping.

In FX-MAN, components can be composed into composites

(Fig. 5c) by composition operators, defined as connectors

(Fig. 5b). These operators initiate control and invoke services

in components. They also coordinate control flow and service

invocations between components. A sequencer defines se-
quencing: SEQ(C1(S1), . . . , Cn(Sn)) calls service S1 in com-

ponent C1, . . . , service Sn in component Cn sequentially. A
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selector defines branching: SEL(C1(S1), . . . , Cn(Sn)) selects

just one service to call, depending on a selection condition.

Thus component composition connectors allow us to combine

components and hence their (methods and) services. For

example, the composite in Fig. 5c will combine the (methods

and) services into another set of services (not shown here). For

the purposes of this paper, we do not need to consider how the

services of a composite are formed. The important thing is the

fact that the composition operators are algebraic, i.e. composite

components are the same type as their sub-components, and

composition is therefore strictly hierarchical. The hierarchical

composition enables us to model variation points, as well as

the composition of product families.

B. Variation Points

Fig. 7 shows the different levels of composition in FX-MAN.

At the lowest level of composition are (possibly composite)

ALT OPT OR
Component

Variation

Family lter

Service...

Family
connector

...............

composition

generator

Fig. 7: FX-MAN: Levels of composition.

components. We can use these to implement (leaf) features in

a feature model, as we have done in Fig. 6.

The next level of composition in FX-MAN offers variation
generators. These operators take sets of components as input

and produce permuted sets of components, i.e. variations

thereof. Variation operators are therefore also algebraic and

hierarchical. FX-MAN implements the full range of standard

variations, viz. optional, alternative and or.

For the Hello World example, we can simply apply the

variation operators for the variation points defined in its feature

model, as shown in Fig. 8. The results of these variation

Hello o Earth o

ALTOP

Beautiful o Wonderful o Planet o

Component

Variation 

Service

ARP

generator{Hello}

{ ,{Beautiful},{Wonderful}}

{{Planet},{Earth},{Planet,Earth}}

Fig. 8: Hello World: Variation points.

operators are of course: optional(alternative(BEAUTIFUL,

WONDERFUL)), and or(PLANET, EARTH) respectively, as

specified in the feature model. Precisely, they are the

following sets: {∅, {BEAUTIFUL}, {WONDERFUL}} and

{{PLANET}, {EARTH}, {PLANET, EARTH}}.
C. Family Composition

A set of components generated by a variation point is of

course a family of products. So at the next level of composition

in FX-MAN, family composition takes place, by means of fam-

ily composition operators, also defined as connectors. These

operators are defined in terms of the component composition

operators, i.e. a family composition connector, e.g. F-SEQ,

applies the corresponding component composition connector,

e.g. SEQ, to corresponding components in the families. The

result of a family composition is also a family, so this level

of composition is also algebraic.

Which family composition operator to use is a design choice

to satisfy the requirements. For the Hello World example, the

simple family connector F-SEQ can meet the requirements,

so we can apply it to the families in Fig. 8 to compose the

whole family for the Hello World example. The whole family

is shown in Fig. 9. The family filter on the top filters out

ALT

Beautiful o Wonderfulo Planet o

Component

Variation 

Service

generator

Family filter
Family

connector
OPT composition

OR

Earth oHello o

Fig. 9: Hello World: Product family.

invalid variants from the family, i.e it implements the cross-

tree constraint, in this case ‘PLANET requires ATTRIBUTE’.

D. Feature Interaction

In Fig. 9 we have assumed that there is no feature interac-

tion. In case of feature interaction, we can still use FX-MAN

to implement enumerative variability, but not in an elegant

way. First, for every feature interaction, we have to create an

optional component with a service mapped to the interaction

feature. Then we need to add constraints to the family filter

so that in any configuration in which interacting features are

selected, the optional component is chosen instead of those

for the original features.

So, if for example, PLANET and EARTH interact as described

before, then the product family for ‘Hello World’ is as shown

in Fig. 10. The constraints that have to be added to the

ALT

Beautiful o Wonderfulo Planet o

Component

Variation 

Service

generator

Family lter
Family
connectorOPT
composition

OR

Earth oHello o o World o

OPT

Fig. 10: Hello World: Product family with feature interaction.

family filter are: ‘WORLD excludes PLANET, EARTH’; ‘PLANET

excludes WORLD’; ‘EARTH excludes WORLD’

IV. IMPLEMENTATION EXAMPLE

In this section we show evidence of implementation of

enumerative variability as discussed in the previous section.
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The implementation is done using the FX-MAN tool. For

legibility we will show cropped screenshots.

First, Fig. 11 shows the implementation of the ‘Hello World’

family without feature interaction (Fig. 9). The small disc in

Fig. 11: Hello World without feature interaction.

the top-level family composition connector SEQ represents

constraints in the family filter (first two constraints in Fig.15).

Fig. 12 shows the products in this family listed in the Product

Explorer of the FX-MAN tool. The Aggregator operator in

Fig. 12: Product family in Fig. 11.

Product 2 and Product 5 is the set union operator ∪, resulting

from an or variation point.

Next, Fig. 13 shows the implementation of the ‘Hello World’

family with feature interaction (Fig. 10). The products in

Fig. 13: Hello World with feature interaction.

the family are shown in the Product Explorer in Fig. 14. The

constraints added to the family filter for feature interaction can

be seen in Fig. 15 (last three constraints).

Fig. 14: Product family in Fig. 13.

Fig. 15: Hello World with feature interaction: Family filter.

V. DISCUSSION AND CONCLUSION

In this paper we have focussed on enumerative variability.

Current SPLE techniques use enumerative variability only in

problem space. We have shown that it is possible to use it

in solution space too. Of course, we have only explained the

idea and demonstrated its feasibility. It remains to analyse the

merits and demerits of the idea and its realisation.

In principle, enumerative variability enables the products in

a family to be constructed all at once. However, in practice,

whether this can be realised effectively, and whether it will

bring benefits, is still an open question. From a customer’s

point view, constructing all products at once may seem like

overkill, since each customer usually wants only one product,

and this is what current SPLE techniques construct (using

parametric variability). From the perspective of these tech-

niques, generating all the products in a large-scale family

with a high degree of variability, is NP-hard, in terms of

computation and memory costs. So, whether/how enumerative

variability can help with current SPLE practice needs to be

investigated.

One area where enumerative variability could potentially

bring advantages is product line (i.e. product family) test-

ing [25]. Family-based testing should be more efficient than

product-based testing, since product-based testing inevitably

performs inefficient, redundant computations, due to similari-

ties and commonalities between the products [26]. However,

hitherto research on family-based testing has been limited to
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discussion at the levels of specifications and models (see e.g.

[27]–[29] ), i.e. only in problem space. The simple reason is

that no SPLE approach so far constructs the complete product

family in solution space. So, currently only product-based

testing (e.g. [30], [31]) is performed (in solution space).

With enumerative variability, family-based testing should

become possible. Suitable testing techniques based on enu-

merative variability should be investigated. It will not at all

be surprising if enumerartive variability enables many of the

current product-based testing techniques to be adapted for

efficient family-based testing.

Finally, in this paper we have used the FX-MAN component

model to demonstrate the feasibility of using enumerative

variability in solution space. However, FX-MAN is not ideal

for this purpose. This is not surprising since FX-MAN was

originally designed for families of general component-based

systems. One inefficiency in FX-MAN is the way the family

filter is defined and implemented: it could be improved so

that the filtering can be done before or during a family

composition, rather than only after the whole family has been

constructed. Perhaps using a filter is just not efficient, and a

better alternative should be found. In conclusion, we have used

the current form of FX-MAN, to demonstrate the feasibility

of implementing enumerative variability, but in future it is

worth devising a better component model than FX-MAN for

this purpose.
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