(Reference) Architecture = Components + Composition
(+ Variation Points)?

Kung-Kiu Lau and Simone Di Cola
School of Computer Science
The University of Manchester
Manchester M13 9PL, United Kingdom

kung-kiu,dicolas@cs.manchester.ac.uk

ABSTRACT

The notions of architecture, component and composition are
perceived differently in different communities. In order to
discuss how component-based development can contribute
to the definition and use of reference architecture in practice,
in this position paper, we outline some fundamental char-
acteristics of components and composition and posit their
relevance to reference architecture.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

Keywords

Software architecture; components; composition; reference
architecture

1. ARCHITECTURE = COMPONENTS +
COMPOSITION

Is it stating the obvious, to say that ‘architecture = com-
ponents + composition’? It would seem not. For one thing,
different research communities have different notions of what
architectures and components are, notwithstanding the gen-
erally accepted view of an architecture as a design blueprint
and components as parts of some whole — a design or a sys-
tem. Composition seems to be under the radar altogether.

For example, within the Software Architecture commu-
nity [2] we understand that ‘architecture’ can include vari-
ous kinds of artefacts (from guidelines to documents to re-
sources), apart from design. Equally, components can take
many forms. Composition becomes virtually invisible as a
result.

Within the CBSE community [13], an architecture usually
represents the structure of the software system under con-
struction. However, composition is usually not a first-class

*The secretary disavows any knowledge of this author’s ac-
tions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CobRA’15, May 6, 2015, Montréal, QC, Canada.

Copyright © 2015 ACM 978-1-4503-3445-7/15/05 ...$15.00.
http://dx.doi.org/10.1145/2755567.2755978.

entity in an architecture. Rather, software units are usu-
ally ‘glued’ together, albeit often using very sophisticated
programming frameworks.

2. COMPONENT MODEL = COMPONENTS
+ COMPOSITION

In CBSE, the study of component models [12, 5, 9] has
highlighted the role of composition. However, in theory and
in practice, composition remains very underdeveloped.

A component model defines components and their com-
position. In other words, both components and composition
mechanisms are first-class entities in a component model,
which means they are co-equal top-level semantic elements.
Composition mechanisms which are first-class entities can
be defined as explicit (mathematical) operators.

Among current component models, there is a universally
accepted view of a component. This is depicted in Fig. 1:
a component is a software unit with required and provided

services.

Required Service)— —Q Provided Service

Figure 1: A generic component.

In current component models, components are first-class
entities. Fig. 2 shows the three main types of components
in these models: (a) objects (b) architectural units and (c)
encapsulated components. Each of these types is a varia-

A O_I:I—O in1 out1
Pr;oe"t'r‘]jgg in2 out2

(a) Object (b) Ar%l}llittectural (c) Encagsul%ted

componen

Figure 2: Types of components in current compo-
nent models.

tion of the generic component: (a) an object’s methods are
its provided services, but an object has no visible required
services (hence the blurring out in Fig. 2(a)); (b) an archi-
tectural unit has input ports as required services, and output
ports as provided services; (¢) an encapsulated component
has only provided services but no required services.

In contrast, there is no universal view of composition. In
current component models, composition is not always de-

fined as first-class entities. Fig. 3 shows the types of com-
position in these models. In models where components are

Provided | Required | Composition

Components | (EVIEES | ‘Somices | mechanism

Objects Methods — Method call
Archi | P

intaura! | Outports | In-ports | connddtion

Encapsulated Exogenous

comgonents Methods | None comgosition

Figure 3: Types of composition in current compo-
nent models.

objects, composition is not a first-class entity: object ‘com-
pose’ by method calls, which are hard-wired in the code of
objects. In such models, architectures are often defined as
class diagrams in which composition is defined as object ag-
gregation or object composition, which are defined in terms
of object life cycles, but not as explicit composition mecha-
nisms.

In models where components are architectural units, com-
position is also not a first-class entity: architectural units
‘compose’ via port connections; consequently composition is
defined directly for ports, but not directly for whole archi-
tectural units.

Method call and port connection are examples of message
passing, direct and indirect respectively, as shown in Fig. 4,
where U; and U; are generic software units. Direct message

—>delegation [plug —— connector

(a) Direct message passing (b) Indirect message passing

Figure 4: Composition by connection.

passing is also called delegation. Indirect message passing
applies to units with ‘plugs’ (e.g. ports) and is defined by
connectors that link the plugs. They are both examples of
composition by connection, which is not a first-class entity
when used in component models.

In models with encapsulated components, composition can
be defined as a first-class entity. Here, without required ser-
vices, components have to be coordinated by an external
coordinator (Fig. 5), i.e. by exogenous composition, and
thus in the model, coordination as exogenous composition is
co-equal to components.

communication
channel

Figure 5: Composition by coordination.

3. ARCHITECTURE DESCRIPTION LAN-
GUAGE = COMPONENT MODEL

Architecture description languages (ADLs) define archi-
tectures as architectural units (with ports) ‘composed’ by
port connections. ADLs are thus component models where
architectural units are components (Fig. 2). They are by far

the most widely used component models in practice (cer-
tainly in CBSE). So it is pertinent to ask if they are the
best component models to take us towards reference archi-
tectures.

One potential disadvantage of ADLs is that because com-
position by port connection is not a first-class entity, it
is not possible to define explicit composition operators for
whole architectural units. For any two architectural units
A; and As, it is not possible to define a composition func-
tion F(A1, A2). Rather F can only be defined in terms of
the ports of A1 and A2. Furthermore, since an architectural
unit can have an arbitrary number of ports, and (matching)
ports between architectural units can be linked in arbitrary
combinations, F' can be defined only for specific architec-
tural units. Any F defined for A; and Az (in terms of their
ports) will be undefined for other A’s.

On the other hand, one potential advantage of ADLs is
that a composite architectural unit can have the same type
as that of its constituent architectural units, even if com-
position is only defined at the level of ports. This kind of
algebraic property enables hierarchical composition, which
is very important for systematic construction as well as man-
aging complexity. However, in this case, the property results
from the fact that the ports of a composite architectural unit
can be related to (e.g. delegated to, as in UML2.0 [15]) those
of the constituent architectural units; but not from the use
of a composition operator for architectural units. An alge-
braic composition operator for architectural units would be
much more desirable still for hierarchical construction and
managing complexity.

4. VARIATION POINTS =?

Whatever ADL/component model we believe in or adopt,
it should be able to accommodate variation points, if we
want to use it to define reference architectures. For the
purpose of this paper, we adopt the narrow view of a refer-
ence architecture as an architecture template for all possible
products (in a domain). For a wider debate on terminology
and semantics see [14].

Variation points are relationships between parent-child
features in a feature model. So the question arises as to how
to represent features and their relationships in a component
model. In a component model, the only relationships are
‘composition’ relationships between components, so it would
seem that we should represent features as components and
variation points as composition of components.

In component models with objects as components, this
means that objects would represent features, and method
calls between objects would represent variation points. The
only kind of ‘architecture’ that could be defined would be
class diagrams in which objects are features and some of
their associations are variation points. It is hard to see how
such an ‘architecture’ can be used as a template.

Another potential problem with this approach is that rep-
resenting features by objects may not be straightforward.
This is because the mapping between features and objects
may not be clear cut, let alone one-to-one. A feature may
require several objects to implement it, and conversely, an
object may implement parts of multiple features. Close cou-
pling between objects may also hinder the task of mapping
features to/from objects.

In ADLs, architectural units can be used to represent fea-
tures, and port connections to represent variation points

2 x-man-

S FF.di -

File Edit View Navigate Search Project Run

mAEh Sie
. Navigator 53 =8 [vesFR
lesle v

4 [» VCS_XMAN_Component [X-Man-I-bit

> Cy activitycharts

5 Cy > bin

4 (g > components

4 atomic

5 AdaptSpeed.atomic
daptSpecd.diagram
IRoundDetection atomic

rontDetection.diagram
Maintenance.atomic
23 Maintenance.diagram
Monitoring.atomic
" Monitoring.diagram
4 G > composite
5} AutoCruiseControl.composite
23 > AutoCruiseControl disgram
b Gy src
> Gy sre-gen

XMAN Window Help
RRREAGI oove o | e e

e

\ optionar /

F-Sequencer or
Optional

65T
Quick Access | [| R Resource (T X-MAN)& Java
=0
| & palette 3
[Select

{7} Marquee

(& Connections @
“~+ VariantConnection
«~ FamilyConnection

(= Veriation Operators ¢

Altemative
= Family Connectors &

FamilySequencer

i FamilyAggregator
i ' FamilySelect
AutoGruiseControl i amilyselector
FamilyGuard
AutoCruiseControl H () FamilyLoop
& XMAN @
XMANArchitecture

@ selectedspeed

@ ThrotuePosition

[Service
i mput
0 Output

> Gy statecharts
[-classpath

\ optional /

AverageNMPG

[} .project H
4 & > VehicleControlSystem [X-Man-I-bitou AverageMPH
> Gy activitycharts

FrontDetection AllRoundDetection

4 (G » architecture
25, VCS FF.diagram
[5) > VCS FFfman
> Gy > products
>y statecharts
[} .classpath
B -project

AveragelPH
@ Hours
® wies

@ AveragempH

AveragelPG
@ ruel
@ Averagemps

@ wites

Maintenance

@ message

@ cumulatetieage

Monitoring
@ pata

@ message

FrontDetection

AllRoundDetection
® Dpistance @ Direction

@ oetection

P E—— gl

Product Explorer 3

| Repository Explorer 52

=3 wtoCr
1EF
B

products) | AverageMPG, trol)),
products): | AverageMPG,

ltemative(2 variants); <(Meintenance}{Monitoring}>

ptional(2 variants): <[AverageMPG},2>
ptional(2 variants): <(AverageMPH}, 2>

variants): <{AutoCruiseControl){FrantD: i
ltemative(2 variants): <(FrontDetection} (AlRoundDetection)>

ruiseControl)

2] AutoCruiseControl

Figure 6:

(e.g. [3]). (In some ADLs, variation points can also be
represented by special elements, e.g. switch in Koala [16].)
However, because of the ‘binary’ nature of port connection,
namely that it is either ‘on’ or ‘off’; architectural units and
ports can only represent optional or alternative (exclusive
or) variation points, but not or (inclusive or). Neverthe-
less, an ADL architecture with variation points can repre-
sent an architecture template. Whether not having or is a
deal breaker is a moot point though. Curiously, in all the
literature on FODA [10, 11] (the most widely adopted do-
main analysis technique) that we have come across, there is
no example of or.

As in the case of component models with objects as com-
ponents, representing features by architectural units may
not be straightforward; neither is mapping features to/from
architectural units. Architectural units are also closely cou-
pled, albeit indirectly.

An alternative to defining variation points in component
models is to deal with variation points indirectly. This is
the realm of variability management [4]. Rather than defin-
ing variation points explicitly, some object-oriented variabil-
ity management techniques construct products by following
the variability specified in the feature model. For exam-
ple, in feature-oriented software product lines [1], products
are coded directly and selected features are added by pro-
gramming techniques. Ome popular technique is weaving
[6], which injects features as aspects into objects. Fea-
ture and variation points here are thus only represented
as object-oriented (aspect-oriented) programming language
constructs, namely aspects, join points and point cuts, and
do not have their usual semantics. The question is therefore

| AverageMPG,
| AverageMPG Moritoring)], [Selector(AverageMPH Maintenance)], [Selecto

Fror + & [VCS(13) P
AutoBreak
» () AverageData
BrakesMaintenance
> CruiseControl
9 DataProcessor

i

DoorMonitor

» (%9 DoorsMonitor
ElectricalSystemMaintenance

> (9 EngineMaintenance
Meaintenance

J-| b (7)) ObjectDetection

ObjectDetector >

Is this a reference architecture for vehicle control systems?

whether such an approach can provide a meaningful archi-
tecture template in the normal sense of domain analysis for
all possible products.

S. REFERENCE ARCHITECTURE = COM-
PONENTS + COMPOSITION + VARIA-
TION POINTS?

An architecture template defined by an ADL represents a
parametric product whose parameters determine which fea-
tures it contains. Such a product can be derived, or config-
ured, by instantiating the parameters of the template. The
template is thus the blueprint for individual products in the
product family, to be configured one at a time. However, it
is not a master architecture for the product family, that con-
tains the architectures of all possible products. In a master
architecture, all products are already present and therefore
do not require configuring one at a time from a template.

We conjecture that to define a master architecture as a
reference architecture, we need to define a component model
in which variation points are also first-class entities, co-equal
with components and composition.

To test this conjecture we have developed a component
model (called FX-MAN because it is based on another com-
ponent model called X-MAN [8]) with encapsulated com-
ponents composed by exogenous composition operators, as
well as explicit variation operators that can permute a set of
architectures into variations defined by the variation points
in the feature model.

Compared to objects and architectural units, mapping
features to/from encapsulated components is relatively straight-

forward, since such components have no external dependen-
cies, and are therefore very loosely coupled (via coordina-
tion).

Fig. 6 shows a master architecture (we conjecture) for
vehicle control systems (VCS) [7] built using our tool for
FX-MAN. This architecture mirrors the feature model for
vehicle control systems shown in Fig. 7. It explicitly con-

VCS

Calculation Observation Cruise Management

Average Average Maintenance Monitoring Collision Auto Cruise
MPH MPG Detection Control

‘ Mandatory & Optional Fron.t A||_r0u-nd
A Alternative A Or Detection Detection

Figure 7: Feature model for vehicle control systems.

tains the architectures of all possible variants specified by
the feature model, i.e. 40 products. This product family
is shown in the product explorer view at the bottom-left of
Fig. 6.

Is the architecture in Fig. 6 a reference architecture? Are
we on the right track? We sincerely hope so, but we would
appreciate constructive feedback, and above all, collabora-
tion with reference architecture experts!

Acknowledgements

We wish to thank our colleagues Cuong Tran, Chen Qian
and Rehman Arshad for their enthusiastic collaboration and
insightful feedback.

6. REFERENCES

[1] S. Apel, D. Batory, C. Késtner, and G. Saake.
Feature-Oriented Software Product Lines. Springer,
2013.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley, third edition, 2012.

[3] T.J. Brown, L.T.A. Spence, and P. Kilpatrick. A
relational architecture description language for
software families. In Software Product-Family
Engineering, pages 282—295. Springer, 2004.

[4] L. Chen, M. Ali Babar, and N. Ali. Variability
management in software product lines: a systematic
review. In Proceedings of the 13th International
Software Product Line Conference, pages 81-90.
Carnegie Mellon University, 2009.

[5] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M.R.V.
Chaudron. A classification framework for software
component models. IEEE Transactions on Software
Engineering, 37(5):593-615, October 2011.

[6] P. Gilles, G. Vanwormhoudt, B. Morin, P. Lahire,
O. Barais, and J.-M. Jézéquel. Weaving Variability
into Domain Metamodels. Software € Systems
Modeling, 11(3):361-383, July 2012.

[7] D. Hatley and 1. Pirbhai. Strategies for real-time
system specification. Addison-Wesley, 2013.

[8] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel,
C. Tran, P. Rimmer, and S. Sharma.
Component-based design and verification in X-MAN.
In Proc. Embedded Real Time Software and Systems,
2012.

[9] K.-K.Lau. Software component models: Past, present
and future. In Proceedings of the 17th International
ACM SIGSOFT Symposium on Component-based
Software Engineering, pages 185—186. ACM, 2014.

[10] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and
A.S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR~021, Software Engineering Institute,
Carnegie-Mellon University, 1990.

[11] K.C. Kang, J. Lee, and P. Donohoe. Feature-oriented
product line engineering. IEEE Software, 19(4):58-65,
2002.

[12] K.-K. Lau and Z. Wang. Software component models.
IEEE Transactions on Software Engineering,
33(10):709-724, October 2007.

[13] J. Maras, L. Lednicki, and I. Crnkovic. 15 years of
CBSE Symposium — impact on the research
community. In Proceedings of the 15th International
ACM SIGSOFT Symposium on Component-Based
Software Engineering, pages 61-70. ACM, 2012.

[14] E.Y. Nakagawa, A. Pablo Oliveira, and M. Becker.
Reference architecture and product line architecture:
a subtle but critical difference. In Software
Architecture, pages 207-211. Springer, 2011.

[15] OMG. OMG Unified Modeling Language
Specification, November 2007. http:
//www.omg.org/cgi-bin/doc?formal/07-11-01.pdf.

[16] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer
electronics software. IEEE Computer, 33(3):78-85,
2000.

