
Component Certification and System Prediction: Is there a Role for Formality?

Kung-Kiu Lau
Department of Computer Science

University of Manchester
Manchester M13 9PL

United Kingdom
kung-kiu@cs.man.ac.uk

Abstract

In this paper, we specify an open problem:predictable
component assembly, and state a position oncompositional
reasoning techniquesthat we believe are necessary for this
purpose.

1 A Rhetorical Question?

Yes, naturally, the question in the title is meant to be
rhetorical. However, by formality I do not mean that which
is exemplified by existing formal methods. Rather, I mean
the use ofa priori reasoning, instead of the prevalenta pos-
teriori reasoningused for verification-based software con-
struction.

2 What is A Priori Reasoning?

Verification-based methods take the ‘posit-and-see’ ap-
proach: given the specification for a program,first posit a
program,thensee if the program is correct (wrt to the given
specification); similarly, to construct a specified composite,
first posit the components and their composition,thensee
if their composition meets the given specification. This is
what I calla posteriori reasoning: reasoning about correct-
ness (or other properties) takes placeafter the program or
component has been constructed. In other words, it does
not offer any help with the construction beforehand.

By contrast,a priori reasoningtakes places before the
construction takes place. In the context of CBSE,a priori
reasoningassumes that it is possible to showa priori that
the individual components in question are correct (wrt their
own specifications). It then offers help with reasoning about
the composition of these components, both to guide their
composition in order to meet the specification of a larger
system, and to predict the precise nature of any composite,

so that the composite can in turn be used as a unit for further
composition.

In other words, whereasa posteriorireasoning takes the
posit-and-seeapproach,a priori reasoningtries to leave out
thepositelement altogether, and replace theseeelement by
preciseprediction.

3 A Priori Reasoning Demands Formality

Unlike a posteriori reasoning, which may or may not
be formal (the former corresponds toposit-and-see, and the
latterposit-and-prove), a priori reasoningdemands formal-
ity because it is just not possible otherwise, as will become
plain in Section 6.3.

4 Can Formality Succeed in CBSE?

But why should anyone believe that formality can be em-
ployed successfully in CBSE when existing formal methods
have not made an impact on current software engineering
practice? Well, obviously I cannot be absolutely certain that
it can be, but I am reasonably convinced thata priori rea-
soningis practicable (and hence the associated formality)
and it can help CBSE succeed,

5 Why does CBSE Need A Priori Reasoning?

My answer to this question is simply that I believe thata
priori reasoningcan deliver the key pre-requisites for CBSE
to achieve its ultimate goal ofthird-part assembly.

6 What are the Key Pre-Requisites for CBSE?

I believe they are the following:� a standard semanticsof components and component
composition (and hence reuse);



� good (component)interface specifications;� a goodassembly guidefor selecting the right compo-
nents for building a specified system.

6.1 Standard Semantics

Without a standard semantics, it is not possible to achieve
a standard (universally understood and accepted) definition,
which in turn is essential for achieving the ultimate goal of
third-party assembly of components.

6.2 Interfaces

The interface of a component should beall we knowabout
the component. It should therefore provide all the infor-
mation on what the component does, i.e. its operations,
(though not how it does it) and how and where we can de-
ploy the component, i.e. itscontext dependencies. Other-
wise, third-party assembly would not be possible. There-
fore, (in contrast to [21]) I believe that an interface should
include not just a list of operations, but also context depen-
dencies. This implies that we need, as a minimum, poly-
morphism, theory morphism and composition, etc to de-
scribe the semantics of interfaces. Therefore,pre- and post-
conditions(with onlyproof-theoreticsemantics) are not enough
for specifying interfaces. Rather, we needdeclarative(e.g.
model-theoretic) semantics.

6.3 Assembly Guide

The interface of a reusable component contains a collec-
tion of operations. In order to have a good assembly guide,
we need to know what each operation does (correctly) and
what its reuse within another component (after component
composition) will yield. Thus component operations should
havedeclarative specifications(we have to know what they
do, not how) and composition of components should yield
the specification of the operations of the composite. This
implies that the specification of component operations in its
interface should be compositional.

This is only possible if we have a notion of correctness of
component operations wrt their specifications, and require
that correctness is preserved by composition (wrt the spec-
ification of the composite derived from the specifications
of the constituents). This implies that the semantics for
components and their interfaces should incorporate a no-
tion of a priori correctness, i.e. pre-proved correctness of
any given component operation wrt its own specification, as
well aspre-stated conditions that will guarantee that compo-
nent and operation compositions will preserve correctness.
This kind of correctness meanscorrect reusabilitybecause
it preservesinheritanceandcompositionality, and it is the
key to providing a good assembly guide.

7 What A Priori Reasoning can Deliver

As stated above, I believea priori reasoningcan deliver
the pre-requisites for the success of CBSE.

7.1 Standard Semantics

As we have seen in Section 6.3,a priori reasoningrequires
formal semantics. If we can come up with a suitable seman-
tics, then this semantics will (automatically) provide defini-
tions for components and ther composition and reuse. Thus,
achievinga priori reasoningwill necessarily also provide a
standard semanticsfor components and their composition
and reuse.

7.2 Interfaces

Such a semantics in turn will include suitable declarative
semantics forinterfaces.

7.3 Assembly Guide

As we have also seen in Section 6.3,a priori correctness
can provide anassembly guide.

7.4 A Spiral Model for CBSE

Another significant consequence ofa priori reasoningis
thata priori correctness can provide a hybrid approach that
is both top-down and bottom-up for CBSE, as illustrated in
Figure 1. First a library ofa priori correct components has

Correct software analysis &
transformation

synthesis

Correct software ?Spec
yes

no

Bottom−upLibrary of correct components

Library of correct components

synthesis

Requirements Spec

design

Architectural Spec Top−down

Figure 1. CBSE using a library of correct components.

to be built. The nature ofa priori correctness, coupled with
the use ofa priori reasoning, then allows these components
to be composed into larger systems in either a top-down or
bottom-up manner, or indeed a combination of both.

Top-down development can follow the traditionalwater-
fall model: given the requirements specification, a design
will be made, and software will be synthesised accordingly

2



from the library components in order to meet the require-
ments. Alternatively we may follow thesoftware architec-
ture approach and start with an architectural specification,
and synthesise software from the library components. The
resulting software is guaranteed to be correct (but it may
need to be analysed and transformed to improve efficiency).

Bottom-up development would start from the library of
components, and some specification (of either the require-
ments or the architecture). There is no design as such, but
instead the development is iterative, in ‘pick and mix’ style,
until the software constructed is seen (or can be verified) to
meet the specification. Again, this style is possible because
of a priori correctness. Composition of correct components
can show the specification of the composite, and therefore
the specification of any software constructed can be com-
pared with the initial specification for the whole system.
Guidance as to which components to ‘pick and mix’ can
also be provided by specifications.

If the specifications (and the software system under con-
struction) have to evolve, then thespiral modelof software
development would be more appropriate. We can achieve
this by combining the top-down and the bottom-up devel-
opment styles described above. In each cycle of the spiral,
top-down development can be used to develop software for
specifications that have been finalised, whereas bottom-up
development can show the gap between interim specifica-
tions and the current software system, thus enabling the de-
veloper to evolve the specifications or the system appropri-
ately.

8 Predictable Component Assembly

I believe thata priori reasoningaddresses an open prob-
lem, viz. predictable component assembly. It does so be-
cause it deals with component certification and system pre-
diction.

8.1 Component Certification

Certification should say what a component does (in terms of
its context dependencies) and certify that it will do precisely
this (for all contexts where its dependencies are satisfied).

A priori correctness means that a component is guaran-
teed to meet its own specification, and will always remain
correct even if and when it becomes part of a composite. It
will therefore provide a basis for component certification.
Such certification will tell us what behaviour to expect of a
component in any appropriate context, and it should there-
fore engender confidence in certified components.

8.2 System Prediction

A priori correctness means we know before composition
takes place what the result of composition will be, e.g. put-

ing A and B together (with proper certification for A and B),
we know what the result C will be. That is, the specification
of C must be predictable prior to composition. Moreover,
we will know how to certify C properly, and thus how to
use C in subsequent composition.

For system prediction, such a compositional property forms
the basis ofpredictable component assembly.

9 Existing Methods

Existing CBSE methods are not capable of predictable
component assembly. In other words, they do not meet the
key pre-requisites for CBSE as outlined in Section 6.

9.1 Object Technology

Existing CBSE is based on current object technology, i.e.
UML-based tools together with middleware such as CORBA,
COM and Enterprise Java Beans. In my view, the first prob-
lem here is the lack of a standard semantics. As yet these do
not exist for components in general, and for specific kinds
of components likepatternsand frameworksin particular
(and evenobjects?). Neither do they exist for component
composition or reuse.

Moreover, existing object technology is, in my view, too
low-level and bottom-up (and therefore hard to do in the
absence of a clearly defined methodology). It is too much
based on objects, and therefore not very reusable (as com-
pared to frameworks, see e.g. [12, 17, 10]).

For CBSE to achieve its goal, this low-level, bottom-up
approach needs to evolve into a high-level, top-down one,
with emphasis oncomponent assembly, e.g. architecture
description languages (ADLs) and/or ‘component assem-
bly’ languages. However, a pre-requisite for this evolution
would bea priori reasoning.

9.2 Formal Methods

General-purpose formal methods such as Z [20], VDM [13]
and B [1] lack suitable semantics for components. They
lack semantic characterisations of objects, components, pat-
terns, frameworks, etc. So they cannot provide good (com-
ponent) interface specifications.

These methods also do not have meaningful notions of
correctness for objects, components, patterns, frameworks,
etc, or their composition and reuse. So they cannot provide
a good assembly guide.

Existing (semi-)formal OOD methods (such as Fusion
[6, 9] and Syntropy [7]) suffer from the same problems
with semantics as the above general-purpose formal meth-
ods. Besides, they also use classes or objects as the basic
unit of design, and as we mentioned in the previous section,
this is not the best approach for next-generation CBSE.

3



9.3 Software Architecture

Software architecture (see e.g. [19, 3]) would seem to be a
good technique for component assembly. Already there are
architecture description languages, e.g. Wright [2], and ar-
chitectural design tools, e.g. Rapide [8]. However, software
architecture is top-down, but current CBSE is essentially
bottom-up (see e.g. [4]).

There is also a conflict between software architecture and
current CBSE over component reuse. The former prefers
components to fit in with the architecture, whereas the latter
prefers pre-defined pre-implemented components (see e.g.
[18]).

Another problem with software architecture is the so-
called Architectural Mismatch problem [11] underlying the
composition of existing components, viz. that it is in gen-
eral very hard to build systems out of existing parts if these
parts have architectures that do not match.

10 So What Kind of Formality do we Need?

I believe that we need a new approach to, and hence a
new generation of, formal methods. For one thing, we must
build formal semantics into tools with good user interfaces,
in order to obviate the need for non-expert users to grapple
with impenetrable mathematics. Mastering these should not
be a pre-requisite, just like in Engineering, where tools are
based on a mature science, but apprentices can use tools
without mastering the underlying theory. In other words, we
need a formality that can be put into practical use, e.g. by
being captured in a standard library of certified components.

11 A First Step Towards A Priori Reasoning

So what have we done to give us any confidence in our
belief thata priori reasoningis practicable? We have char-
acterised a notion ofa priori correctness, that we callstead-
fastness[16], in the context of Computational Logic (see
e.g. [15].), and we are applying this to frameworks in the
CBSE methodologyCatalysis[10], see e.g. [14].

12 Summing Up

The goal of CBSE is to provide the engineering science
and tools for constructing software products by plugging
components together, like building hardware from kits of
component parts. However, at present the key pre-requisites
for CBSE to succeed have not been met (see e.g. [5]).

In the long run, for CBSE to ultimately succeed, I believe
software components must become like hardware compo-
nents, with universal standards and component labelling. To
achieve this, we need an “Industrial Revolution for IT”, and
I believea priori reasoningcan play a crucial role in this
revolution.

References

[1] J. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[2] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie-Mellon University, 1997.

[3] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison-Wesley, 1998.

[4] J. Bosch and P. Molin. Software architecture design: evalu-
ation and transformation. InProc. 1999 IEEE Engineering
of Computer Based Systems Symposium, 1999.

[5] A. Brown and K. Wallnau. The current state of CBSE.IEEE
Software, Sept/Oct 1998:37–46, 1998.

[6] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes.Object-Oriented Development:
The Fusion Method. Prentice-Hall, 1994.

[7] S. Cook and J. Daniels.Designing Object Systems. Prentice-
Hall, 1994.

[8] D.C. Luckhamet al. Specification and analysis of system
architecture using Rapide.IEEE Trans, Soft. Eng., 1995.

[9] D. D’Souza and A. Wills. Extending Fusion: practical rigor
and refinement. In R. Malanet al, editor,Object-Oriented
Development at Work. Prentice-Hall, 1996.

[10] D. D’Souza and A. Wills.Objects, Components, and Frame-
works with UML: The Catalysis Approach. Addison-Wesley,
1999.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
In Proc. ICSE’95, pages 179–185, 1995.

[12] R. Helm, I. Holland, and D. Gangopadhay. Contracts —
specifying behavioural compositions in oo systems.Sigplan
Notices, 25(10), 1990.Proc. ECOOP/OOPSLA 90.

[13] C. Jones. Systematic Software Development Using VDM.
Prentice Hall, 2nd edition, 1990.

[14] J. Küster Filipe, K.-K. Lau, M. Ornaghi, K. Taguchi,
A. Wills, and H. Yatsu. Formal specification of Catalysis
frameworks. InProc. 7th Asia-Pacific Software Engineering
Conference, pages 180–187. IEEE Computer Society Press,
2000.

[15] J. Küster Filipe, K.-K. Lau, M. Ornaghi, and H. Yatsu. On
dynamic aspects of OOD frameworks in component-based
software development in computational logic. InProc. LOP-
STR 99, Lecture Notes in Computer Science, volume 1817,
pages 43–62. Springer-Verlag, 2000.

[16] K.-K. Lau, M. Ornaghi, and S.-̊A. Tärnlund. Steadfast logic
programs. J. Logic Programming, 38(3):259–294, March
1999.

[17] R. Mauth. A better foundation: Development frameworks
let you build an application with reusable objects.BYTE,
21(9):40IS 10–13, September 1996.

[18] D. Perry and A. Wolf. Foundations for the study of software
architecture.ACM Software Engineering Notes, 17(4):40–
52, 1992.

[19] M. Shaw and D. Garlan.oftware Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[20] J. Spivey. The Z Notation: A Reference Manual. Prentice
Hall, 2nd edition, 1992.

[21] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Harper and Row, 1986.

4


