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Abstract—In software product line engineering, the construc-
tion of an ADL architecture for a product family is still an
outstanding engineering challenge. An ADL architecture for
a product family would define the architectures for all the
products in the family, allowing engineers to reason at a higher
level of abstraction. In this paper, we outline a component
model that can be used to define architectures for product
families, by incorporating explicit variation points.
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I. INTRODUCTION

Fig. 1 shows the key artefacts involved in the construction

of product families in Software Product Line Engineer-

ing (SPLE) [34], [29]: feature model, architecture and

components. The feature model [7] captures common and
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Figure 1: Product family artefacts [32].
variable characteristics in the problem space as nodes in a

tree. Variability is expressed by optional, alternative and

or variation points. The feature model is the most abstract

specification of a product family. In order to realise the

product family defined by a feature model, SPLE makes

use of two kinds of artefacts in the solution space: an

architecture for the product family; and components that can

be combined into a product. However, the construction of
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an architecture in the sense of ADL (architecture description

language) [26] for a product family is still an outstanding

engineering challenge [17].

In this paper we outline a component model [23], called

FX-MAN, that can be used to construct a real architecture for

a product family, and thereby provide this crucial solution

space artefact. We have implemented a tool for our model

[14], and we demonstrate its use in SPLE on an example.

II. THE FX-MAN COMPONENT MODEL

A component model for constructing product families

must define a family of architectures by incorporating

variation points, as well as composition mechanisms for

combining (sub)families of architectures into larger ones.

The basic idea of FX-MAN is that it defines: (i) basic

component-based architectures that correspond to features;

(ii) variations of sets of basic architectures; (iii) composition

of sets of basic architectures into a product family.

Basic component-based architectures are X-MAN architec-
tures, constructed using the X-MAN component model [21],

[25]. These are intended to implement features in the final

products.

A set of X-MAN architectures is a family of product

parts. We call such a set an X-MAN set. Variations of

X-MAN sets are constructed by variation operators that

correspond to standard variation points in feature models,

namely OPT (optional), ALT (alternative, or exclusive or),

and OR (inclusive or).

Tuples of X-MAN sets that represent variations generated

by variation operators can be composed into a product

family. Such a family contains all the possible products

(containing all possible variations as defined in the feature

model).

A. X-MAN Component Model

In X-MAN there are two kinds of components: (i) atomic
and (ii) composite components. An atomic component con-

sists of a computation unit (CU) and an invocation connector
(IC). The computation unit contains the implementation of

the services exposed by the invocation connector. Atomic

components can be composed by composition connectors
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Figure 2: FX-MAN overview.

into composite components. Composition connectors are

(exogenous) control structures that coordinate the execution

of the components they compose [24]. A sequencer (SEQ)

provides sequencing, while a selector (SEL) branching.

AN aggregator connector (AGG) aggregates the services

exposed by its sub-components.

B. Variation Generation

To generate variations of X-MAN sets, we have defined

three variation operators, which are functions that take a

tuple of X-MAN sets as input and return variations of the

input sets. The resulting variations are again tuples of X-

MAN sets.

A variation operator is a function that applies the variabil-

ity expressed in a feature model, that is exclusive or (ALT),

optional (OPT), and inclusive or (OR) to a tuple of X-MAN

sets. The language of our variation operators is defined by

a context free grammar.

The ALT variation operator is a function that takes a

tuple of at least two T’s as input, and returns each input

set as a possible alternative. The OR variation operator also

takes as input a tuple of at least two Ts, and returns all

possible combinations (without repetition) of its input. The

OPT operator makes a single T optional.

Variation operators can be nested, since they all return tu-

ples of X-MAN sets. This is in keeping with the hierarchical

nature of variation points in a feature model.

C. Family Composition

Once variations of X-MAN sets have been generated,

the X-MAN architectures in these sets can be composed

together into a family of products, which is another tuple

of one X-MAN set. The composition of these sets can be

defined in terms of X-MAN composition connectors, since it

is ultimately X-MAN architectures that are being composed.

However, for any set composition, there are many possible

combinations of the members of the input sets. In order not

to lose any potential products (as specified by the feature

model), we need to keep all possible combinations, and so

we have defined family connectors accordingly to perform

these set compositions.

A family connector F -Conn is defined as an n-ary

function that takes a tuple of at least two X-MAN sets, and

returns a product family, which is a tuple of an X-MAN

set. The result of the composition performed by F -Conn
is a family of fully formed, executable products, each one

in the form of an X-MAN architecture. The two F -Conn
connectors are F -SEQ and F -SEL corresponding to the X-

MAN composition connectors SEQ and SEL respectively.

D. Family Filters

In order to handle composition rules, or constraints, that

may be present in a feature model, we define a family filter
as an operator on components composed by a family con-

nector. A family filter removes products containing illegal
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combinations of components, from the family constructed

by the family connector.

III. CONSTRUCTING A PRODUCT FAMILY

Clearly, by itself, FX-MAN just provides the building

blocks for product families. However, the nature of these

building blocks lends itself to the construction of product

families whose architectures are feature-oriented in the sense

that they are structurally isomorphic to the feature model.

At this stage, it should be obvious that the architecture

of every product in FX-MAN (i.e. an X-MAN component,

atomic or composite) is a tree, as composition is strictly

hierarchical. This means that a product is hierarchically

composed of components. Therefore if we use components

to implement the features in the feature model, and construct

a product family architecture in FX-MAN from these com-

ponents, then the resulting architecture will be structurally

isomorphic to the feature model. This is the basis of our

approach to constructing product families in FX-MAN.

We construct a component ci to implement each leaf

feature fi, and then hierarchically construct composite com-

ponents Ci containing ci, to implement parent features Fi of

fi. Variation operators can be applied at any level above the

leaf level, and lead to permutations of composite components

with features Fi and child features fi. Finally, the tuples of

X-MAN sets generated by variation operators are composed

by family connectors into a family.

IV. EXAMPLE

We have implemented a tool for our component model

[14] and we have experimented with the construction of a

family of Vehicle Control Systems (VCS) [20].

A VCS is a real-time, on-board system for controlling a

motor vehicle. The key functionalities of VCS are captured

in the feature model in Fig. 3.

Figure 3: Feature model of VCS.
The feature model for VCS specifies that: (i) the Cruise

Management feature is mandatory, which can provide Dis-

tance Detection or Auto Cruise Control, or both, and Dis-

tance Detection if present is either Front Detection or All-

round Detection, but not both; (ii) the Observation feature

is mandatory, which can yield either Maintenance or Moni-

toring, but not both; (iii) the Calculation feature is optional,

which if present can provide Average MPH, Average MPG

or both.

Following the VCS feature model, we now describe the

steps needed to construct a family of VCS systems. The

complete family is shown in Fig. ??.

Step 1. The first step is to construct X-MAN components,

atomic or composite, that implement the leaf (lowest level)

features in the feature model; and then deposit them in the

repository. There are seven leaf features, so we will construct

seven X-MAN components: AverageMPH, AverageMPG,

Maintenance, Monitoring, FrontDetection,

AllRoundDetection, and AutoCruise.

Step 2. The second step is to apply variation

operators defined in the feature model to the X-MAN

components that have been constructed to implement

the leaf features. To this end, we retrieve all the seven

components from our repository, and apply the specified

variation operators to them. The Optional operator

applied to the tuple resulting from applying Or to

AverageMPH and AverageMPG yields the tuple F1
= 〈{AverageMPH},{AverageMPG},{AverageMPH}
⊕ {AverageMPG}, ∅ 〉. The Alternative operator

applied to Maintenance and Monitoring gives the

tuple F2 = 〈{Maintenance},{Monitoring}〉. The

Or operator applied to the X-MAN set consisting of

AutoCruiseControl and the tuple resulting from

applying the Alternative operator to FrontDetection
and AllRoundDetection yields the tuple of 5

X-MAN sets: F3 = 〈{AutoCruiseControl⊕All-
RoundDetection}, {AllRoundDetection},
{FrontDetection⊕AutoCruiseControl},
{FrontDetection}, {AutoCruiseControl}〉.

Step 3. After generating variations, the last step is to com-

pose the variations into a product family. It is worth noting

that all the tuples of X-MAN sets specified by the variation

points in the feature model have now been generated, but

it remains to compose them into all the possible products

specified by the feature model. Applying family connectors

to these tuples of X-MAN sets will generate a product family,

whose size depends on the cardinalities of these sets. The

choice of family connectors is a design decision, however

it will not affect the total number of products in the family.

In this case the total number is 40. We choose to compose

F1 and F2 into F4 with the family connector F-Selector
because we want to allow the driver to choose any subset

of the features: AverageMPH, AvergageMPG, Maintenance

and Monitoring. Then we choose to compose F4 and F3
with F-sequencer to combine the driver’s choice with the

Cruise Management feature.

Step 4. Finally, the complete product family (Fig. 4) or a

single member (e.g. Product 4 in Fig. 5) can be extracted.

V. RELATED WORK

Our work in this paper is about a new component model

that can be used to construct a product family from com-

ponents (that represent products and product sub-families),
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Figure 4: VCS product family.

Figure 5: Product No.4.

variation operators (that represent variation points in a prod-

uct family), and composition connectors that compose sub-

families. An architecture created in our model contains a

family of (sub-families of) fully formed, executable prod-

ucts.

This is in contrast to related work, which falls into

two main categories: (i) component models (ii) variability

handling approaches.

Figure 6 shows a comparison between FX-MAN and com-

ponent models that define parametrised architectural tem-

plates. These models include: ADLARS [6], MontiArchHV

[18], ΔMontiArc[19], KobrA [5], Mae [30],Plastic Partial

Components [28], xADL2 [13], Koala [35], Com [27], and

Kumbang [4].

Component Model/ADL

Plastic Partial Components

MontiArcHV

xADL2

KobrA

Mae

Koala

Com

Our model: FX-MAN

Explicit Variation Points

Alt Opt Or

Kumbang

Family

Product

Template

Template

Template

Template

Template

ADLARS
MontiArc

Template/
Family

Template

Template

Template

Template

Figure 6: Component models and ADLs.

Some of these models do not define variation points

explicitly, and express variability by other means. For exam-

ple, MontiArchHV [18] uses presence conditions, ΔMonti-

Arc[19] use architectural deltas, while xADL2 [13] defines

conditions in XML schemas. Other models do define some

variation points explicitly. For example, Koala defines the Alt
variation point explicitly (as a switch between components),

but not Opt and Or (these can be simulated by parameters

in the diversity interface of a component to change its

internal structure). By contrast, FX-MAN explicitly defines

the full standard set of variation points that appears in feature

models: Opt, Alt and Or.

Having the full set of variation points explicitly enables
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FX-MAN to be used to define architectures structurally

isomorphic to the feature model in all cases. Conversely, the

lack of the full set of explicit variation points means that the

other component models can only define such architectures

in a limited number of cases. Furthermore, an FX-MAN

architecture allows to analyse a family, and its family

members, at design time without the need of additional

configuration. In other words, where other component model

realise a template, FX-MAN realise a family architecture with

explicit behaviour and variation points.

Figure 7: Variability management approaches.
In a wider context, SPLE methods and tools that do

not construct architectures (or use a component model),

rely on variability handling mechanisms. Figure 7 shows

a comparison between FX-MAN and existing approaches

to handle variability. There are three main categories of

such approaches: (i) weaving-based (ii) annotation-based

(iii) superimposition.

Weaving-based approaches [10], [15], e.g. XWeave [16]

and AFM [1], manage variability by applying the principles

of aspect-oriented programming [11] at the meta-level. Base

models are varied by pointcuts and advices: the former

define where to affect the base model, while the latter specify

how to modify it. Product derivation is achieved by weaving

the set of aspect models corresponding to a particular feature

configuration.

Annotation-based approaches are widely used in industry

[7] why they are very well supported through the commercial

tools Gears [22] and pure::variants [9]. On the low level side

the c-preprocessor (cpp), or FArM [33] are examples of such

approaches. Here, artefacts as fragments of a code base are

annotated with statements for example with #ifdef. Product

derivation is achieved by removing fragments that do not

reflect feature selection.

Superimposition [12], [3], [2] is the process of composing

fragments of software artefacts (e.g. code, UML diagrams)

by merging their corresponding substructures on the basis

of nominal and structural similarity. Products are derived

by merging only the fragments that satisfy their presence

condition.

Like the component models in Figure 6, the key difference

between all these variability handling approaches and FX-

MAN is that they define a template for a product family,

and not an architecture for a product family as in FX-MAN.

Individual products have to be configured one at a time using

the template.

VI. DISCUSSION AND CONCLUSION

The distinguishing characteristic of FX-MAN is its appli-

cability to the construction of the architecture of a complete

family of executable software products, together with the

key advantage that the products can be analysed at design

time without the need to be extracted. However, enumerating

a complete product family is an NP-hard problem: for large-

scale families with a high degree of variability, enumeration

and extraction of a complete family is costly both in terms

of computation time and memory. For practical purposes, a

divide-and-conquer strategy might be necessary, to handle

a large product family by decomposing it into sub-families.

Happily this is possible in FX-MAN, due to its compositional

nature, and its associated type system.

Another important aspect of compositionality is that FX-

MAN can be used to compose families into bigger ones. This

is possible because variation operators and family connectors

can be applied at any level of composition on X-MAN sets

(every product family is a tuple of an X-MAN set).

We are currently collaborating with pure::variants, the

current market leader in variability management [7], in

order to automate the mapping between problem space and

solution space. This collaboration will enable us to evaluate

our approach on larger real-world case studies, and we

intend to do so.

Finally, our tool is available at http://www.click2go.umip.

com/i/software/x man.html.
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