
Software Component Models: Past, Present and Future

Kung-Kiu Lau
School of Computer Science

The University of Manchester, UK
kung-kiu@cs.man.ac.uk

ABSTRACT
In the early years of the CBSE Symposium, much research
was focused on identifying the desiderata of CBSE [3] and
developing different approaches to CBSE. However, a com-
mon framework for defining and analysing CBSE approaches
with respect to these desiderata was only introduced later:
this was provided by the notion of component models [9, 12,
13, 6]. Every CBSE approach is underpinned by a compo-
nent model, and therefore the study of component models,
in particular how to define ones that can potentially meet
the desiderata of CBSE, is pivotal to the success of CBSE.

We have surveyed and studied existing CBSE approaches
and their corresponding component models [12, 13], and as
a result we have: (i) shown that early approaches/models
do not fully meet the CBSE desiderata; (ii) identified cri-
teria for designing component models that can better meet
the CBSE desiderata; (iii) defined a new component model
according to (ii); (iv) defined a taxonomy of existing com-
ponent models based on the desiderata.

In addition to the classic desiderata described in [3], nowa-
days CBSE has to address new challenges posed by an un-
precedented increase in the scale and complexity of software
applications, in particular safety-critical ones. As a result,
there are new CBSE desiderata for which we need to define
new models.

In this tutorial, we will: (i) present a taxonomy of existing
component models, both old and new; (ii) discuss how well
they meet the classic desiderata; (iii) discuss criteria that
new models must meet in order to address future CBSE
challenges.

The CBSE Symposium celebrated its fifteenth anniversary
in 2012 [14]. For the next 15 years, the study of component
models will continue to play a pivotal role in future CBSE
success. This tutorial aims to contribute to this effort.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.
ACM 978-1-4503-2577-6/14/06.
http://dx.doi.org/10.1145/2602458.2611456 .

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: [component-based software
engineering]

General Terms
Software Component Models

Keywords
Software Components; Composition

1. SOFTWARE COMPONENT MODELS
The cornerstone of any CBSE methodology [16] is its un-

derlying component model [9, 12, 13, 6], which defines what
components are, how they can be constructed and repre-
sented, how they can be composed or assembled, how they
can be deployed; and how to reason about all these oper-
ations on components in terms of the usual accompanying
quality metrics.

The tutorial will look at the past, present and future of
component models.

1.1 The Past
Early CBSE research focused on identifying desiderata

and on defining different approaches to CBSE.

Classic CBSE Desiderata. Components should pre-exist;
what components are; components should be produced
and deployed independently; composites should be pos-
sible; components should be copiable and instantiable,
etc. Widely accepted, ‘classic’, desiderata are described
in [3].

Idealized Component and System Life Cycles. An ide-
alised component life cycle is one that meets the CBSE
desiderata. An idealised system life cycle uses pre-
existing components developed during the component
life cycle; it thus intersects the idealised component
life cycle at the point at which components have been
built.

Early Component Models. Early component models are
based on: (i) object-oriented frameworks, e.g. CCM
[15] and EJB [7], where components are objects and
composition is by object delegation; and (ii) first-gene-
ration ADLs (architecture description languages), e.g.
ACME [8] and ArchJava [1], where components are

185



architectural units (with ports) and composition is by
port linking.

Early Component and System Life Cycles. Early com-
ponent life cycles deviate from the idealized one. Early
system life cycles often subsume component life cycles,
i.e. they do not use pre-existing components but rather
identify and develop components afresh for each sys-
tem.

1.2 The Present
Currently, the majority of component models in use are

based on second-generation ADLs, e.g. Fractal [4] and SOFA
[5]. Whereas first-generation ADLs generally lack tool sup-
port, in particular for component repositories and for con-
nector generation, second-generation ADLs provide much
more tool support.

Current Component and System Life Cycles. Current
component life cycles also deviate from the idealized
one somewhat, mainly in the use of repositories.

New Component Models. New component models have
been defined that are not based ADLs: web services
[2] and X-MAN [11]. These models use coordination as
a composition mechanism, and better meet the CBSE
desiderata than earlier models.

A Taxonomy of Component Models. The result of our
study of component models, old and new, is summarised
in a taxonomy based on the classic desiderata. This
taxonomy has five categories, and include the following
component models:

ACME-like ADLs, CCM, COM, EJB, Fractal, Jav-
aBeans, Koala, KobrA, .NET, OSGi, Palladio, Pin,
ProCom, SOFA, UML 2.0, PECOS, X-MAN, and Web
Services.

1.3 The Future
The classic CBSE desiderata alone are not sufficient for

meeting new challenges for the future.

Scale and Complexity. An unprecedented increase in the
scale and complexity of software applications poses
new challenges. CBSE is well-placed to meet these
challenges, but to do so it must meet additional desider-
ata.

Safety. Safety is another challenge. An increase in scale
and complexity makes it more difficult to ensure safety.
Again, CBSE is well-placed to meet this challenge, but
has to meet additional desiderata to do so. For V&V,
adapting the V model [17] for CBSE needs to be done
correctly.

Future Component Models. Future component models
must have compositionality in all aspects relevant to
scale, complexity and safety. Compositionality to en-
sure scale and complexity entails hierarchical system
construction; whereas compositionality to ensure safety
entails compositional V&V.

Future Component and System Life Cycles. To sup-
port compositionality, new life cycles like the W Model
[10] have to be developed.

2. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin.

Component-oriented programming in ArchJava. In
First OOPSLA Workshop on Language Mechanisms
for Programming Software Components, pages 1–8,
2001.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services: Concepts, Architectures and
Applications. Springer-Verlag, 2004.

[3] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil,
G. Pomberger, W. Pree, M. Stal, and C. Szyperski.
What characterizes a software component? Software –
Concepts and Tools, 19(1):49–56, 1998.

[4] E. Bruneton, T. Coupaye, and M. Leclercq. An open
component model and its support in Java. In Proc. 7th
CBSE, LNCS 3054, pages 7–22. Springer -Verlag,
2004.

[5] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0:
Balancing Advanced Features in a Hierarchical
Component Model. In Proc. SERA 2006, pages 40–48.
IEEE, 2006.

[6] I. Crnkovic, S. Sentilles, A. Vulgarakis, and
M. Chaudron. A classification framework for software
component models. IEEE Transactions on Software
Engineering, 37(5):593–615, Oct. 2011.

[7] L. DeMichiel, L. Yalçinalp, and S. Krishnan.
Enterprise JavaBeans Specification Version 2.0, 2001.

[8] D. Garlan, R. Monroe, and D. Wile. ACME: An
architectural interconnection language. In Proc.
CASCON’97, pages 169–183, 1997.

[9] G. Heineman and W. Councill, editors.
Component-Based Software Engineering: Putting the
Pieces Together. Addison-Wesley, 2001.

[10] K.-K. Lau, F. Taweel, and C. Tran. The W Model for
component-based software development. In Proc. 37th
EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pages 47–50.
IEEE, 2011.

[11] K.-K. Lau and C. Tran. X-MAN: An MDE tool for
component-based system development. In Proc. 38th
SEAA, pages 158–165. IEEE, 2012.

[12] K.-K. Lau and Z. Wang. A taxonomy of software
component models. In Proc. 31st SEAA, pages 88–95.
IEEE Computer Society Press, 2005.

[13] K.-K. Lau and Z. Wang. Software component models.
IEEE Transactions on Software Engineering,
33(10):709–724, October 2007.

[14] J. Maras, L. Lednicki, and I. Crnkovic. 15 years of
CBSE Symposium – impact on the research
community. In Proc. 15th CBSE, pages 61–70. ACM,
2012.

[15] OMG. CORBA Component Model, V3.0, 2002.
http://www.omg.org/technology/documents/

formal/components.htm.

[16] C. Szyperski, D. Gruntz, and S. Murer. Component
Software: Beyond Object-Oriented Programming.
Addison-Wesley, second edition, 2002.

[17] The V-model. Development standard for IT-systems of
the Federal Republic of Germany, IABG.
http://www.v-modell.iabg.de.

186




