
Software Component Models:
Past, Present and Future

Kung-Kiu Lau, Zheng Wang,
Simone Di Cola, Cuong Tran, Vasilis Christou

School of Computer Science
The University of Manchester

United Kingdom

kung-kiu@cs.man.ac.uk

Tutorial, CompArch 2014, 30 June 2014, Lille, France

Lau et al (University of Manchester) Software Component Models CompArch 2014 1 / 177

Schedule

Part I 09:00–09:45 Introduction
Traditional CBSE desiderata
Idealised component and system life cycles
Overview of current component models
Current life cycles

Part II 09:45–10:30 Taxonomy: overview (5 categories)
Taxonomy: categories 1,2

Break 10:30–11:00 Coffee
Part III 11:00–11:45 Taxonomy: categories 3,4,5
Part IV 11:45–12:30 Future challenges and new CBSE desiderata

Future component models
Future life cycles
Conclusion

Disclaimer: In this tutorial, we only provide overviews of component models,
not user manuals for them!
We accept responsibility for any factual errors or inaccuracies, and we
welcome your feedback.
Lau et al (University of Manchester) Software Component Models CompArch 2014 2 / 177

Part I
Introduction
Traditional CBSE desiderata
Idealised component and system life cycles
Overview of current component models
Current life cycles

Lau et al (University of Manchester) Software Component Models CompArch 2014 3 / 177

Introduction
CBSE: Past

Past
Initially, CBSE research focused on:

I identifying desiderata [18]
I developing different approaches

Later, the notion of component models [37, 47, 48, 29] was
introduced:

I a common framework for defining and analysing CBSE approaches
wrt CBSE desiderata

I every CBSE approach is underpinned by a component model
Studies of component models [47, 48]:

I yield taxonomy of component models based on CBSE desiderata
I show early approaches/models do not fully meet the CBSE

desiderata

Lau et al (University of Manchester) Software Component Models CompArch 2014 4 / 177

Introduction
Software Component Models

Definition
A software component model defines

what components are:
I syntax of components
I semantics of components

how to compose components:
I syntax of composition operators
I semantics of composition

[48] K.-K. Lau and Z. Wang. Software Component Models.IEEE Transactions on Software Engineering 33(10):709-724, 2007.

Lau et al (University of Manchester) Software Component Models CompArch 2014 5 / 177

Introduction
‘Standard’ Component Definitions

Szyperski [62]

“A software component
is a unit of composition
with contractually
specified interfaces and
explicit context
dependencies only. A
software component can
be deployed
independently and is
subject to composition
by third parties.”

Meyer [50]

“A component is a software
element (modular unit)
satisfying the following
conditions:
1. It can be used by other
software elements, its ‘clients’.
2. It possesses an official
usage description, which is
sufficient for a client author to
use it.
3. It is not tied to any fixed set
of clients.”

Heineman and Councill
[37]

“A [component is a]
software element that
conforms to a
component model and
can be independently
deployed and composed
without modification
according to a
composition standard.”

Component Based on

Yes

Szyperski No

Definition Component Model?
Defines

Component Model?

No

Meyer

Heineman & Councill

No No

No

Lau et al (University of Manchester) Software Component Models CompArch 2014 6 / 177

Models versus Frameworks
Component Models versus Component(-oriented Programming) Frameworks

Component Frameworks
provide programming
environments
objected-oriented examples:
COM, .NET, OSGi, EJB,
Fractal (?)

Component Models
provide semantics:
components and
their composition

A component framework
contains a component model
COM, .NET, OSGi, EJB,
Fractal all contain a model with
objects as components and
method call as composition

Component-oriented

Component
Model

Programming Framework

Lau et al (University of Manchester) Software Component Models CompArch 2014 7 / 177

Introduction
CBSE: Present & Future

Present
Taxonomy of component models shows:

I Current component models also do not fully meet the CBSE
desiderata

New component models proposed
Taxonomy expanded

Future
CBSE faces new challenges:

I increased scale
I increased complexity
I increased safety

Future component models have to meet new desiderata

Lau et al (University of Manchester) Software Component Models CompArch 2014 8 / 177

Traditional CBSE Desiderata

Components should pre-exist
Components should be produced independently
Component should be deployed independently
It should be possible to copy and instantiate components
It should be possible to build composites
It should be possible to store composites

[18] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree, M. Stal and C. Szyperski. What characterizes a

software component? Software — Concepts and Tools 19:49-56, 1998.

Lau et al (University of Manchester) Software Component Models CompArch 2014 9 / 177

Idealised Component Life cycle
Composition in Component Design Phase and Component Deployment Phase

Idealised Component Life Cycle
Design Phase Deployment Phase Run-time Phase

A A
A

B
B

B

C
C

D

BC

D

BC

InsA

InsB

InsD

InsBC

Component (source code) Component (binary) Component
 instanceDesign phase

composition operator
Deployment phase
composition operator

Builder Repository Assembler Run-time
Environment

[48] K.-K. Lau and Z. Wang. Software Component
Models. IEEE Transactions on Software Engineering
33(10):709-724, 2007.

CBSE Desiderata
Desideratum Design Phase Deployment Phase

Components should be Use builderproduced independently

Components should Deposit components Retrieve components

Components should be
deployed independently Use assembler

It should be possible to copy
and instantiate components

Copies possible Copies and

It should be possible to

It should be possible to
build composites

store composites

Composition Composition possible

Use repository

pre-exist in repository

possible

from repository

instances possible

[18] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G.
Pomberger, W. Pree, M. Stal and C. Szyperski. What
characterizes a software component? Software — Concepts
and Tools 19:49-56, 1998.

Lau et al (University of Manchester) Software Component Models CompArch 2014 10 / 177

Idealised Component and System Life Cycles

Idealised component life cycle entails an idealised system life
cycle
Component life cycle should be separate from system life cycle

Idealised Component and System Life Cycles

System requirements

S
ys

te
m

 L
ife

 C
yc

le
(f

o
r

o
n

e
 s

ys
te

m
)

Repository System Assembly
Composition of

deployed components

Architecture

System specification

Component selection
& adaptation

C
om

po
ne

nt
 L

ife
 C

yc
le

(fo
r o

ne
 d

om
ai

n)

Domain knowledge

Component Design

Component Deployment

Design & implementation
of (domain-specific)

of components

Deployment of components
in a specific system

[44] K.-K. Lau, F. Taweel and C. Tran. The W Model for Component-based Software Development. In Proc. 37th EUROMICRO

Conference on Software Engineering and Advanced Applications, pages 47–50, IEEE, 2011.

Lau et al (University of Manchester) Software Component Models CompArch 2014 11 / 177

Current Component Models
Components

A Generic Component

Required Service Provided Service

An Object

Provided
method

An Architectural Unit

in1
in2 out2

out1

An Encapsulated Component

Components services
Objects

Architectural
Methods
Out-ports In-ports

Encapsulated
components Methods None

CompositionProvided

units

Required
services mechanism

Method call

Exogenous
composition

Port
connection

Lau et al (University of Manchester) Software Component Models CompArch 2014 12 / 177

Current Component Models
Composition Mechanisms

Connection: Method Call & Port Connection

U1 U2 U1 U2

delegation connector plug

(a) Direct message passing (b) Indirect message passing

Coordination: Exogenous Composition

communication

channel

U1 U2

Coordinator

Lau et al (University of Manchester) Software Component Models CompArch 2014 13 / 177

Current Component and System Life Cycles

System Development
Component−based

Component Assembly

Component Adaptation

Component Selection

Requirements Analysis

Design

Testing

Maintenance

Implementation

Component
Development

Waterfall-like component and
system life cycles

[26, 41, 60, 24, 28, 40]

System
specification

System
testing

Component
design

Component
testing

System
requirements

Acceptance
testing

Coding

Architectural
design

V&V

Acceptance
test plan

test plan

test plan

test plan
System

Integration

Component

Integration
testing

The V model [63] for modular system
development adapted for CBSE

(e.g. [31, 34])

Lau et al (University of Manchester) Software Component Models CompArch 2014 14 / 177

Current Component Models
Support for Idealised Component and System Life Cycles

Category Component Models Design Deploy

X-MAN

Koala, SOFA, Kobra

Design & Deployment
with Repository

Design with

Deployment with

Repository

Repository
JavaBeans,

Web Services

Design with
Deposit-only Repository COM, .NET, CCM

Design without
Repository

Acme-like ADLs
UML2.0, PECOS

ComposeComposeDeposit-N Deposit-CRetrieve

EJB, OSGi, Fractal

SCA, Palladio, ProCom

Deposit-N=Deposit components constructed from scratch
Deposit-C=Deposit composite components constructed from existing components

Lau et al (University of Manchester) Software Component Models CompArch 2014 15 / 177

Taxonomy of Component Models

Builder

Builder

Builder

Builder

Builder

A

A

A A

A

A

B

B B

B B

AA

B
AB

B

A

AB

Repository

RepositoryRepository

AssemblerRepository

InsA InsA

InsA

InsA

InsB InsB

Assembler

RTERTE

RTE RTE

RTE

InsB

A

B InsAB

A

AB InsAB

Category 1: Design without Repository
(Acme−like ADLs, UML2.0, PECOS)

Category 2: Design with Deposit−only Repository
(EJB, OSGi, Fractal, COM, .NET, CCM)

Category 3: Deployment with Repository
(JavaBeans, Web Services)

Category 4: Design with Repository
(Koala, SOFA, KobrA, SCA, Palladio, ProCom)

Category 5: Design and Deploy with Repository
(X-MAN)

Lau et al (University of Manchester) Software Component Models CompArch 2014 16 / 177

Part II
Taxonomy of component models: Overview (5 categories)
Taxonomy of component models: Categories 1 and 2

Lau et al (University of Manchester) Software Component Models CompArch 2014 17 / 177

Taxonomy of Component Models
Overview

Category Component Models Design Deploy

X-MAN

Koala, SOFA, Kobra

Design & Deployment
with Repository

Design with

Deployment with

Repository

Repository
JavaBeans,

Web Services

Design with
Deposit-only Repository COM, .NET, CCM

Design without
Repository

Acme-like ADLs
UML2.0, PECOS

ComposeComposeDeposit-N Deposit-CRetrieve

EJB, OSGi, Fractal

SCA, Palladio, ProCom

Deposit-N=Deposit components constructed from scratch
Deposit-C=Deposit composite components constructed from existing components

Lau et al (University of Manchester) Software Component Models CompArch 2014 18 / 177

Taxonomy of Component Models: Category 1

Builder

A

B

InsA

InsB

RTE

Category 1: Design without Repository
(Acme−like ADLs, UML2.0, PECOS)

Lau et al (University of Manchester) Software Component Models CompArch 2014 19 / 177

Taxonomy of Component Models: Category 1
Acme-like ADLs

Acme
Acme [33] is a prototype Architecture Description Language (ADL).

It typifies first-generation ADLs, e.g. Darwin [1], UniCon [3], Wright [4],
ArchJava [7, 8].

Acme-like ADLs: Components
In Acme-like ADLs , a component is an architectural unit that represents a
primary computational element and data store of a system.

Interfaces are defined by a set of ports

Each port identifies a point of interaction between the component and its
environment (including other components)

A component may have multiple interfaces by using different types of
ports

Lau et al (University of Manchester) Software Component Models CompArch 2014 20 / 177

Acme-like ADLs: Composition

In Acme-like ADLs, components are composed by connectors
Connectors connect components via their ports

B

C

D

E

F

G

A

Lau et al (University of Manchester) Software Component Models CompArch 2014 21 / 177

Acme-like ADLs
Support for Idealised Component and System Life Cycles

In ACME-like ADLs, the components and the system are designed
together in an ADL tool.

The builder is the ADL tool if any
There is no repository
There is no assembler

Builder RTE

BB1 B2

A A'
c

c c B1' B' B2'
c'

c' c'

A = component A A' = implementation of A
B = component B B' = implementation of B
B1= component B1 B1'= implementation of B1
B2= component B2 B2'= implementation of B2
c = connector c' = implementation of c

Lau et al (University of Manchester) Software Component Models CompArch 2014 22 / 177

Acme-like ADLs
Component and System Life Cycles

Component life cycle coincides with system life cycle
During component/system design phase, components are

I identified and defined
I composed by connectors into a system design

The design for both components and the system has to be
implemented (somehow) in a chosen programming language.
At run-time, the implemented system is executed in the run-time
environment of that programming language.

Acme/ArchJava Java

B1

B2

B1’

B2’

A B A’ B’

Lau et al (University of Manchester) Software Component Models CompArch 2014 23 / 177

Acme: Example

Consider a simple bank system consisting of an ATM component, a
BankConsortium component, and 2 Bank components Bank1 and
Bank2.

Port receive;
Component Bank2 = {

Property bankid : String = "Bank2";
}

Component BankConsortium = {
Port receive;
Port send;

}

Component ATM = {
Port send;

}

Component Bank1 = {
Port receive;
Property bankid : String = "Bank1";

}

Lau et al (University of Manchester) Software Component Models CompArch 2014 24 / 177

Acme: Example (cont’d)

In design phase, the architecture for the whole system is designed

ATM

B2

B1
BC

using the above components and the following connectors:

Role request;
Role produce;

};

Connector BankContoB2 = {

Connector ATMtoBankCon = {
Role request;
Role produce;

};

Connector BankContoB1 = {
Role request;
Role produce;

};

Lau et al (University of Manchester) Software Component Models CompArch 2014 25 / 177

Acme: Example (cont’d)

Port receive;

};

Component Bank2 = {

Property bankid : String = "Bank2";
Port receive;

Component Bank1 = {

Property bankid : String = "Bank1";
};

System BankSys = {

Connector ATMtoBankCon = {

};

Role request;
Role produce;

Attachments {

};

Port receive;
Port send;

Port send;
Component BankConsortium = {Component ATM = {

}

BankConsortium.send to BankContoB2.request;

};

Connector BankContoB1 = {
Role request;
Role produce;

};

Role request;
Role produce;

};

}

BankContoB1.produce to Bank1.receive;

BankContoB2.produce to Bank2.receive;

ATMtoBankCon.produce to BankConsortium.receive;

BankConsortium.send to BankContoB1.request;

ATM.send to ATMtoBankCon.request;

Connector BankContoB2 = {

Lau et al (University of Manchester) Software Component Models CompArch 2014 26 / 177

Taxonomy of Component Models: Category 1
UML2.0

UML2.0 Component Model: Components
In UML2.0 [53], a component is a modular unit of a system with
well-defined interfaces that is replaceable within its environment.

provided service
required service

A component defines its behaviour by required and provided
interfaces (ports);
Services of components are encapsulated through their required
and provided interfaces.

Lau et al (University of Manchester) Software Component Models CompArch 2014 27 / 177

UML 2.0: Composition

UML2.0 components are composed by UML connectors:
delegation connectors
assembly connectors

Composites are assembled by assembly connectors
Systems are assembled by delegation and assembly connectors

Delegation connector
Assembly connector

Lau et al (University of Manchester) Software Component Models CompArch 2014 28 / 177

UML2.0
Support for Idealised Component and System Life Cycles

In UML2.0, the components and the system are designed together in a
visual builder tool such as Visual UML.

The visual builder tool is the builder
There is no repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

Visual Builder
Tool

Implementation
Language RTE

A = UMLA
B = UMLB
InsA = UMLA instance
InsB = UMLB instance

= connector

Lau et al (University of Manchester) Software Component Models CompArch 2014 29 / 177

UML2.0
Component and System Life Cycles

Component life cycle coincides with system life cycle
During component/system design phase, components are

I identified and defined
I composed by connectors into a system design

The design for both components and the system has to be
implemented (somehow) in a chosen programming language.
At run-time, the implemented system is executed in the run-time
environment of that programming language.

Lau et al (University of Manchester) Software Component Models CompArch 2014 30 / 177

UML 2.0: Example

Consider a simple bank system that is implemented by ATM,
BankConsortium, Bank1 and Bank2 components.

<<component>>
BankConsortium

<<provided interfaces>>
CheckBankID

<<required interfaces>>
GetCardNo

Withdraw
Deposit

CheckBalance

<<component>>
Bank2

<<provided interfaces>>
Withdraw
Deposit

CheckBalance

<<component>>
Bank1

<<provided interfaces>>
Withdraw
Deposit

CheckBalance

<<component>>
ATM

<<provided interfaces>>
GetCardNo

<<required interfaces>>
CheckBankID

Lau et al (University of Manchester) Software Component Models CompArch 2014 31 / 177

UML2.0: Example (cont’d)

In design phase, the architecture for the whole system is designed.

ATM BankConsortium

Bank1

Bank2

Lau et al (University of Manchester) Software Component Models CompArch 2014 32 / 177

Taxonomy of Component Models: Category 1
PECOS

PECOS: Components

In PECOS1 [35], a component is a unit of design which has a
specification and an implementation.

Every component has a name, a number of property bundles, a
set of ports, and behaviour
Ports are interfaces of components

PECOS components are specified in the CoCo (Component
Composition) language.

1PErvasive COmponent Systems
Lau et al (University of Manchester) Software Component Models CompArch 2014 33 / 177

PECOS: Composition

In PECOS, components are composed by connectors
Connectors connect components via their ports

Device
(active component, period = 1000 msecs)

Clock Display

Display
Digital

EventLoop
(active component)

(aperiodic)
started can_draw

timemsecs

time_in_msecs

Lau et al (University of Manchester) Software Component Models CompArch 2014 34 / 177

PECOS
Support for Idealised Component and System Life Cycles

In PECOS, the components and the system are designed and constructed
together in a programming environment such as Eclipse.

Builder

A

B

InsA

InsB

RTE

Programming
Environment

Implementation
Language RTE

A = PECOSA
B = PECOSB
InsA = PECOSA instance
InsB = PECOSB instance

= connector

The programming environment is the builder

There is no repository

There is no assembler

Lau et al (University of Manchester) Software Component Models CompArch 2014 35 / 177

PECOS
PECOS: Component and System Life Cycles

Component life cycle coincides with system life cycle
During component/system design phase, components are

I identified and defined
I composed by connectors into a system design

in the CoCo (Component Composition) language
The design has to be implemented in a chosen programming
language, usually Java or C++.
At run-time, the implemented system is executed in the run-time
environment of Java or C++.

Lau et al (University of Manchester) Software Component Models CompArch 2014 36 / 177

PECOS: Example

Consider a device that is assembled from Clock, Display, EventLoop
and DigitalDisplay components.

component Clock { component Display {
output long msecs; input long time;
} }

active component EventLoop { component DigitalDisplay {
output bool started; input long time_in_msecs;
} input bool can_draw;

}

Lau et al (University of Manchester) Software Component Models CompArch 2014 37 / 177

PECOS: Example (cont’d)

In the design phase, the architecture for the device is designed:

Device
(active component, period = 1000 msecs)

Clock Display

Display
Digital

EventLoop
(active component)

(aperiodic)
started can_draw

timemsecs

time_in_msecs

active component Device {
Clock clock; Display display; DigitalDisplay digitalDisplay;
EventLoop eventLoop;
connector time(clock.msecs, display.time, digitalDisplay.time_in_msecs);
connector eventLoop_started(eventLoop.started, digitalDisplay.can_draw);

}

Lau et al (University of Manchester) Software Component Models CompArch 2014 38 / 177

Taxonomy of Component Models: Category 2

Builder

A A

B B

Repository

InsA

InsB

RTE

Category 2: Design with Deposit−only Repository
(EJB, OSGi, Fractal, COM, .NET, CCM)

Lau et al (University of Manchester) Software Component Models CompArch 2014 39 / 177

Taxonomy of Component Models: Category 2
Enterprise JavaBeans (EJB)

EJB: Components
In EJB [30, 51] a component is an enterprise Java bean with a Java
interface:

Client Machine J2EE Server

Client Application
Container

EJB Container

Client
Application

Enterprise
Bean Database

Enterprise
Bean

an enterprise Java bean is a Java class in an EJB container on a
J2EE server
an EJB container uses the interface to manage and execute the
Java class and its instances.

Lau et al (University of Manchester) Software Component Models CompArch 2014 40 / 177

EJB: Components (cont’d)

For an EJB:
its Java class defines the methods of the bean
its interface exposes the capabilities of the bean and provides all
the methods needed for (remote) client applications to access the
bean (over a network)

There are 3 kinds of EJBs:
Entity beans
Entity beans model business data; they are Java objects that
cache database information.
Session beans
Session beans model business processes; they are Java objects
that act as agents performing tasks.
Message-driven beans
Message-driven beans model message-related business
processes; they are Java objects that act as message listeners.

Lau et al (University of Manchester) Software Component Models CompArch 2014 41 / 177

EJB: Composition

Enterprise beans are composed (in the EJB container) by method and
event delegation

method1

methodN

ClientAppC

DataBase

ClientAppA
method1

methodN

ClientAppB
method1

methodN

SessionBeanA

SessionBeanCSessionBeanB

EntityBean
method1
methodM
methodN

EJB Container

J2EE Server

method1
methodM
methodN

method1
methodM
methodN

method1
methodM
methodN

...

...

...

...

...

...

...

...

...

...

...

Lau et al (University of Manchester) Software Component Models CompArch 2014 42 / 177

EJB
Support for Idealised Component and System Life Cycles

EJBs are constructed and composed in a J2EE-compliant IDE, and
deposited and executed in an EJB contanier.

A J2EE-compliant IDE (e.g. NetBeans) is the builder for EJB
(composition of beans)
An EJB container is the repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

NetBeans

A = EJBA (JAR file)
B = EJBB (JAR file)
InsA = EJBA instance
InsB = EJBB instance

= method call

A

B

Repository

EJB
container

EJB
container

Lau et al (University of Manchester) Software Component Models CompArch 2014 43 / 177

EJB
Component and System Life Cycles

In EJB, components are EJBs, and a system is the composition of
EJBs in the EJB container (with a remote interface)
Component life cycle coincides with system life cycle
In component/system design phase, enterprise beans

I are designed, implemented and composed into a complete system
I and deposited in the EJB container

Client applications make calls to enterprise beans in the system
via the system’s remote interface
At run-time, client applications are executed, invoking enterprise
beans in the system.

Lau et al (University of Manchester) Software Component Models CompArch 2014 44 / 177

EJB: Example

Consider a bank which wishes to provide basic services (check
balance, withdrawal and deposit) on its customer accounts.

The table of accounts in the database can be represented as an entity
bean Account that consists of a Java class and a helper class.

The Account Java class is defined with methods to access and
change account details.
Each instance of Account represents a row of the table of
accounts in the database.
AccountFacade is the helper class that behaves like the (EJB2)
home interface of the Account bean.

Lau et al (University of Manchester) Software Component Models CompArch 2014 45 / 177

EJB: Example (cont’d)
@Entity @Table(name = "ACCOUNT") @XmlRootElement
@NamedQueries({
 @NamedQuery(name = "Account.findAll", query = "SELECT a FROM Account a"),
 @NamedQuery(name = "Account.findByAccno", query = "SELECT a FROM Account a WHERE a.accno = :accno"),
 @NamedQuery(name = "Account.findByBalance", query = "SELECT a FROM Account a WHERE a.balance = :balance")})
public class Account implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id @Basic(optional = false) @NotNull @Size(min = 1, max = 4) @Column(name = "ACCNO")
 private String accno;

 @Basic(optional = false) @NotNull @Column(name = "BALANCE")
 private int balance;

 public Account() { }

 public Account(String accno) {
 this.accno = accno; }

 public Account(String accno, int balance) {
 this.accno = accno;
 this.balance = balance; }

 public String getAccno() {
 return accno; }

 public void setAccno(String accno) {
 this.accno = accno; }

 public int getBalance() {
 return balance; }

 public void setBalance(int balance) {
 this.balance = balance; }

 ...

Lau et al (University of Manchester) Software Component Models CompArch 2014 46 / 177

EJB: Example (cont’d)

To construct the system we also need a session bean Bank that
consists of a Java class and interface:

Bank is the Java class that defines the business methods
(services on accounts)
BankRemote is the remote interface

Lau et al (University of Manchester) Software Component Models CompArch 2014 47 / 177

EJB: Example (cont’d)

@Stateless
public class Bank implements BankRemote {
 @EJB
 private AccountFacade accountFacade;

 @Override
 public Integer balance(final String accno) throws Exception {
 Account acc = accountFacade.find(accno);

 if (acc != null)
 return acc.getBalance();
 else
 throw new Exception ("Account not found.");
 }

 @Override
 public void deposit(final String accno, final Integer amount) throws Exception {
 if (amount <= 0)
 throw new Exception ("Invalid amount.");

 Account acc = accountFacade.find(accno);

 if (acc != null)
 acc.setBalance(acc.getBalance() + amount);
 else
 throw new Exception ("Account not found.");
 ...

Lau et al (University of Manchester) Software Component Models CompArch 2014 48 / 177

EJB: Example (cont’d)

The system is assembled from the Account entity bean and the Bank
session bean:

J2EE Server

EJB Container

Account

BankBankClient BankRemote

AccountFacade
delegate

DataBase

Lau et al (University of Manchester) Software Component Models CompArch 2014 49 / 177

Taxonomy of Component Models: Category 2
OSGi Component Model

OSGi
A component framework that brings modularity to JAVA platform

http://www.osgi.org/Technology/WhatIsOSGi

Lau et al (University of Manchester) Software Component Models CompArch 2014 50 / 177

OSGi: Bundles

OSGi consists of bundles:

Resources
files

Class files

Metadata
file

Bundle-ManifestVersion: 2
Bundle-Name: Greeting API
Bundle-SymbolicName: org.foo.hello
Bundle-Version: 1.0
Bundle-Activator: org.foo.HelloWorld
Export-Package: org.foo.hello;version="1.0“
Import-Package: org.foo.hello;version="[1.0,2.0)"

Bundle
JAR

INSTALLED

RESOLVED

UNINSTALLED

STARTING

ACTIVE

STOPPING

Life-Cycle

Lau et al (University of Manchester) Software Component Models CompArch 2014 51 / 177

OSGi Component Model
Components and Composition

OSGi bundles do not compose, but POJOs within them do via direct
method invocation.

So components in OSGi component model are Java objects; and
composition is by direct method call.

Bundle B Bundle A

Service Registry

Interact

Publish Find

Lau et al (University of Manchester) Software Component Models CompArch 2014 52 / 177

OSGi Component Model
Support for Idealised Component and System Life Cycles

POJOs in OSGi bundles are constructed in any editor, e.g.
Eclipse. They are composed inside a bundle to provide a service
(exposed by the bundle)
(POJOs inside) Bundles are installed in an OSGi-compliant
framework, e.g. Equinox, which is therefore the repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

Eclipse

A = POJOA
B = POJOB
InsA = POJOA instance
InsB = POJOB instance

= method call

A

B

Repository

Equinox Equinox

Lau et al (University of Manchester) Software Component Models CompArch 2014 53 / 177

OSGi Component Model
Component and System Life Cycles

In OSGi component models, components are POJOs, and a
system is the service provided by their composition (with an
interface published by the bundle)
Component life cycle coincides with system life cycle
In component/system design phase, POJOs

I are designed, implemented and composed into a system
I and deposited in the an OSGi-compliant framework, e.g. Equinox

Client applications make calls to POJOs inside bundles via the
published service interface
At run-time, client applications are executed, invoking POJO
instances in the system.

Lau et al (University of Manchester) Software Component Models CompArch 2014 54 / 177

OSGi: Example - HelloWorld Producer

Lau et al (University of Manchester) Software Component Models CompArch 2014 55 / 177

Taxonomy of Component Models: Category 2
Fractal

Fractal: Components
In Fractal [19, 20, 32], a component:

is a unit of encapsulation and behaviour
consists of two parts:

I content
F a finite set of sub-components

I membrane
F typically composed of several controllers, each in charge of a specific

function
F supports interfaces to introspect and reconfigure its internal features
F maintains a causally connected representation of the component’s

content

Lau et al (University of Manchester) Software Component Models CompArch 2014 56 / 177

Fractal: Components (cont’d)

Lau et al (University of Manchester) Software Component Models CompArch 2014 57 / 177

Fractal: Composition

Composition via port bindings
A binding can be either:

I primitive: if the bound interfaces are in the same address space
(e.g. B-C in picture); or

I composite if the bound interfaces span different address spaces; it
is embodied in a binding object which itself takes the form of a
component (e.g. A-E in picture)

Lau et al (University of Manchester) Software Component Models CompArch 2014 58 / 177

Fractal
Support for Idealised Component and System Life Cycles

Fractal components are constructed in the Fractal for Eclipse (F4E)
programming environment

The programming environment is the builder
The programming environment is the repository
There is no assembler
The run-time environment is the JVM

Builder

A

B

InsA

InsB

RTE

F4E

A = FractalA (JAR file)
B = FractalB (JAR file)
InsA = FractalA instance
InsB = FractalB instance

= method call

A

B

Repository

F4E JVM

Lau et al (University of Manchester) Software Component Models CompArch 2014 59 / 177

Fractal
Component and System Life Cycles

Component life cycle coincides with system life cycle
During component/system design phase, components in a chosen
programming language (Java or C/C++) are

I identified and defined
I composed by port bindings into a system design using Fractal APIs

At run-time, the system is executed in the run-time environment of
the chosen programming language (Java or C/C++).

Lau et al (University of Manchester) Software Component Models CompArch 2014 60 / 177

Fractal: Example

http://fractal.ow2.org/doc/ow2-webinars09/Fractal-Java-Lionel.pdf

Lau et al (University of Manchester) Software Component Models CompArch 2014 61 / 177

Taxonomy of Component Models: Category 2
COM

COM: Components
In COM (Component Object Model) [17, 49, 54, 27], a component is a
unit of compiled code on Windows Registry.

Component

IUnknown

Ifun1

Ifun2

Services in a component are invoked via pointers to the functions
that implement them
For each service provided there is an interface (a COM
component can implement multiple interfaces)
COM interfaces are specified in Microsoft IDL
Every component must implement an IUnknown interface

Lau et al (University of Manchester) Software Component Models CompArch 2014 62 / 177

COM: Composition

COM components are composed by method calls via interface pointers

IUnknown

Component1

Reference
Client

Component2

IUnknown

Lau et al (University of Manchester) Software Component Models CompArch 2014 63 / 177

COM
Support for Idealised Component and System Life Cycles

COM components are constructed in a programming environment
such as Microsoft Visual Studio

The programming environment is the builder
The Windows Registry is the repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

Programming

A = COMA
B = COMB
InsA= COMA instance
InsB= COMB instance

= method call

A

B

Repository

Windows
Registry

Windows
OSenvironment

Lau et al (University of Manchester) Software Component Models CompArch 2014 64 / 177

COM
COM Component and System Life Cycles

Component life cycle coincides with system life cycle:
In component/system design phase, COM components are

I designed and implemented
I assembled into a complete system
I deposited in Windows Registry

Client applications make calls to COM components in the system
via interface pointers
At run-time, client applications are executed, invoking COM
components in the system.

Lau et al (University of Manchester) Software Component Models CompArch 2014 65 / 177

COM: Example

Consider a spell checker system that comprises a checker component
and a dictionary component.

import "unknwn.idl";

[object, uuid(CAB357AE−1204−4783−AC3F−A7E4CA19EF6C)]

interface ISpellCheck : IUnknown {

[uuid(0EE7AE7−A357−4a04−B6D6−CE4DFD5CCAAF)]
library SpellcheckerLib {

[out, retval] BOOL *isCorrect);

HRESULT CheckSpelling([in, string] char *word,

[uuid(49FA65CD−8CF6−4876−8443−37A75A267A7D)]
coclass CSpellCheck {

interface ISpellCheck;

};

}

}

the method implemented by

Checker component interface −− ISpellCheck

ISpellCheck interface specifies

Checker component

UUID of Checker component

CLSID of CSpellCheck

the ISpellCheck interface
CSpellCheck class implements

IID of ISpellCheck

A “library” is an interface glued with a coclass, e.g. the “library” of
ISpellCheck and CSpellCheck makes the whole component

Lau et al (University of Manchester) Software Component Models CompArch 2014 66 / 177

COM: Example (cont’d)

import "unknwn.idl";

[object, uuid(D66AB784−75C8−4f52−8EB2−C5BE9796ABEF)]

interface IUseCustomDictionary : IUnknown {

 }
[uuid(1C381680−CF29−46b1−8060−1237C36EA6C7)]

HRESULT UseCustomDictionary([out, retval] vector <string>* dict);

library CustomdictionaryLib {
[uuid(C51815AF−CB06−4028−956C−C5F3E5781780)]
coclass CCustomDictionary {

interface IUseCustomDictionary;
}

};

Dictionary component interface −− IUseCustomDictionary

CCustomDictionary class implements

UUID of Dictionary component

IUseCustomDictionary interface

by Dictionary component
specifies the method implemented

the IUseCustomDictionary interface

Lau et al (University of Manchester) Software Component Models CompArch 2014 67 / 177

COM: Example (cont’d)

In design phase, the spell checker system is assembled through
method calls via interface pointers.

STDMETHODIMP_(ULONG) CSpellCheckImpl :: AddRef(void) {

}

#include <string.h>

CSpellCheckImpl :: CSpellCheckImpl() { }

CSpellCheckImpl :: ~CSpellCheckImpl() { }

}

}

STDMETHODIMP_(ULONG) CSpellCheckImpl :: Release(void) {

CCustomDictionary* pc = 0;

pc = new CCustomDictionaryImpl();

IUseCustomDictionary* pi = 0;

HRESULT hr;

hr = pc −> QueryInterface(IID_IUseCustomDictionary, (void**) &pi);

if(FAILED(hr)) return ERROR;

pi −> UseCustomDictionary(&m_dictionary);

}

STDMETHODIMP CSpellCheckImpl :: CheckSpelling(...) {

STDMETHODIMP CSpellCheckImpl :: QueryInterface(...) {

Checker component implementation

}

}

#include <fstream>

CCustomDictionaryImpl :: CCustomDictionaryImpl() { }

CCustomDictionaryImpl :: ~CCustomDictionaryImpl() { }

}

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: AddRef(void) {

STDMETHODIMP_(ULONG) CCustomDictionaryImpl :: Release(void) {

*p = dictionary;

return NOERROR;
}

STDMETHODIMP CCustomDictionaryImpl :: QueryInterface(...) {

STDMETHODIMP CCustomDictionaryImpl :: UseCustomDictionary(...) {

Dictionary component implementation

Lau et al (University of Manchester) Software Component Models CompArch 2014 68 / 177

Taxonomy of Component Models: Category 2
.NET Component Model

.NET Component Model: Components
In Microsoft .NET [55, 66, 2], a component is an assembly that is a
binary unit supported by Common Language Runtime (CLR)

Metadata
IL Code

A .NET component is made up of metadata and code in
Intermediate Language (IL)
The metadata contains the description of assembly, types and
attributes
The IL code can be executed in CLR

Lau et al (University of Manchester) Software Component Models CompArch 2014 69 / 177

.NET Component Model: Composition

.NET components are composed by method calls through references
via metadata

Metadata
IL Code

Metadata
IL Code

Metadata
IL Code

Assembly1 Assembly3Assembly2

Lau et al (University of Manchester) Software Component Models CompArch 2014 70 / 177

.NET Component Model
Support for Idealised Component and System Life Cycles

.NET components are constructed in a programming environment
such as Microsoft Visual Studio .NET

The programming environment is the builder
The Microsoft Enterprise Library (MEL) is the repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

Programming

A = NETA
B = NETB
InsA = NETA instance
InsB = NETB instance

= method call

A

B

Repository

MEL Windows
environment

Lau et al (University of Manchester) Software Component Models CompArch 2014 71 / 177

.NET
Component and System Life Cycles

Component life cycle coincides with system life cycle
In component/system design phase, .NET components are

I designed and implemented
I assembled into a complete system
I deposited in a Windows server

Client applications make calls to .NET components in the system
At run-time, client applications are executed, invoking .NET
components in the system.

Lau et al (University of Manchester) Software Component Models CompArch 2014 72 / 177

.NET: Example
Consider a banking system with an ATM component, which serves two
instances Bank1 and Bank2 of a Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);

Metadata
(attributes)

Lau et al (University of Manchester) Software Component Models CompArch 2014 73 / 177

.NET: Example (cont’d)

The banking system is assembled from the ATM component and two
instances of Bank component.

Bank Component

Name: Bank;
Class:

Visibility: Public;
Type: Class

Method:
Name: Deposit;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
void Deposit(CardNo ACardNo,

Parameter:
Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

Password CusPass);

IL Code

...

Name: ATM;
Class:

Visibility: Public;
Type: Class

Method:
Name: LocateBank;
Visibility: Public;
Virtual;
Interop;
IL;
Managed;
Signature:
void LocateBank(CardNo ACardNo,

Invoke: Bank.Deposit(...);
Parameter:

Name: ACardNo;
Order: 1;
Attributes: In;

Parameter:
Name: CusPass;
Order: 2;
Attributes: In;

IL Code
ATM Component

Password CusPass);

Lau et al (University of Manchester) Software Component Models CompArch 2014 74 / 177

Taxonomy of Component Models: Category 2
CCM

CCM: Components

In CCM (CORBA Component Model) [14, 13, 6], a component is a CORBA
meta-type hosted by a CCM container on a CCM platform such as OpenCCM.

Event sink

Event source

Facet

Receptacle

A CORBA meta-type is an extension and specialisation of a CORBA
Object [52, 16]

Component interfaces are made up of ports: Facets (provided services),
Receptacles (required services), Event Sources and Event Sinks.

Component types are specific, named collections of features that can be
described in OMG IDL 3

CCM components have homes that are component factories to manage
a component instance life cycle

Lau et al (University of Manchester) Software Component Models CompArch 2014 75 / 177

CCM: Composition

CCM components are assembled by method and event delegations
in such a way that

facets match receptacles
event sources match event sinks

... ...

Lau et al (University of Manchester) Software Component Models CompArch 2014 76 / 177

CCM
Support for Idealised Component and System Life Cycles

CCM components are constructed in a programming environment such
as Open Production Tool Chain and deposited into a CCM container
hosted and managed by a CCM platform such as OpenCCM.

The programming environment is the builder
The CCM container is the repository
There is no assembler

Builder

A

B

InsA

InsB

RTE

Programming

A = CCMA
B = CCMB
InsA = CCMA instance
InsB = CCMB instance

= method call

A

B

Repository

CCM
container

CCM
serverenvironment

Lau et al (University of Manchester) Software Component Models CompArch 2014 77 / 177

CCM
Component and System Life Cycles

Component life cycle coincides with system life cycle
In Component/system design phase, CCM components are

I designed and implemented
I composed into a complete system
I deposited in the CCM server

Client applications make calls to CCM components in the system
via the system’s interface
At run-time, client applications are executed, invoking CCM
components in the system.

Lau et al (University of Manchester) Software Component Models CompArch 2014 78 / 177

CCM: Example

Consider a simple bank system implemented by ATM,
BankConsortium, Bank1 and Bank2 components (in OMG IDL 3):

 string getBankID(string cardno);

 void deposit(string cardno);

void withdraw(string cardno);

void checkBalance(string cardno);
}

IsCustomer, NotCustomer

};

public string cardno;

public BankState customerinfo;

};

};

component

};

attribute string atmid;

uses Bank getBankID;

consumes AccountInfo customer;

manages instances

interface

enum

eventtype

home

factory

event sink

receptacle

Bank {

ATM {

BankState {

ATMhome manages ATM {

new(in string atmid);

AccountInfo {

Lau et al (University of Manchester) Software Component Models CompArch 2014 79 / 177

CCM: Example (cont’d)

event source

attribute string bankid;

provides Bank deposit;

provides Bank withdraw;

provides Bank checkBalance;

};

facet

component

provides Bank getBankID;

attribute string bankconsortiumid;

};
publishes AccountInfo customer;

uses Bank deposit;

uses Bank withdraw;

provides Bank checkBalance;

component

};

};

factory

home

factory new(in string bankid);

home

Bank {

BankConsortium {

BankConhome manages BankConsortium {

new(in string bankconsortiumid);

Bankhome manages Bank {

Lau et al (University of Manchester) Software Component Models CompArch 2014 80 / 177

CCM: Example (cont’d)

The bank system is assembled from the ATM, BankConsortium, Bank1
and Bank2 components.

ATM BankConsortium

Bank1

Bank2

The composition of CCM components is specified in a Component
Assembly Descriptor (an XML file)

Lau et al (University of Manchester) Software Component Models CompArch 2014 81 / 177

CCM: Example (cont’d)

</componentfile>
<filearchive name = "BankConsortium.csd">
<componnetfile id = "BankConsortium component">

</componentfile>

<componnetfile id = "Bank component">
<filearchive name = "Bank.csd">

<componnetfile id = "ATM component">
<componentfiles>

<filearchive name = "ATM.csd">
</componentfile>

</componentfiles>

<componentfileref idref = "ATM Component"/>
<componentinstantiation id = "atm">
<registerwithnaming name = "ATMHome"/>

<homereplacement id = "ATMHome">

</homereplacement>

<partitioning>

</homereplacement>

<homereplacement id = "BankConsortiumHome">
<componentfileref idref = "BankConsortium Component"/>
<componentinstantiation id = "bankconsortium">
<registerwithnaming name = "BankConsortiumHome"/>

<homereplacement id = "BankHome">
<componentfileref idref = "Bank Component"/>
<componentinstantiation id = "bank1">

</homereplacement>
<registerwithnaming name = "BankHome"/>
<componentinstantiation id = "bank2">

</partitioning>

<component assembly id = "banksys">
<description> bank assembly descriptor</description>

</component assembly>

<connections>
..
.

</connections>

<!DOCTYPE component assembly BANKSYSTEM "componentassembly.dtd">
<?xml version = "1.0"?>

Lau et al (University of Manchester) Software Component Models CompArch 2014 82 / 177

CCM: Example (cont’d)

<providesport>
<providesidentifier>getBankID</providesidentifier>

<providesidentifier>deposit</providesidentifier>
<providesidentifier>withdraw</providesidentifier>
<providesidentifier>checkBalance</providesidentifier>

<componentinstantiationref idref = "bankcon"/>

<componentinstantiationref idref = "bank"/>
</providesport>

<connectinterface>

<usesport>

<usesidentifier>deposit</usesidentifier>
<usesidentifier>withdraw</usesidentifier>
<usesidentifier>checkBalance</usesidentifier>

</usesport>

<componentinstantiationref idref = "atm"/>

<componentinstantiationref idref = "bankcon"/>

</connectinterface>

<connectevent>

<publishesport>

<usesidentifier>getBankID</usesidentifier>

<publishesidentifier>customer</publishesidentifier>
<componentinstantiationref idref = "bankcon"/>

</publishesport>

<consumesport>
<consumesidentifier>customer</consumesidentifier>
<componentinstantiationref idref = "atm"/>

</consumesport>

</connectevent>

<connections>

</connections>

Lau et al (University of Manchester) Software Component Models CompArch 2014 83 / 177

Part III
Taxonomy of component models: Categories 3,4 and 5

Lau et al (University of Manchester) Software Component Models CompArch 2014 84 / 177

Taxonomy of Component Models: Category 3

Builder

A

B B

A

Repository

InsA

Assembler RTE

InsB

A

B

Category 3: Deployment with Repository
(JavaBeans, Web Services)

Lau et al (University of Manchester) Software Component Models CompArch 2014 85 / 177

Taxonomy of Component Models: Category 3
JavaBeans

JavaBeans: Components
In JavaBeans [61, 39], a component is a bean, which is just any Java
class that has:

methods
events
properties

A bean is intended to be constructed and manipulated in a visual bean
builder tool like NetBeans.

Lau et al (University of Manchester) Software Component Models CompArch 2014 86 / 177

JavaBeans: Composition

In deployment phase, bean instances are composed via event
delegation

TargetBeanSourceBean
Generate

Event

EventAdaptor

Target
Method

NotifiedEvent

Call Target Method

Trigger
Target Method

Notify
Event

a bean ‘composes’ with another bean by sending a message
through delegation of events
the bean builder tool automatically generates, compiles, and loads
event adaptor classes for logistics of events

Lau et al (University of Manchester) Software Component Models CompArch 2014 87 / 177

JavaBeans (NetBeans)
Support for Idealised Component and System Life Cycles

In NetBeans, individual beans are constructed as Java classes, and
deposited in the Palette.
Bean instances are retrieved from the Palette into the Design Form
and composed into a system.

NetBeans is the builder for Java beans
the Palette of NetBeans is the repository (no composition)
The Design Form of NetBeans is the assembler (composition of
bean instances)
JVM is the run-time environment

NetBeans Palette Design Form JVM

Builder

A

B

A

B

InsA

InsB

A = BeanA (JAR file)
B = BeanB (JAR file)
InsA = BeanA instance
InsB = BeanB instance

= adaptor object

A

B

Repository Assembler RTE

Lau et al (University of Manchester) Software Component Models CompArch 2014 88 / 177

JavaBeans: NetBeans visual builder

Picture taken from [39].

Lau et al (University of Manchester) Software Component Models CompArch 2014 89 / 177

Javabeans
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, beans are designed, implemented
and deposited in the repository (e.g. NetBeans Palette)
In system design/component deployment phase, beans are
retrieved from the repository and composed into a system in the
assembler (e.g. NetBeans Design Form).
In system run-time, the system is executed in the assembler in
JVM.

Lau et al (University of Manchester) Software Component Models CompArch 2014 90 / 177

JavaBeans: Example

jButton1 has a method to generate an event (mouse press) when it is
pressed

jLabel1 has a method that outputs the message “You pressed the button”

The two beans are composed by an adaptor that when notified of an
event (mouse press) calls jLabel1’s method, to produce the GUI shown

Pictures taken from [39].

Lau et al (University of Manchester) Software Component Models CompArch 2014 91 / 177

Taxonomy of Component Models: Category 3
Web Services

Web Services: Components
Web services [9, 12, 5] are web application components that can
be published, found, and used on the Web
A web service contains:

I an interface in WSDL (Web Service Description Language)
F describes the functionalities the web service provides

I a binary implementation (the service code)

WSDL
Service Code

Service clients communicate directly with service providers [12].

Lau et al (University of Manchester) Software Component Models CompArch 2014 92 / 177

Web Services: Composition

Web services are composed by method calls through SOAP
(Simple Object Access Protocol) or JSON (JavaScript Object
Notation) messages
SOAP uses XML tags while JSON uses name/value pairs [12]

WSDL
Service Code

WSDL
Service Code

WSDL
Service Code

Service1 Service3Service2

SOAP
JSON

SOAP
JSON

Lau et al (University of Manchester) Software Component Models CompArch 2014 93 / 177

Web Services: Composition

Orchestration
Web service

1
Web service

3

Web service
n

Web service
2

. . .Orchestration
(Coordinator)

1: Receive 2: Invoke

4: Invoke
5: Reply

3: Invoke

Choreography
Web service

1

Web service
4

Web service
3

Web service
2

5: Invoke 1: Invoke

2: Invoke4: Invoke

3: Reply

Pictures from: http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html
Lau et al (University of Manchester) Software Component Models CompArch 2014 94 / 177

Web Services
Support for Idealised Component and System Life Cycles

Web services are constructed in a programming environment, e.g.
Eclipse for Java, and deposited on a web server.
Web services are composed (by orchestration) in a BPEL editor and
the orchestration is executed on a BPEL engine.

The programming environment is the builder
The web server is the repository
A BPEL editor is the assembler
a BPEL engine is the run-time environment

Programming Web BPEL BPEL

Builder

A

B

A

B

A

B

A =WebServiceA
B =WebServiceB

= orchestration

A

B

Repository Assembler RTE

Environment Server Editor Engine

Lau et al (University of Manchester) Software Component Models CompArch 2014 95 / 177

Web Services
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, services are

I designed and implemented
I deposited on a web server

In system design/component deployment phase, services are
orchestrated in a BPEL editor
At run-time, the orchestration is executed on a BPEL engine

Lau et al (University of Manchester) Software Component Models CompArch 2014 96 / 177

Web Services: Example
Composition by Orchestration

Client

portType

1: Request

6: Reply

2: Request Employee
Travel

StatusWeb
Service

American
Airlines

Web
Service

Delta
Airlines

Web
Service

4.1: Invoke

5.1: Invoke

3: Reply

4.2: Call-back

5.2: Call-back

<<invoke (sync)>>
Retrieve employee

travel status

<<invoke (async)>>
Get plane ticket offer

from American Airlines

<<invoke (async)>>
Get plane ticket offer
from Delta Airlines

<<assign>>
Select Delta
Airlines ticket

<<assign>>
Select American

Airlines ticket

<<reply>>
Return the
best offer

BPEL Process for Business Travels

[American.price<=Delta.price] [American.price>Delta.price]

portType

Picture from: http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html

Lau et al (University of Manchester) Software Component Models CompArch 2014 97 / 177

Web Services: Example (cont’d)
Composition by Orchestration

BPEL Process

BPEL Process Code

<portType name="EmployeeTravelStatusPT">
 <operation name="EmployeeTravelStatus">
 <input message="..." />
 <output message="..." />
 </operation>
</portType>

<portType name="FlightAvailabilityPT">
 <operation name="FlightAvailability">
 <input message="..." />
 </operation>
</portType>
<portType name="FlightCallbackPT">
 <operation name="FlightTicketCallback">
 <input message="..." />
 </operation>
</portType>

<portType name="FlightAvailabilityPT">
 <operation name="FlightAvailability">
 <input message="..." />
 </operation>
</portType>
<portType name="FlightCallbackPT">
 <operation name="FlightTicketCallback">
 <input message="..." />
 </operation>
</portType>

<portType name="TravelApprovalPT">
 <operation name="TravelApproval">
 <input message="..." />
 </operation>
</portType>
<portType name="ClientCallbackPT">
 <operation name="ClientCallback">
 <input message="..." />
 </operation>
</portType>

Employee
Travel Status

 Web
Service

American Airlines Web ServiceDelta Airlines Web Service

Lau et al (University of Manchester) Software Component Models CompArch 2014 98 / 177

Web Services: Example (cont’d)

Employee Travel Status Web Service

<message name="EmployeeTravelStatusRequestMessage">
<part name="employee" type="tns:EmployeeType" />

</message>
<message name="EmployeeTravelStatusResponseMessage">
<part name="travelClass" type="tns:TravelClassType" />

</message>
<portType name="EmployeeTravelStatusPT">
<operation name="EmployeeTravelStatus">
<input message="tns:EmployeeTravelStatusRequestMessage" />
<output message="tns:EmployeeTravelStatusResponseMessage" />

</operation>
</portType>

Lau et al (University of Manchester) Software Component Models CompArch 2014 99 / 177

Web Services: Example (cont’d)

American Airlines and Delta Airlines Web Service

<message name="FlightTicketRequestMessage">
<part name="flightData" type="tns:FlightRequestType" />
<part name="travelClass" type="emp:TravelClassType" />

</message>
<message name="TravelResponseMessage">
<part name="confirmationData" type="tns:FlightConfirmationType" />

</message>
<portType name="FlightAvailabilityPT">
<operation name="FlightAvailability">
<input message="tns:FlightTicketRequestMessage" />

</operation>
</portType>
<portType name="FlightCallbackPT">
<operation name="FlightTicketCallback">
<input message="tns:TravelResponseMessage" />

</operation>
</portType>

Lau et al (University of Manchester) Software Component Models CompArch 2014 100 / 177

Web Services: Example (cont’d)

BPEL Process for Business Travels

<message name="TravelRequestMessage">
<part name="employee" type="emp:EmployeeType" />
<part name="flightData" type="aln:FlightRequestType" />

</message>
<portType name="TravelApprovalPT">
<operation name="TravelApproval">
<input message="tns:TravelRequestMessage" />

</operation>
</portType>
<portType name="ClientCallbackPT">
<operation name="ClientCallback">
<input message="aln:TravelResponseMessage" />

</operation>
</portType>

Lau et al (University of Manchester) Software Component Models CompArch 2014 101 / 177

Taxonomy of Component Models: Category 4

Builder

A
A

B
AB

Repository RTE

InsAB

Category 4: Design with Repository
(Koala, SOFA, KobrA, SCA, Palladio, ProCom)

Lau et al (University of Manchester) Software Component Models CompArch 2014 102 / 177

Taxonomy of Component Models: Category 4
Koala

Koala: Components

In Koala2 [65, 64], a component is an architectural unit which has a
specification and an implementation.

Semantically, components are units of computation and control
(and data) connected together in an architecture.
Syntactically, components are defined in an ADL-like language
(Koala).

Components are definition files only (no implementation).
2C[K]omponent Organizer And Linking Assistant

Lau et al (University of Manchester) Software Component Models CompArch 2014 103 / 177

Koala: Composition

Koala components are composed by method calls through connectors.

m

Lau et al (University of Manchester) Software Component Models CompArch 2014 104 / 177

Koala
Support for Idealised Component and System Life Cycles

In Koala, components (definition files) are constructed in the Koala
programming environment and deposited in WorkSpace.
They are retrieved from Workpace and composed into a system, also
deposited in WorkSpace.
The implementation of the component and system definition files (in C) is
executed in the run-time environment of C.

The builder is a Koala programming environment

KoalaModel Workspace (a file system) provides the repository
(composition of definition files)

There is no assembler
Builder

A

B InsAB

RTE A = Component A's definition files
B = Component B's definition files
AB = Component AB's definition file
InsAB = Component AB's binary file

= method call

A

AB

Repository

WorkSpace Run-time
Environment of C

Programming
Environment

Lau et al (University of Manchester) Software Component Models CompArch 2014 105 / 177

Koala
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, Koala components are defined (in
definition files) and deposited in the repository
In system design/component deployment phase, Koala
components are retrieved from the repository and composed into
a system (a definition file), also deposited in the repository
The definition files for the system and the components are
compiled (by the Koala compiler) into C header files. C files are
written to implement the components and the system, and
compiled into binary C code
At run-time, the binary code of the system is executed in the
run-time environment of C

Lau et al (University of Manchester) Software Component Models CompArch 2014 106 / 177

Koala: Example

Consider a Stopwatch device that comprises a Countdown component
and a Display component.

int count(void);
}

interface ICount {

provides Icount cp;

connects cp = c_impl;
contains module c_impl present;

}

Countdown component

int count(int x);
}

interface ICount {

interface ISignal {

}

requires ICount dr;
provides ISignal dp;
contains module d_impl present;
connects dr = d_impl;

d_impl = dp;
}

Display component

component Display {

component Countdown {

void display(int signal);

Koala IDL

Koala CDL

Koala IDL

Koala CDL

The interfaces are specified in Koala IDL
The component definitions are in Koala CDL

Lau et al (University of Manchester) Software Component Models CompArch 2014 107 / 177

Koala: Example (cont’d)

In design phase, the Stopwatch device is constructed by composing a
Countdown component (new) with a Display component (from the
repository)

Stopwatch

Countdown Display

The definition file for Stopwatch is assembled from Countdown and
Display

component Stopwatch {
contains component Countdown c;
contains component Display d;
connects d.dr = c.cp;

}

Lau et al (University of Manchester) Software Component Models CompArch 2014 108 / 177

Koala: Example (cont’d)

The definition files of Stopwatch, Countdown and Display are compiled
by the Koala compiler to C header files.

Then the programmer has to
write C files (to implement the components)
compile these witTaxonomy of Component Models: Category 4h
the header files to binary C code for Stopwatch.

Lau et al (University of Manchester) Software Component Models CompArch 2014 109 / 177

Taxonomy of Component Models: Category 4
SOFA

In SOFA3 [56, 22, 21, 59], a component is an architectural unit which
has a specification and an implementation, and is specified by its
frame and architecture.

Business
Provided
Interface

Frame

Business
Required
Interface

The frame defines provided and required interfaces, and
properties of the component
The architecture describes the structure of the component

3SOFtware Appliances
Lau et al (University of Manchester) Software Component Models CompArch 2014 110 / 177

SOFA 2: Components
Including Run-time Control Interface and Microcomponents

Lau et al (University of Manchester) Software Component Models CompArch 2014 111 / 177

SOFA: Composition

SOFA components are composed via connectors by using the
following communication styles:

procedure call: classic client server call.
messaging: asynchronous message delivery from a producer to
subscribed listeners.
streaming: uni- or bidirectional stream of data between a sender
and (multiple) recipients.
blackboard: communication via shared memory.

Lau et al (University of Manchester) Software Component Models CompArch 2014 112 / 177

SOFA
Support for Idealised Component and System Life Cycles

SOFA components are constructed in SOFA IDE tool and deposited
into the Repository of the tool.

SOFA IDE tool is the builder.
The Repository in SOFA IDE is the repository
There is no assembler.

Builder

A

B InsAB

RTE A = SOFAA
B = SOFAB
AB = SOFAAB
InsAB = SOFAAB instance

= connector

A

AB

Repository

SOFASOFA SOFAnode
RepositoryIDE

Lau et al (University of Manchester) Software Component Models CompArch 2014 113 / 177

SOFA
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, SOFA components are defined and
deposited in the repository of the SOFA IDE
In system design/component deployment phase, SOFA
components are retrieved from the repository and composed into
a system
At run-time, the binary code of the system is executed in the
run-time environment SOFANode

Lau et al (University of Manchester) Software Component Models CompArch 2014 114 / 177

SOFA: Example

The Logger component provides a log method.
The Tester component calls the log method via Logger’s provided
interface
Both components are composed in the LogApplication composite
component.

Example taken from http://sofa.ow2.org/docs/howto.html.

Lau et al (University of Manchester) Software Component Models CompArch 2014 115 / 177

http://sofa.ow2.org/docs/howto.html

SOFA: Example (cont’d)

Lau et al (University of Manchester) Software Component Models CompArch 2014 116 / 177

SOFA: Example (cont’d)

Lau et al (University of Manchester) Software Component Models CompArch 2014 117 / 177

Taxonomy of Component Models: Category 4
KobrA

KobrA: Components

In KobrA4 [11], a component is a UML component [25].
Every KobrA component has a specification and an implementation

The specification describes what a component does and thus it is
the interface of the component
The implementation describes how it does it

KobrA: Composition
KobrA components are composed by direct method calls.

4Komponenten-basierte Anwendungsentwicklung (component-based
application development)
Lau et al (University of Manchester) Software Component Models CompArch 2014 118 / 177

KobrA
Support for Idealised Component and System Life Cycles

KobrA components can be constructed in a visual builder tool such as
Visual UML and deposited into a file system.

The visual builder tool is the builder
The file system is the repository
There is no assembler

Builder

A

B InsAB

RTE A = KobrAA
B = KobrAB
AB = KobrAAB
InsAB= KobrAAB instance

= method call

A

AB

Repository

File
System

UML Visual Implementation
Language RTEBuilder Tool

Lau et al (University of Manchester) Software Component Models CompArch 2014 119 / 177

KobrA
Component and System Life Cycles

Component life cycle is separate form system life cycle
In component design phase, KobrA components are defined in
UML and deposited in the repository
In system design/component deployment phase, KobrA
components are retrieved from the repository and composed into
a system in UML, also deposited in the repository
All the components and the system have to be implemented in an
object-oriented programming language
At run-time, an instance of the system is executed in the run-time
environment of the chosen programming language

Lau et al (University of Manchester) Software Component Models CompArch 2014 120 / 177

KobrA: Example

Consider a book store that maintains a database of its book stock and
sells its books by an Automatic Teller Machine (ATM).

<<subject>>

noOfBooks: Integer:=0
BookStore

addBook(Book b)
addBooks(Book[] blist)
viewBooks()
deleteBook(Book b)
findBook(Book b)

The specification of the BookStore component is a UML class diagram
that specifies what the BookStore component does.

Lau et al (University of Manchester) Software Component Models CompArch 2014 121 / 177

KobrA: Example (cont’d)

In design phase, the book store system is implemented by
constructing a new ATM component and composing it with BookStore
and Book components from the repository.

<<subject>>
BookStore

<<Komponent>>
ATM

findBook(Book b)
purchaseBook(Book b)

Book
1 1 1 *

The book store system is assembled from the ATM, BookStore and
Book components by direct method calls.

Lau et al (University of Manchester) Software Component Models CompArch 2014 122 / 177

Taxonomy of Component Models: Category 4
SCA

SCA: Components
In SCA5 [10, 38], a component has services, references and
properties.

5Service Component Architecture
Lau et al (University of Manchester) Software Component Models CompArch 2014 123 / 177

SCA: Composition

Lau et al (University of Manchester) Software Component Models CompArch 2014 124 / 177

SCA
Support for Idealised Component and System Life Cycles

In SCA, components are constructed (in various programming
languages) in the SCA IDE and stored in the SCA Repository.
At run-time, SCA components are executed in various programming
language RTEs.

The SCA IDE is the builder
The SCA Repository is the repository
The RTE is that provided by the programming languages used

Builder

A

B InsAB

RTE A = SCAA
B = SCAB
AB = SCAAB
InsAB = SCAAB instance

= connector

A

AB

Repository

SCASCA Programming
RepositoryIDE Language RTEs

Lau et al (University of Manchester) Software Component Models CompArch 2014 125 / 177

SCA
Component and System Life Cycles

Component life cycle and system life cycle are separated
In component/system design phase, SCA components are

I designed and implemented
I deposited into a repository (vendor specific)
I composed into a complete system

At run-time, client applications are executed, invoking services
exposed by SCA components

Lau et al (University of Manchester) Software Component Models CompArch 2014 126 / 177

SCA: Example

Picture taken from: https://cwiki.apache.org/confluence/display/TUSCANYWIKI/Building+SOA+With+Apache+Tuscany+Incubator

Lau et al (University of Manchester) Software Component Models CompArch 2014 127 / 177

Taxonomy of Component Models: Category 4
Palladio

Palladio: Components
In Palladio [15, 57], a component consists of:

I an interface
F service signatures and (optional) protocols

I and (optional) behavioural specifications
F specified by using Service Effect Specification (SEFF)

Three (basic) component types: provided type → complete type
→ implementation type, in ascending order of concreteness of
specifications
A basic component is an atomic component
A composite component or a system is an assembly of basic and
other composite components

Lau et al (University of Manchester) Software Component Models CompArch 2014 128 / 177

Palladio: Composition

Composition is port connection via connectors
Connectors can be assembly or delegation

Picture taken from [57].

Lau et al (University of Manchester) Software Component Models CompArch 2014 129 / 177

Palladio
Support for Idealised Component and System Life Cycles

In design phase, (basic and composite) components are
abstractly or concretely defined, assembled, and stored in
repository. The builder is the PCM tool.
Also in design phase, components are chosen and assembled
into systems.
System code skeleton is generated and then implemented using
an implementation language such as Java.

Builder

A

B InsAB

RTE A = PalladioA
B = PalladioB
AB = PalladioAB
InsAB = PalladioAB instance

= connector

A

AB

Repository

Palladio
environment of JavaTool

Palladio
Tool

Run-time

Lau et al (University of Manchester) Software Component Models CompArch 2014 130 / 177

Palladio
Component and System Life Cycles

Picture taken from [57].
Lau et al (University of Manchester) Software Component Models CompArch 2014 131 / 177

Palladio
Component and System Life Cycles (cont’d)

Repository is not necessarily derived from domain requirements
i.e. components can be identified during system design.
There is no clear separation between component design and
deployment phase.
Components can be just abstract specifications.
Components do not necessarily have implementations.

Lau et al (University of Manchester) Software Component Models CompArch 2014 132 / 177

Palladio: Example

Consider a simple ATM system that can read customers’ bank
cards and provide basic services:

I withdraw
I deposit
I check balance

We identify three atomic components:
I CardReader
I Bank
I GUI

Lau et al (University of Manchester) Software Component Models CompArch 2014 133 / 177

Palladio: Example (cont’d)

In design phase, we design the 3 identified components.
We also build a composite component BankComposite from the
atomic ones.

Lau et al (University of Manchester) Software Component Models CompArch 2014 134 / 177

Palladio: Example (cont’d)

The composite component BankComposite is built by assembling
CardReader and Bank.

Lau et al (University of Manchester) Software Component Models CompArch 2014 135 / 177

Palladio: Example (cont’d)

To construct the system, we assemble BankComposite and GUI.

Lau et al (University of Manchester) Software Component Models CompArch 2014 136 / 177

Taxonomy of Component Models: Category 4
ProCom

ProCom [58] is a two-layered component model.

ProSys - upper layer
“Subsystem” components
Active, distributed
Asynchronous message passing

ProSave - lower layer
“Function” components
Passive, non distributed
Separation of data and control flow

Connection between the two layers
A subsystem component can internally be modelled by ProSave
components
Lau et al (University of Manchester) Software Component Models CompArch 2014 137 / 177

ProSys
“Subsystem” Components

An atomic subsystem:

A composite subsystem:

Lau et al (University of Manchester) Software Component Models CompArch 2014 138 / 177

ProSys: Composition

Message ports not directly connected
Composition via explicit message channels

Lau et al (University of Manchester) Software Component Models CompArch 2014 139 / 177

ProSys: Example

An Electronic Stability Control (ESC) system:

Picture taken from [58].

Lau et al (University of Manchester) Software Component Models CompArch 2014 140 / 177

ProSave
“Function” Components

A ProSave component:
is a unit of functionality, designed to encapsulate low-level tasks
exposes its functionality via services, each consisting of:

I an input group of ports: it contains the activation trigger and
required data

I an output group of ports: it makes available the data produced

A primitive component and its relative header file:

Picture taken from [58].

Lau et al (University of Manchester) Software Component Models CompArch 2014 141 / 177

ProSave: Composition

Separated data and control flow
Connectors for more elaborate control: Control fork, Control join
Control selection, Control or, Data fork, and Data or

A typical usage of selection and or-connectors:

Picture taken from [23].

Lau et al (University of Manchester) Software Component Models CompArch 2014 142 / 177

ProSave: Example

The Electronic Stability Control System:

Picture taken from [58].

Lau et al (University of Manchester) Software Component Models CompArch 2014 143 / 177

ProCoM
Support for Idealised Component and System Life Cycles

ProCom components are constructed in the PRIDE tool and deposited
into the repository of the tool.

PRIDE tool is the builder.
The repository in PRIDE is the repository
There is no assembler
The run-time environment is that of C/C++.

Builder

A

B InsAB

RTE A = PROCOMA
B = PROCOMB
AB = PROCOMAB
InsAB = PROCOMAB instance

= connector

A

AB

Repository

PRIDE PRIDE RTE for C
or C++

Lau et al (University of Manchester) Software Component Models CompArch 2014 144 / 177

ProCoM
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, ProSys/ProSave components are
defined and deposited in the repository of the PRIDE tool
In system design/component deployment phase, ProSys/ProSave
components are retrieved from the repository and composed into
a system
At run-time, the binary code of the system is executed in the
run-time environment of C/C++.

Lau et al (University of Manchester) Software Component Models CompArch 2014 145 / 177

Taxonomy of Component Models: Category 5

Builder

A

B

A

AB

AssemblerRepository

InsA

RTE

A

AB InsAB

Category 5: Design and Deploy with Repository
(X-MAN)

Lau et al (University of Manchester) Software Component Models CompArch 2014 146 / 177

Taxonomy of Component Models: Category 5
X-MAN

X-MAN: Components

In X-MAN [46, 45, 36, 42], components encapsulated units of computation,
with only provided services.

Computation

Control

U

IU
. . .

Atomic component
Composition connector

.

SEQ SEL

Composite component

Sequencer Selector A

IA

B

IB

an atomic component contains an invocation connector (IU) and a
computation unit (U); the invocation connector, when activated by control
coming from a composition connector, invokes methods provided by the
computation unit

a composite component contains sub-components composed by
composition connectors; composite components are self-similar

Lau et al (University of Manchester) Software Component Models CompArch 2014 147 / 177

X-MAN: Composition

Components are composed by composition connectors, which
encapsulate control
coordinate control flow between components.

LWT_IV_Processor

CT_IV_PIPE

CT_IV_ProcessorRWT_IV_Processor

Idle
AbortEvaluator

LWT_IV_Evaluator

LWT_IV_PIPE

TKs_SEQ

In_Prog_Init

PCs_SEQ

IN_PROG_SEQ

PC1_Evaluator

PC1_PIPERWT_IV_PIPE

PC2_Evaluator PC2_ProcessorCT_IV_Evaluator

PC2_PIPE

RWT_IV_Evaluator PC1_Processor

Init

MODE TX_MODE_SEL

TX_SEQ

ControlTransfer

System Interface

TX_PROC_PIPE

Lau et al (University of Manchester) Software Component Models CompArch 2014 148 / 177

X-MAN
Support for Idealised Component and System Life Cycles

X-MAN is supported by the X-MAN tool. In this tool, components (both
atomic and composite) are built in the builder and deposited in the
repository.
Components are retrieved from the repository and composed into a
system in the assembler.
The system is executed in the simulator of the X-MAN tool.

Builder

A

B

A = XMANA
B = XMANB
AB = XMANAB
InsAB = XMANAB instance

= design phase

A

AB

Repository

X-MAN

InsA

InsAB

A

AB

Assembler RTE

= deployment phase
composition}connector

Builder
X-MAN X-MAN X-MAN

Repository Assembler Simulator

Lau et al (University of Manchester) Software Component Models CompArch 2014 149 / 177

X-MAN
Component and System Life Cycles

Component life cycle is separate from system life cycle
In component design phase, X-MAN components (both atomic
and composite) are defined and constructed and deposited in the
repository of the X-MAN tool
In system design/component deployment phase, X-MAN
components are retrieved from the repository and composed into
a system in the assembler of the X-MAN tool
At run-time, the binary code of the system is executed in the
simulator of the X-MAN tool

Lau et al (University of Manchester) Software Component Models CompArch 2014 150 / 177

X-MAN: Example

Consider a simple passenger door management system on a aircraft.
The system determines to engage or disengage the door locks or
issue warnings based on air speed, pressure, door handle position,
door latch and emergency status.

Lau et al (University of Manchester) Software Component Models CompArch 2014 151 / 177

X-MAN: Example (cont’d)

In the design phase, three atomic components CLLVoter, PswController and
LockingController are designed and deposited in a repository.
All atomic components in X-MAN are fully implemented with source code
(e.g. written in C/C++):

Lau et al (University of Manchester) Software Component Models CompArch 2014 152 / 177

X-MAN: Example (cont’d)
Also in the design phase, a composite component DoorController is designed
by composing the formerly designed atomic components. DoorController is
then deposited in a repository:

Closed1
Closed2
Closed3
Locked_Latched1
HandlePosition
Locked_Latched2
SlideArmed
DiffPressure1
DiffPressure2
On_Ground
In_Flight
AirSpeed1
AirSpeed2
AirSpeed3
Emerg_Evac

ClosedLockedLatched
Warning

LockingCommand

Control

SEQ1

Locker.Lock

Locker

PSW.Warning

PSW

Voter.Vote

Voter

21

0

Lau et al (University of Manchester) Software Component Models CompArch 2014 153 / 177

X-MAN: Example (cont’d)

In the deployment phase, two instances (one for each aircraft door) of
DoorController are deployed and composed into the system:

Closed2_D1
Closed1_D1
Locked_Latched2_D1
HandlePosition_D1
Locked_Latched1_D1
SlideArmed_D1
Closed3_D1
DiffPressure2
AirSpeed2
AirSpeed1
DiffPressure1
AirSpeed3
Emerg_Evac
On_Ground
In_Flight
Closed1_D2
Locked_Latched2_D2
Locked_Latched1_D2
HandlePosition_D2
Closed3_D2
SlideArmed_D2
Closed2_D2

Warning_D1
CLL_D1

LockingCmd_D1
CLL_D2

Warning_D2
LockingCmd_D2

ControlTwoDoors

SEQ1

Door2.Control

Door2

Door1.Control

Door1

10

Lau et al (University of Manchester) Software Component Models CompArch 2014 154 / 177

Part IV
Future challenges and new CBSE desiderata
Future component models
Future life cycles
Conclusion

Lau et al (University of Manchester) Software Component Models CompArch 2014 155 / 177

Future Challenges and New Desiderata

Well-known benefits of CBD
reduced production cost
reduced time-to-market
increased software reuse

Even greater benefits of CBD?
increased scale
increased complexity
increased safety

What would be the key?

composition and compositionality
I compositional construction
I compositional V&V
I compositional product line engineering?

Lau et al (University of Manchester) Software Component Models CompArch 2014 156 / 177

Future Challenges and New Desiderata

Well-known benefits of CBD
reduced production cost
reduced time-to-market
increased software reuse

Even greater benefits of CBD?
increased scale
increased complexity
increased safety

What would be the key?

composition and compositionality
I compositional construction
I compositional V&V
I compositional product line engineering?

Lau et al (University of Manchester) Software Component Models CompArch 2014 156 / 177

Future Challenges and New Desiderata

Well-known benefits of CBD
reduced production cost
reduced time-to-market
increased software reuse

Even greater benefits of CBD?
increased scale
increased complexity
increased safety

What would be the key?
composition and compositionality

I compositional construction
I compositional V&V
I compositional product line engineering?

Lau et al (University of Manchester) Software Component Models CompArch 2014 156 / 177

Future Challenges and New Desiderata

Well-known benefits of CBD
reduced production cost
reduced time-to-market
increased software reuse

Even greater benefits of CBD?
increased scale
increased complexity
increased safety

What would be the key?
composition and compositionality

I compositional construction
I compositional V&V
I compositional product line engineering?

Lau et al (University of Manchester) Software Component Models CompArch 2014 156 / 177

Compositional Construction
Towards Increased Scale, Complexity and Safety

Additional Desiderata for Composition

hierarchical (algebraic) composition mechanisms

(algebraic) composition operators

Existing Software Composition Mechanisms

Containment

...
...U3

U1

U2

Extension

extension

U1 U2

U3

Coordination

communication

channel

U1 U2

Coordinator

Connection

U1 U2 U1 U2

delegation connector plug

(a) Direct message passing (b) Indirect message passing

Lau et al (University of Manchester) Software Component Models CompArch 2014 157 / 177

A Taxonomy of Software Composition Mechanisms

Unit of
Composition

Composition Mechanism

Containment Extension Connection Coordination

Function Function nesting
Higher-order function

Function call
Procedure Procedure nesting Procedure call

Class
Class nesting

Object composition
Object aggregation

Multiple inheritance Object delegation

Mixin Mixin inheritance
Mixin/Class Mixin-class inheritance

Trait Trait composition Trait composition
Trait/Class Trait-class composition Trait-class composition

Subject Subject composition
Feature Feature composition

Aspect/Class Weaving
Module Module nesting Module connection

Architectural unit Port connection
Fragment box

C
on

st
ru

ct
io

n
V

ie
w

Invasive composition Invasive composition
Process Channels Data coordination

C
B

D
 V

ie
w

Web service Orchestration
(Control coordination)

(Control coordination)
Encapsulated
component

Exogenous composition

Pr
og

ra
m

m
in

g
V

ie
w

[43] K.-K. Lau and T. Rana, A Taxonomy of Software Composition Mechanisms, Proc. 36th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 102–110, 2010, IEEE.

Lau et al (University of Manchester) Software Component Models CompArch 2014 158 / 177

Algebraic Software Composition Mechanisms

Containment Extension Connection Coordination

Composition Mechanism
Algebraic ?

No

Multiple inheritance
Mixin inheritance
Trait composition

Subject composition
Feature composition
Invasive composition

Higher-order function
Trait composition
Port connection

Invasive composition
Channels

composition
Exogenous

Mixin-class inheritance

Trait-class composition

Weaving

Function call
Procedure call

Module connection
Object delegation

Trait-class composition

Data
coordination

Orchestration

Yes

Function nesting
Procedure nesting

Module nesting
Class nesting

Object composition
Object aggregation

Containment Extension Connection Coordination

Algebraic Composition Mechanism

Yes

Function nesting
Procedure nesting

Module nesting
Class nesting

Object composition
Object aggregtion

Multiple inheritance

Mixin inheritance

Trait composition

Subject composition

Feature composition

Invasive composition

Higher-order function

Trait composition

Port connection

Invasive composition

Channels

composition
Exogenous

Composition
operator ?

No

[43] K.-K. Lau and T. Rana, A Taxonomy of Software Composition Mechanisms, Proc. 36th EUROMICRO Conference on

Software Engineering and Advanced Applications, pages 102–110, IEEE, 2010.
Lau et al (University of Manchester) Software Component Models CompArch 2014 159 / 177

Compositional Construction
The X-MAN Component Model

X-MAN: Encapsulated Components + Exogenous Composition

Computation

Control

U

IU
. . .

Atomic component
Composition connector

.

SEQ SEL

Composite component

Sequencer Selector A

IA

B

IB

Projects (European Artemis JU)

CESAR:Cost Efficient Methods and Processes for Safety Relevant Embedded
Systems (57 partners; budget: e58M)

EMC2: Embedded Multi-Core Systems for Mixed Criticality Applications in
Dynamic and Changeable Real-Time Environments (96 partners; budget:
e98M)

[42] K.-K. Lau, M. Pantel, D. Chen, M. Persson, M. Törngren and C. Tran, Component-based Development, in A. Rajan and T.
Wahl, editors, CESAR – Cost-efficient Methods and Processes for Safety-relevant Embedded Systems, Chapter 5, pages
179-212, Springer-Verlag Wien, 2013.

Lau et al (University of Manchester) Software Component Models CompArch 2014 160 / 177

Compositional Construction in X-MAN
CESAR Project: Aircraft Fuel System

Lau et al (University of Manchester) Software Component Models CompArch 2014 161 / 177

Compositional Construction in X-MAN
Aircraft Fuel System: Component-based Design

Lau et al (University of Manchester) Software Component Models CompArch 2014 162 / 177

Compositional Construction in X-MAN
Aircraft Fuel System: Composition in Two Phases

Component Design Component Deployment

[36] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P. Rümmer and S. Sharma, Component-based Design and

Verification in X-MAN, in Proc. Embedded Real Time Software and Systems, 2012.

Lau et al (University of Manchester) Software Component Models CompArch 2014 163 / 177

Compositional Construction in X-MAN
Aircraft Fuel System: Hierarchical (Algebraic) Composition

LWT_IV_Processor

CT_IV_PIPE

CT_IV_ProcessorRWT_IV_Processor

Idle
AbortEvaluator

LWT_IV_Evaluator

LWT_IV_PIPE

TKs_SEQ

In_Prog_Init

PCs_SEQ

IN_PROG_SEQ

PC1_Evaluator

PC1_PIPERWT_IV_PIPE

PC2_Evaluator PC2_ProcessorCT_IV_Evaluator

PC2_PIPE

RWT_IV_Evaluator PC1_Processor

Init

MODE TX_MODE_SEL

TX_SEQ

ControlTransfer

System Interface

TX_PROC_PIPE

Lau et al (University of Manchester) Software Component Models CompArch 2014 164 / 177

Compositional V&V
From Compositional Construction to Compositional V&V

Compositional V&V must be based on:
compositional construction with
separate component and system life cycles

Component and System Life Cycles

System requirements

S
ys

te
m

 L
ife

 C
yc

le
(f

o
r

o
n

e
 s

ys
te

m
)

Repository System Assembly
Composition of

deployed components

Architecture

System specification

Component selection
& adaptation

C
om

po
ne

nt
 L

ife
 C

yc
le

(fo
r o

ne
 d

om
ai

n)

Domain knowledge

Component Design

Component Deployment

Design & implementation
of (domain-specific)

of components

Deployment of components
in a specific system

Lau et al (University of Manchester) Software Component Models CompArch 2014 165 / 177

Compositional V & V

Need to adapt the V model accordingly.

The V Model: Modular System Development

System
specification

System
testing

Module
design

Unit
testing

System
requirements

Acceptance
testing

Coding

Architectural
design

V&V

Acceptance
test plan

test plan

test plan

test plan
System

Integration

Unit

Integration
testing

Lau et al (University of Manchester) Software Component Models CompArch 2014 166 / 177

Compositional V & V

The straightforward adaptation does not work.

The V Model: Component-based System Development?

System
specification

System
testing

Component
design

Component
testing

System
requirements

Acceptance
testing

Coding

Architectural
design

V&V

Acceptance
test plan

test plan

test plan

test plan
System

Integration

Component

Integration
testing

Lau et al (University of Manchester) Software Component Models CompArch 2014 167 / 177

Compositional V & V

Need one V for each life cycle.

The W Model

Domain
knowledge

design
Component Component V&V

& certification

Component selection
& adaptation

System
specification

System
V&V

System
assembly

Compositional
V&V

System
requirements

Acceptance
testing

Coding Coding

Component System
Life Cycle Life Cycle

Lau et al (University of Manchester) Software Component Models CompArch 2014 168 / 177

Compositional V & V
Aircraft Fuel System: X-MAN Model Checker

[36] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P. Rümmer and S. Sharma, Component-based Design and

Verification in X-MAN, in Proc. Embedded Real Time Software and Systems, 2012.

Lau et al (University of Manchester) Software Component Models CompArch 2014 169 / 177

Compositional V & V
Aircraft Fuel System: X-MAN Theorem Prover

Lau et al (University of Manchester) Software Component Models CompArch 2014 170 / 177

Compositional V & V
Aircraft Fuel System: Proving at Multiple Levels

Lau et al (University of Manchester) Software Component Models CompArch 2014 171 / 177

Compositional V & V
Aircraft Fuel System: Proving at Atomic and Composite Levels

Atomic level:

Composite level:

Lau et al (University of Manchester) Software Component Models CompArch 2014 172 / 177

Compositional V & V
Aircraft Fuel System: Top-level Proof

Lau et al (University of Manchester) Software Component Models CompArch 2014 173 / 177

Compositional Product Line Engineering?

Current PLE practice
focuses on variability management (using feature model only)
lacks product architectures (product line 6= architecture)
lacks reference architecture (feature model + functional model)
lacks scalability

Product line engineering

Domain engineering Product engineering

Feature model

Functional model

Reference
architecture

Reference
architecture

All product
variants

+

Lau et al (University of Manchester) Software Component Models CompArch 2014 174 / 177

Compositional Product Line Engineering?

For scalability
Use tree-like product
architectures and hence
reference architecture ?

Feature Model Tree

‘Spaghetti’ Products
‘Tree’ Products

Lau et al (University of Manchester) Software Component Models CompArch 2014 175 / 177

Compositional PLE with V & V

PLE with the W Model

Life Cycle

Domain
knowledge

design
Component Component V&V

& certification

Component selection
& adaptation

Product
specification

Product
V&V

Product
assembly

Compositional
V&V

Product
requirements

Acceptance
testing

Coding Coding

Component Product
Life Cycle

Functional Model

Feature Model

Reference

Domain Engineering Product Engineering

 Architecture

Architecture

Reference

+

 All Products

Lau et al (University of Manchester) Software Component Models CompArch 2014 176 / 177

Conclusion

Past
CBD identified desiderata

Present
CBD delivering following benefits:

reduced production cost
reduced time-to-market
increased software reuse

Future
CBD to deliver even greater benefits:

increased scale
increased complexity
with safety ?

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

[1] Darwin: An Architecure Description Language.
http://www-dse.doc.ic.ac.uk/Research/Darwin/darwin.html.

[2] Microsoft .NET Homepage.
http://www.microsoft.com/net/.

[3] The UniCon Architecture Description Language.
http://www.cs.cmu.edu/˜Vit/unicon/referencemanual/Reference_Manual_2.html.

[4] The Wright Architecture Description Language.
http://www.cs.cmu.edu/˜able/wright/.

[5] Web services tutorial.
http://www.w3schools.com/Webservices/default.asp.
Accessed: 2014-06-08.

[6] Common object request broker architecture: Core specification, March 2004.

[7] J. Aldrich, C. Chambers, and D. Notkin.
Architectural reasoning in ArchJava.
In Proc. 16th European Conference on Object-Oriented Programming, pages 334–367. Springer-Verlag, 2002.

[8] J. Aldrich, C. Chambers, and D. Notkin.
ArchJava: Connecting software architecture to implementation.
In Proc. ICSE 2002, pages 187–197. IEEE, 2002.

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services: Concepts, Architectures and Applications.
Springer-Verlag, 2004.

[10] Apache Tuscany SCA web page.
http://tuscany.apache.org/sca-overview.html.

[11] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel.
Component-based Product Line Engineering with UML.
Addison-Wesley, 2001.

[12] Douglas K. Barry.
Web Services, Service-Oriented Architectures, and Cloud Computing, Second Edition: The Savvy Manager’s Guide.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2013.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

http://www-dse.doc.ic.ac.uk/Research/Darwin/darwin.html
http://www.microsoft.com/net/
http://www.cs.cmu.edu/~Vit/unicon/referencemanual/Reference_Manual_2.html
http://www.cs.cmu.edu/~able/wright/
http://www.w3schools.com/Webservices/default.asp
http://tuscany.apache.org/sca-overview.html

[13] D. Bartlett.
Corba component model(ccm): Introducing next-generation corba, 2001.

[14] BEA Systems et al.
CORBA Components.
Technical Report orbos/99-02-05, Object Management Group, 1999.

[15] S. Becker, H. Koziolek, and R. Reussner.
The Palladio component model for model-driven performance prediction.
J. Syst. Softw., 82(1):3–22, January 2009.

[16] F. Bolton.
Pure Corba.
SAMS, 2001.

[17] D. Box.
Essential COM.
Addison-Wesley, 1998.

[18] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G. Pomberger, W. Pree, M. Stal, and C. Szyperski.
What characterizes a software component?
Software – Concepts and Tools, 19(1):49–56, 1998.

[19] E. Bruneton, T. Coupaye, and M. Leclercq.
An open component model and its support in Java.
In Proc. 7th Int. Symp. on Component-based Software Engineering, LNCS 3054, pages 7–22. Springer -Verlag, 2004.

[20] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quma, and Jean-Bernard Stefani.
The fractal component model and its support in java.
Software: Practice and Experience, 36(11-12):1257–1284, 2006.

[21] T. Bures, P. Hnetynka, and F. Plasil.
SOFA 2.0: Balancing Advanced Features in a Hierarchical Component Model.
In Proc. SERA 2006, pages 40–48. IEEE, 2006.

[22] T Bures and F. Plasil.
Communication style driven connector configurations.
In Proc. SERA 2004, pages 102–106. Springer, 2004.

[23] T. Bures et al.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

ProCom - the Progress Component Model Reference Manual, 2008.

[24] L.F. Capretz.
Y: A new component-based software lifecycle model.
Journal of Computer Science, 1(1):76–82, 2005.

[25] J. Cheesman and J. Daniels.
UML Components: A Simple Process for Specifying Component-Based Software.
The Component Software Series. Addison-Wesley, 2000.

[26] B. Christiansson, L. Jakobsson, and I. Crnkovic.
CBD process.
In I. Crnkovic and M. Larsson, editors, Building Reliable Component-Based Software Systems, pages 89–113. Artech
House, 2002.

[27] COM web page.
http://www.microsoft.com/com/.

[28] I. Crnkovic, M. Chaudron, and S. Larsson.
Component-based development process and component lifecycle.
In Proc. Int. Conf. on Software Engineering Advances, pages 44–53, 2006.

[29] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M.R.V. Chaudron.
A classification framework for software component models.
IEEE Transactions on Software Engineering, 37(5):593–615, October 2011.

[30] L.G. DeMichiel, L.Ü. Yalçinalp, and S. Krishnan.
Enterprise JavaBeans Specification Version 2.0, 2001.

[31] M. Fortes da Cruz and P. Raistrick.
AMBERS: Improving Requirements Specification Through Assertive Models and SCADE/DOORS Integration.
In F. Redmill and T. Anderson, editors, The Safety of Systems, Proc. 15th Safety-critical Systems Symposium, pages
217–241, Bristol, UK, February 2007. Springer London.

[32] The Fractal Web Site.
http://fractal.ow2.org/.

[33] D. Garlan, R.T. Monroe, and D. Wile.
Acme: Architectural description of component-based systems.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

http://www.microsoft.com/com/
http://fractal.ow2.org/

In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, pages 47–68. Cambridge University
Press, 2000.

[34] A.P. Gaufillet and B.S. Gabel.
Avionic software development with TOPCASED SAM.
In Proc. Embedded Real Time Software and Systems 2010, 2010.

[35] T. Genssler, A. Christoph, B. Schulz, M. Winter, C.M. Stich, C. Zeidler, P. Müller, A. Stelter, O. Nierstrasz, S. Ducasse,
G. Arévalo, R. Wuyts, P. Liang, B. Schönhage, and R. van den Born.
PECOS in a Nutshell.
http://www.pecos-project.org, September 2002.

[36] N. He, D. Kroening, T. Wahl, K.-K. Lau, F. Taweel, C. Tran, P. Rümmer, and S. Sharma.
Component-based design and verification in X-MAN.
In Proc. Embedded Real Time Software and Systems, 2012.

[37] G.T. Heineman and W.T. Councill, editors.
Component-Based Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[38] IBM.
Service Component Architecture (SCA), Document Version 1.0, March 2010.
http://public.dhe.ibm.com/software/htp/cics/pdf/sca_whitepaper.pdf.

[39] JavaBeans web page.
http://docs.oracle.com/javase/tutorial/javabeans/.

[40] K. Kaur and H. Singh.
Candidate process models for component based software development.
Journal of Software Engineering, 4(1):16–29, 2010.

[41] G. Kotonya, I. Sommerville, and S. Hall.
Towards a classification model for component-based software engineering research.
In Proc. 29th EUROMICRO Conference, pages 43–52. IEEE Computer Society, 2003.

[42] K.-K. Lau, M. Pantel, D. Chen, M. Persson adn M. Törngren, and C. Tran.
Component-based development.
In A. Rajan and T. Wahl, editors, CESAR – Cost-efficient Methods and Processes for Safety-relevant Embedded Systems,
chapter 5, pages 179–212. Springer-Verlag Wien, 2013.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

http://www.pecos-project.org
http://public.dhe.ibm.com/software/htp/cics/pdf/sca_whitepaper.pdf
http://docs.oracle.com/javase/tutorial/javabeans/

[43] K.-K. Lau and T. Rana.
A taxonomy of software composition mechanisms.
In Proc. 36th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 102–110. IEEE, 2010.

[44] K.-K. Lau, F. Taweel, and C. Tran.
The W Model for component-based software development.
In Proc. 37th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 47–50. IEEE, 2011.

[45] K.-K. Lau and C. Tran.
X-MAN: An MDE tool for component-based system development.
In Proc. 38th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 158–165. IEEE, 2012.

[46] K.-K. Lau, P. Velasco Elizondo, and Z. Wang.
Exogenous connectors for software components.
In G.T. Heineman et al., editor, Proc. 8th Int. Symp. on Component-based Software Engineering, LNCS 3489, pages 90–106.
Springer-Verlag, 2005.

[47] K.-K. Lau and Z. Wang.
A taxonomy of software component models.
In Proc. 31st Euromicro Conference on Software Engineering and Advanced Applications, pages 88–95. IEEE Computer
Society Press, 2005.

[48] K.-K. Lau and Z. Wang.
Software component models.
IEEE Trans. on Software Engineering, 33(10):709–724, October 2007.

[49] A. Major.
COM IDL and Interface Design.
John Wiley & Sons, February 1999.

[50] B. Meyer.
The grand challenge of trusted components.
In Proc. ICSE 2003, pages 660–667. IEEE, 2003.

[51] R. Monson-Haefel.
Enterprise JavaBeans.
O’Reilly & Associates, 4th edition, 2004.

[52] R.B. Natan.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

CORBA: A Guide to Common Object Request Broker Architecture.
McGraw-Hill, 1995.

[53] OMG.
Omg unified modeling language specification, November 2007.
http://www.omg.org/cgi-bin/doc?formal/07-11-01.pdf.

[54] T. Pattison.
Programming Distributed Applications with COM+ and Microsoft Visual Basic 6.0.
Microsoft Press, June 2000.

[55] D. S. Platt.
Introducing Microsoft .NET.
Microsoft Press, 3rd edition, 2003.

[56] F. Plášil, D. Balek, and R. Janecek.
Sofa/dcup: Architecture for component trading and dynamic updating.
In Proceedings of the ICCDS98, pages 43–52. IEEE Press, 1998.

[57] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck, A. Koziolek, H. Koziolek, K. Krogmann, and M. Kuperberg.
The Palladio component model.
Technical report, Karlsruhe Institute of Technology - Faculty of Informatics, March 2011.

[58] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic.
A component model for control-intensive distributed embedded systems.
In MichelR.V. Chaudron, Clemens Szyperski, and Ralf Reussner, editors, Component-Based Software Engineering, volume
5282 of Lecture Notes in Computer Science, pages 310–317. Springer Berlin Heidelberg, 2008.

[59] SOFA 2 web site.
http://sofa.ow2.org/.

[60] I. Sommerville.
Software Engineering.
Addison Wesley, 7th edition, June 2004.

[61] Sun Microsystems.
JavaBeans Specification, 1997.
http://java.sun.com/products/javabeans/docs/spec.html.

[62] C. Szyperski, D. Gruntz, and S. Murer.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

http://www.omg.org/cgi-bin/doc?formal/07-11-01.pdf
http://sofa.ow2.org/
http://java.sun.com/products/javabeans/docs/spec.html

Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, second edition, 2002.

[63] The V-model. Development standard for IT-systems of the Federal Republic of Germany, IABG.
http://www.v-modell.iabg.de.

[64] R. van Ommering.
The Koala component model.
In I. Crnkovic and M. Larsson, editors, Building Reliable Component-Based Software Systems, pages 223–236. Artech
House, 2002.

[65] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee.
The Koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, 2000.

[66] A. Wigley, M. Sutton, R. MacLeod, R. Burbidge, and S. Wheelwright.
Microsoft .NET Compact Framework (Core Reference).
Microsoft Press, January 2003.

Lau et al (University of Manchester) Software Component Models CompArch 2014 177 / 177

http://www.v-modell.iabg.de

