Controller Patterns for Component-based Reactive Control
Software Systems

Petr Stépan, Kung-Kiu Lau
School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom

pstepan,kung-kiu@cs.man.ac.uk

ABSTRACT

It is considered good practice in control software design to
distinguish computation and coordination on the architec-
tural level. Current component models largely fail to pro-
vide distinct abstractions for that purpose. In this paper,
we introduce such distinct abstractions. In particular, we in-
troduce controller patterns, an abstraction for defining coor-
dination in the context of component-based software devel-
opment. We present their definition and demonstrate their
usage in a case study, conducted in our prototype tool.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems— Process control systems;
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.11 [Software Engineering]: Software Archi-
tectures

Keywords

reactive control software, computation and coordination sep-
aration, coordination patterns, composite connectors

1. INTRODUCTION

Reactive systems [6] are systems that continuously react
to their environment. Their behaviour can be conceptualised
as an infinite cycle of reading inputs from the environment,
computing the reaction of the system, and outputting the
reaction back to the environment. A particular subclass
of reactive systems, prevalent in the domain of embedded
systems, are systems managing the operation of the device
they are embedded in, hence we call them reactive control
systems. The general schema of a reactive control system is
depicted in Figure 1. The figure shows a system embedded
in an environment that it controls via actuators and moni-
tors through sensors. Examples of reactive control systems
vary from cruise control systems in cars to control systems
preventing core meltdown in nuclear power plants.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CBSE’12, June 26-28, 2012, Bertinoro, Italy.

Copyright 2012 ACM 978-1-4503-1345-2/12/06 ...$10.00.

71

[Reactive control system |

Controller
Sensors — : Actuators
input Processing output
variables art variables

Control Software

Figure 1: Reactive Control System

The subsystem defining the system’s reaction to data com-
ing from sensors is often implemented in software. In this
paper, we are interested in the component-based develop-
ment of such control software.

In general, control software comprises a mixture of com-
putation (data transformation, expression evaluation) and
coordination (determining the flow of control and data). It is
well acknowledged in this domain that it is beneficial to sep-
arate the two on the level of architecture, by defining them
as different architectural entities. For instance, Selic [15]
calls the principle ‘separation of control from function’ and
defines an architectural pattern named Recursive Control
Pattern. The core idea of the pattern, shown in Figure 2, is

—.control interface

System 0
Internal Control
I
Functional Component 1| s |Functiona| Component N|

functional interfaces
Figure 2: Recursive Control Pattern [15]

to have some components responsible for coordination and
other components responsible for computation. We denote
the former as a controller and the latter as the processing
part of a control software system (see Figure 1). Similar
ideas can be found throughout the domain. Labbani et al.
show such separation in Scade [8], Lea distinguishes between
functional and controlling components in avionics control
systems [13], Haslum identifies ‘mode switchers’ and ‘higher-
order task procedures’ patterns for reactive programs [7],
etc.

In component-based software development (CBSD), there
exist two basic architectural abstractions for constructing
systems: components and connectors. Conceptually, compo-
nents are units of computation; whilst connectors deal with
interactions between components [17]. Admittedly, connec-

tors have received less attention than components and are
not even first-class entities in many component models [12,
2]. As a result, in current component models used in the
domain of reactive control systems, controllers end up being
defined by components, semantically indistinguishable from
processing components.

We believe that it is beneficial to use different abstractions
for defining controllers and processing components. For con-
trollers, we propose to use connectors that encapsulate con-
trol flow and data flow to coordinate processing components
(i.e. use connectors to perform coordination service [14]).
Moreover, such connectors, which we call controller patterns,
need to be composable in order to be able to express poten-
tially complex coordination required of a controller.

Controller patterns allow for distinguishing between con-
trollers and processing components as semantically differ-
ent entities on the level of architecture. Moreover, due to
their coordination nature, the coupling between controller
patterns and their coordinatees is looser than that of cor-
responding component representations of controllers. This
leads to an increased reuse potential. Unlike architectural
patterns, e.g. the Reactive Control pattern, controller pat-
terns, as component model elements with precisely defined
semantics, can be used directly in a CBSD way of construct-
ing control software.

In this paper, we define controller patterns as connectors
in the context of a control-driven and data-driven compo-
nent model that we defined previously [11]. In Section 2,
we show the inadequacies of components in current compo-
nent models used in the considered domain for representing
controllers. After giving an overview of our approach in Sec-
tion 3, we define controller patterns® in Section 4. Finally,
we apply our prototype tool to an example of a climate con-
trol system in Section 5.

2. DESIGNING CONTROLLERS IN CUR-
RENT COMPONENT MODELS

In this section, we consider how current component mod-
els support the design of controllers. We show that most
of component models in the domain cannot represent con-
trollers using connectors and we show why components are
not the most appropriate abstraction for doing so. We il-
lustrate our points on a generic architecture description lan-
guage (ADL) [12], as a representative of a large group of
component models based on port connection, and two com-
ponent models used in the domain of embedded systems:
a research component model for control-intensive systems,
ProCom [16], and an industrial tool for designing reactive
systems, Scade [3].

2.1 Controllers as Connectors

In order for a component model to represent controllers
as connectors, the model has to feature a set of connec-
tors expressive enough to define patterns of control flow and
data flow that constitute the controller’s functionality. Fur-
thermore, the connectors need to be composable to accom-
modate possibly complex coordination strategies that con-
trollers encapsulate.

LFor lack of space, the definition of controller patterns in this
paper does not include the specification of their execution
semantics, which extends the original execution semantics
of our component model, presented in [11].

72

However, connectors in most of current component models
are far from fulfilling these requirements, and thus cannot
be used to define controllers. Mehta et al. [14] list in their
connector taxonomy the types of connectors dealing with
communication and coordination: procedure calls, events,
data access and streams. This understanding of connectors
as thin wrappers over the underlying middleware communi-
cation mechanisms is wide-spread among component mod-
els. The connectors there do not encapsulate any complex
control flow and data flow patterns and cannot be composed
to create such patterns.

A generic ADL has implicit connectors abstracting away
procedure calls, which cannot be composed. ProCom is also
based on port connection, but distinguishes between con-
trol and data connections. Additionally, it features more
advanced connectors for routing data or control outside of
components. However, the set of basic connectors is not
Turing complete (sequencing and looping are not explicitly
expressed as connectors but only implicitly by control links)
and thus is not expressive enough. Moreover, although con-
nectors can be connected together in an architecture, they
cannot be dealt with as a single abstraction. They can only
be contained within a composite component. Finally, Scade
only features non-composable data flow connections between
components. Control flow cannot be expressed in Scade ex-
plicitly.

Component models that use coordination as their com-
position mechanism are more suitable for expressing con-
trollers. Lau and Rana [10] identify web services and X-
MAN component model [9] as members of this category.
The former is focused on the interoperability of services on
the web and thus does not match the needs of reactive con-
trol systems. The latter contains a Turing complete set of
composable connectors that define control flow. Although
X-MAN connectors are suitable for our purpose, data flow
representation is implicit in X-MAN, which limits its expres-
siveness.

2.2 Controllers as Components

Component models that cannot represent controllers as
connectors have to define them as components. Such repre-
sentation of controllers has several drawbacks:

Firstly, controllers are indistinguishable from processing
components in a system architecture despite the fact that
they are semantically different. This diminishes the under-
standability of the architecture and is also prone to breach-
ing the desirable separation between coordination and com-
putation, as depicted in Figure 2.

Secondly, controller components may have unnecessary
dependencies, not mandated by the controller logic but rather
by limitations imposed by the composition mechanism of a
particular component model. For instance, in a generic ADL
a controller component must have a dependency on the com-
ponents it coordinates, via required ports. It could not be
reused to impose the same control flow and data flow co-
ordination pattern on components exposing interfaces other
than those specified by its required ports.

Thirdly, the means for representing the controller’s logic
may not be sufficiently expressive. This is the problem
of Scade. Since all connections represent data flow, ex-
plicit control flow between components cannot be expressed.
Thus, Scade’s expressiveness in representing controllers is
limited to data flow routing only.

3. OVERVIEW OF OUR APPROACH

Motivated by many architectural patterns calling for the
separation of controllers and processing components and the
failure of current component models to fully achieve it, we
aim to define a new abstraction for defining controllers: con-
troller patterns. The idea is that each controller pattern rep-
resents some coordination behaviour that manages a group
of processing components in terms of the order of their ex-
ecution and data exchange. That is, controller patterns en-
capsulate control flow and data flow to coordinate a group
of processing components. The processing components are
not part of the pattern, they are only parameters of the pat-
tern template, analogous to pattern participants in design
patterns [4]. As templates, controller patterns are meant
to be useful and reusable in different contexts, coordinat-
ing different components. Another important characteris-
tic of controller patterns is that they can be put together
to form more complex coordination behaviour. Ultimately,
their composition defines a controller.

To realise controller patterns in the CBSD context, we
need a component model that (i) allows for control flow and
data flow to be explicit in the architecture and separate from
computation, and (ii) provides the means for the composi-
tion of the flows. We have defined a component model satis-
fying the former requirement in [11]. The following subsec-
tion gives a summary of the model. Next, we illustrate the
main ideas of the approach on a simple controller example.

3.1 Our Component Model

The component model strictly separates computation, en-
capsulated in components, from the flow of control and data
between components, which is represented by connectors.
Further, the model contains data coordinators, entities re-
sponsible for dynamic routing of data flow within a group of
data connectors.

® ?
3 B B &) [
Data Flow E/D TR Sink Source
Component Component Component
Blo\y/2 TOOP > IE 7
Eﬂs GRD SEL
Data Data Loop Guard Selector Sequencer

Connector Switch

Figure 3: Component Model Elements

A summary of the component model elements is given in
Figure 3. Components in our model perform a single func-
tion, transforming input values coming from their input data
ports to output values that are written to their output data
ports at the end of the component execution. Components
do not call each other. Data flow components have only
data ports and they are data-driven (e.g. SensorProcessor
in Figure 4). E/D components are data-driven components
but they can be disabled by control through their control
port. TR components (such as Motor up in our example),
on the other hand, are only executed when their control
port is triggered by control signals. The data exchange with
sensors and actuators is done through source and sink com-
ponents, respectively.

The job of transferring data and control in a system, and
thus coordinating computation performed by components,

73

is delegated to connectors. There are two kinds of connec-
tors distinguished by the type of flow they carry: data and
control connectors. Data connectors are unidirectional chan-
nels connecting an output data port to an input data port.
They vary in their capacity and the semantics of writing and
reading values to/from them.

Control connectors coordinate control flow in a system.
Their interface is formed by a control port, one or more con-
trol parameters and, in some cases, by input data ports that
provide connectors with the data needed for control coordi-
nation. As shown in Figure 3, there is a fixed set of control
connectors, corresponding to the basic control structures of
sequencing (sequencer), branching (selector and guard) and
looping (loop).

The last category of elements of this model are data co-
ordinators. Their interface comprises data ports only. They
route data flow within a group of connected data connec-
tors. Each of the coordinators realises a particular routing
behaviour.

3.2 An Illustrative Example

In this paper, we introduce composite connectors to our
component model, i.e. connectors composed of other, sim-
pler connectors. By doing so, we gain the ability to define
complex controller patterns. Figure 4 illustrates a real con-
troller pattern used in a window controller system. The sys-
tem prevents the window motor from being activated when
the window is already in the requested position and, addi-
tionally, assumes the button can control motor movements
in both directions.

LooP

»
Jp Cond-Strategy-TR
S

"o M *® SINK|
§Motor up 'EMotor down

Figure 4: The Cond-Strategy-TR Controller Pat-
tern in the Window Controller System

Sensor
= =
Processor

The architecture shows a clear separation between the
processing components (sensor processing and computing
commands for the motor performed by SensorProcessor, Mo-
tor up and Motor down, respectively) and the controller con-
sisting of the Cond-Strategy-TR controller pattern and a
loop. It is easy to see that the system architecture complies
with the Recursive Control architectural pattern in Figure 2.

Cond-Strategy-TR is a composite connector in our model
and defines the controller’s behaviour. It has an interface for
data entering and leaving the connector (the filled triangles)
and similarly for control (the lollipop and receptacles). It
uses data from SensorProcessor to decide whether the mo-
tor needs to be activated and if so, it selects the direction of
the motor’s movement by routing the control coming from
the Loop to a respective TR component. The pattern func-
tionally resembles the Strategy pattern [4] as it chooses the
strategy which defines the system’s behaviour. Addition-
ally, the strategy selection is conditional. Hence, its name —
Cond-Strategy-TR.

4. CONTROLLER PATTERNS

In our component model, we can define controller pat-
terns, and ultimately controllers, as composite connectors.
Like controller patterns, composite connectors can define
complex coordination patterns since they are hierarchical
compositions of connectors and data coordinators. In this
section, we first present their interface and then discuss how
they are constructed.

4.1 Interface

Every composite connector has an interface that deter-
mines how it interacts with other entities in a system archi-
tecture. The interface is comprised of required data ports,
a control port, and control parameters (see Figure 5).
The control port is the lo-
cus for the control com-

Q control port [0..1]
ing from a superior co-

required ») required
output) cC input ordinator; while control
> -
ports ports parameters are connected

to subordinate coordina-
control parameters [0..00]

tees. The required data
ports define entry and exit
points for the data routed
by the connector. Each re-
quired data port specifies a constraint, in terms of type and
directionality, that has to be satisfied by a plain data port
connected to the required data port during instantiation of
the connector.

Figure 4 shows an instantiated Cond-Strategy-TR con-
nector: control ports are connected to control parameters of
existing control connectors. Symmetrically, control param-
eters of the composite connector are connected to control
ports of existing elements. Required data ports are con-
nected with plain data ports that satisfy the constraints as-
sociated with the connected required data ports. The se-
mantics of the connection (denoted by thin dotted lines in
the figure) is that of identity. The data connectors adjacent
to the required data port inside the composite connector
identify the required port with its connected port, i.e. the
plain data port becomes the source or target of the data flow
defined within the composite connector.

Figure 5: Composite
Connector Interface

4.2 Construction

In order to build up composite connectors from the set
of basic connectors and data coordinators (see Figure 3),
we need ways to compose them. In this section, we first
describe such composition mechanisms. Further, we show
how composite connectors can be composed hierarchically.

Composing basic connectors and data coordinators

There are three mechanisms for composing basic connec-
tors and data coordinators in our model: (i) aggregation,
(ii) composition via data ports, and (iii) composition via
control ports.
Aggregation is the way of composi-
tion in which control- and data flows
a c
defined by the composed connectors are b @ d
simply aggregated (their union is cre-
ated), without any interaction between
the flows. Aggregation can be used to
compose a group of data connectors or
a group of data and control connectors. An example of the
former is shown in Figure 6. Each of the two FIFO channels

Figure 6:
Aggregation

connects a required output port to a required input port of
their parent connector. The parent connector defines data
flow from the sources a and b to the sinks ¢ and d. For an
example of the latter, i.e. a control connector and a data
connector composed within a composite connector with no
interaction between their flows, see the Strategy-TR con-
nector in Figure 7(a). The FIFO channel going from data
to the lower port of the data switch is aggregated with the
selector control connector.

condition

actionld
data

diY ds FNe PGy

(a) Strategy-TR (b) Cond-Strategy-TR

Figure 7: Example Controller Patterns

Composition via data ports composes data flow defined by
a data connector and either control flow or data flow defined
by an entity with a data port. Such entity can be either a
control connector with data input (selector, guard) or a data
coordinator. In the former case, data flow and control flow
interact by a data connector feeding the data to a control
connector that needs it for its control routing decisions. In
Figure 7(a), we can see a FIFO channel going from cond to
the data port of the selector connector. In the latter case,
the resulting connector defines a dynamic data flow pattern
whose behaviour depends on the semantics of a chosen data
coordinator. In Figure 7(a), the data switch coordinator is
composed with four FIFO channels via its data ports. It
directs the data flow coming through the channel from data
to one of the channels connected to di or d2, based on the
data coming from cond.

Composition via control ports al-

lows for the composition of control OA
connectors, and thus control flows | O | parent
they define. FEach control connec- B

tor defines a basic control flow pat- Q' i chila

tern coordinating its control param- [iC:]
eters. To compose two control con-

nectors, one connector (child) be- *
comes a control parameter of an-
other one (parent), by connecting
the control port of the child with
the control parameter of the parent.
The control flow of the resulting composite connector is ob-
tained by replacing the part of the flow corresponding to
the control parameter of the parent connector with the con-
trol flow defined by the child connector. Figure 8 depicts
the general schema for composing control connectors. The
dashed lines denote control flows.

Figure 8: Con-
trol Flow Com-
position

Hierarchical construction

Complex coordination patterns, including controller patterns,
often consist of other simpler patterns that are useful in their
own right. To enable the construction of such composite pat-
terns as well as to handle the complexity of connector design,

our composite connectors can be composed in a hierarchical
fashion.

Composite connectors share some of their interface ele-
ments, namely control port and control parameters, with
control connectors. These can, therefore, be composed with
other elements inside a parent composite connector in the
ways described earlier in this section. For example, see the
control port of a Strategy-TR instance composed with the
control parameter of the guard connector in Figure 7(b).
Required data ports can be linked to the data ports of data
coordinators, or they can be transitively linked to the re-
quired data ports of their parent connector. The latter case
means the parameters (constraints on plain data ports) of
the inner connector template are propagated as parameters
of the new connector template.

5. A COMPLETE EXAMPLE

In this section, we demonstrate the usage of controller
patterns for the construction of reactive control systems.
We present a case study of a climate control system [8, 11]
implemented in our prototype tool. The main focus remains
on designing the controller of the system, composed out of
simpler controller patterns.

5.1 Climate Control System

The climate control system is a reactive software system
controlling the climate in a car. The user controls the cli-
mate in a car by means of a control panel with three buttons
(Mode, Up, Down). In addition to the input coming from
the panel, the system also receives the current temperature
from a thermometer inside the car. The climate is controlled
by two actuators, a ventilation fan and a car heater, by the
system outputting the fan’s speed and the desired temper-
ature of the heater. When active, the system operates con-
tinuously in a feedback control loop, its actions influencing
the following measurements.

The system is an instance of a common class of systems
with modes. It operates in one of three modes: AutoVen-
tilation, ManualTemperature and ManualVentilation. The
modes are changed cyclically in the given order by the user
pressing the Mode button. In each mode, the system’s strat-
egy for computing its outputs and interpretation of inputs is
different. In the AutoVentilation mode, the system adjusts
both controlled variables to achieve and maintain the set
temperature (changed by Up and Down buttons). In Man-
ualTemperature, the system simply sets the temperature of
the heater and keeps it regardless of the real temperature in
the car. Similarly, in ManualVentilation, the systems only
sets the fan’s speed (changed by Up and Down).

As observed by Labbani et al. [8], the architecture of a
system with modes can be factored to a processing part,
comprising a component per mode that computes the sys-
tem functionality in that mode, and a coordination part that
deals with mode switching. We showed how such separation
can be achieved in our model without composite connec-
tors [11]. The architecture for the climate control system
contained source and sink components for data exchange
with the environment, three E/D components performing
computations corresponding to the three modes, a data flow
component computing the current mode from the previous
mode and user input, and a network of data and control
connectors and data coordinators. Here, we present a refac-
tored version that uses controller patterns for mode switch-

75

@ i inee o
Ele Edt Dogam Navgate Search Proect Run Window telp

i, dagram 73] @ diagram | @)

Figure 9: The Climate System Architecture

ing. Figure 9 shows the system architecture with the con-
troller functionality encapsulated in the 3-Modes controller
pattern.

5.2 Controller Design

The controller coordinates the connected components by
means of both control and data flow. The 3-Modes connec-
tor’s design is detailed in Figure 10. We can see that if there

newMod

Strategy—ED-3

down

ui’ dil et AN g dy e ANz dg catN\
Figure 10: 3-Modes Controller Pattern

is any change in mode (detected by the guard control con-
nector), the control flow firstly disables the component cor-
responding to the old mode (the selector connector performs
the choice according to the oldMode input). Consequently,
the sequencer delegates the job to another controller pat-
tern, called Strategy-ED-3. Notice that control parameters
of 3-Modes are shared between the selector and Strategy-
ED-3. Data entering the connector are used as conditions
for control flow routing (change and oldMode) or are being
handled by Strategy-ED-3.
Strategy-ED-3 (see Fig-
ure 11) is used for en-
abling the E/D compo-
nent that corresponds
to the new mode. It
also makes sure that
only the currently ac-
tive component (there is
always exactly one) is
fed by inputs (informa- Figure 11: Strategy-ED-3
tion about user pressing the Up and Down buttons). Notice

A do ds

WV uy uz 10N ol N3 N

that the control is sent to a component only if the modes
are changed (change = true) and the component needs to
be (de)activated, while the data is being routed to the in-
puts continuously, matching the data-driven semantics of an
E/D component.

It is worth noticing that 3-Modes and Strategy-ED-3 do
not have direct dependencies on particular components, which
stems from the coordination nature of control and data con-
nectors in our model. On the other hand, the interfaces
of both connectors have some required data ports that cor-
respond to data ports of processing components (up and
down). Similarly, the fact that our system operates in three
modes is hard-wired into both connectors. This is, indeed,
an unnecessary limitation, whose elimination is planned as
future work.

6. DISCUSSION AND CONCLUSION

Controller patterns, represented as composite connectors
in our component model, provide an abstraction suitable for
constructing controllers in reactive software systems.

They allow semantic distinction between controllers and
processing components to be made explicit on the architec-
tural level, in line with architectural patterns that argue
for such separation, such as the Recursive Control pattern
in Figure 2. Unlike those patterns, however, the controller
patterns are precisely defined in the context of the compo-
nent model and can be directly used in the construction of
control software.

Related component models based on port connection can-
not make such a separation due to the nature of their con-
nectors, which are either implicit in the case of ADL-like
component models and Scade, or they are not sufficiently
expressive (not a Turing complete set of control connectors)
and not fully composable in the case of ProCom. Controllers
thus end up being defined as components.

However, component representations of controllers may
entail dependencies not inherent in the controller’s logic im-
posed by the properties of a component model, such as the
dependency of required ports on their interfaces in ADL-like
models. Unlike these, our controller patterns depend only
on control signals and data routed through a controller, i.e.
dependencies inherent in the controller’s logic. The loose
coupling between controller patterns and processing compo-
nents consequently increases their reuse potential.

The same principles underlie a class of coordination lan-
guages [5] that separate coordinators and coordinatees. Com-
pared to them, our component model seems to be original
in explicitly expressing both control and data flow. Control-
driven models, such as X-MAN [9], lack explicit data flow
representation in the architecture; whilst data-driven mod-
els, such as Reo [1], lack explicit control flow.

For further future research, we consider introducing roles
to raise the level of abstraction of composite connector in-
terfaces. The roles would aggregate the required ports and
control parameters that logically belong to one entity, and
express additional constraints on them. Roles could also be
parametrised with multiplicities, and they could be poten-
tially used for decreasing the number of identity connections
needed to be drawn manually.

Another possible avenue of research is to explore the use-
fulness of composite connectors in product-line software en-
gineering. The composite connectors might play the role of
a flexible skeleton of the reference architecture, into which

76

various components could be plugged to derive a product-
specific architecture.

To conclude, controller patterns presented in this paper
are a testimony of the ability of the component-based soft-
ware development to express reusable abstractions, often al-
ready existing in the form of patterns [4], and make them
tangible, supported by tools for their creation, storing in the
repository and instantiation in a system. This strengthens
our belief that patterns do not have to be only pieces of text
but they can become first-class entities in component-based
software construction.

7. REFERENCES

[1] F. Arbab. Reo: A Channel-based Coordination Model
for Component Composition. Mathematical Structures
in Comp. Sci., 14(3):329-366, 2004.

I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron. A classification framework for software
component models. IEEE Trans. Soft. Eng,
37(5):593-615, 2011.

Esterel Technologies. SCADFE Language Reference
Manual, 2010. http://www.esterel-technologies.com.
E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson.
Design Patterns. Addison-Wesley, 1995.

D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):97-107, Feb. 1992.

D. Harel and A. Pnueli. On the development of
reactive systems. In Logics and models of concurrent
systems, pages 477-498, New York, NY, USA, 1985.
P. Haslum. Patterns in reactive programs. In Proc. of
the Cognitive Robotics Workshop, 2004.

O. Labbani, J.-L. Dekeyser, and P. Boulet.
Mode-automata based methodology for Scade. In
LNCS, volume 3414, pages 386—401. Springer Verlag,
2005.

K.-K. Lau, M. Ornaghi, and Z. Wang. A Software
Component Model and Its Preliminary Formalisation.
In FMCO’06, pages 1-21. Springer-Verlag, 2006.
K.-K. Lau and T. Rana. A taxonomy of software
composition mechanisms. In EUROMICRO-SEAA,
pages 102-110. IEEE, 2010.

K.-K. Lau, L. Safie, P. Stépan, and C. Tran. A
component model that is both control-driven and
data-driven. In CBSE’11, pages 41-50. ACM, 2011.
K.-K. Lau and Z. Wang. Software Component Models.
IEEE Trans. Soft. Eng., 33(10):709-724, 2007.

D. Lea. Design patterns for avionics control systems,
Jan. 17 1995.

N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In ICSE’00, pages
178-187. ACM Press, June 2000.

B. Selic. An architectural pattern for real-time control
software, Oct. 17 1996.

S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and
I. Crnkovié. A Component Model for
Control-Intensive Distributed Embedded Systems. In
CBSE’08, pages 310-317. Springer, 2008.

M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

2]

3]
[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]

