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Abstract. In current software components models, components do not encap-
sulate control, and are composed by connection mechanisms which pass control
from component to component. Connection mechanisms are not hierarchical in
general, and therefore current component models do not support hierarchical sys-
tem construction. In this paper we argue that control encapsulation by compo-
nents, together with suitable composition mechanisms, can lead to a component
model that supports hierarchical system construction. We show an example of
such a model and present a calculus for its hierarchical composition mechanisms.

1 Introduction

In current software component models [10], components are either objects or archi-
tectural units. Such components do not encapsulate control (or computation), and are
composed by connection mechanisms: delegation for objects (i.e. method call or event
delegation), and port linking for architectural units. In general, connection as a compo-
sition mechanism does not support hierarchical system construction.

For hierarchical system construction, a composition mechanism should not be de-
fined or applied in an ad hoc manner, and it should be compositional in the sense that
connecting two components yields another component (of the same type) [1]. Object
delegation is not defined in an ad hoc manner, since method calls are “hard-wired” in
the caller objects, but it is not compositional: two objects connected by delegation do
not yield a single object, but remains as two distinct objects (such a pair is not even a
standard type).

On the other hand, architectural unit composition is compositional, but its applica-
tion may be done in an ad hoc manner. Ports can be linked if they are compatible, and
the resulting composite is another architectural unit; even the connectors can be gener-
ated automatically. However, there may be many possible combinations of compatible
ports, and therefore a choice of connections has to be made on a case by case basis.
Moreover, some ports may also be left unconnected, and the resulting composite unit
can be defined in different ways, depending on whether and which of the unconnected
ports are exported to the interface of the composite, or simply disposed of.
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We believe that control encapsulation in components, and composition mechanisms
that are compositional with respect to, i.e. preserve, control encapsulation, can make
a significant contribution to component-based development (CBD), by providing com-
ponent models that support hierarchical system construction. In this paper, we discuss
control encapsulation and its role in component models. In particular, we show how we
achieve control encapsulation by composition mechanisms in a model that we have for-
mulated [7,9]. By defining a calculus for these mechanisms, we show that they support
hierarchical system construction.

2 Control Encapsulation

A software system consists of three elements: control, computation and data. The sys-
tem’s behaviour is the result of the interaction between these elements. In a compo-
nent-based system, these elements can be distributed among the components, or they
can be shared by the components, to varying degrees. However, the purpose of using
components is to maximise distribution and to minimise sharing at the same time. That
is, each component should encapsulate as much of these elements as possible, so as to
minimise coupling between the components. By ‘encapsulation’ we mean ‘enclosure in
a capsule’, as defined in the Oxford English Dictionary.

On the other hand, since the whole system is constructed by composing components,
encapsulation in the components should not hinder their composition. Ideally it should
be possible to do the construction in a hierarchical manner, so that it is easier to con-
struct large systems systematically, and to reason about their properties. That is, ideally
encapsulation should not hinder systematic or hierarchical composition.

Therefore an ideal approach to CBD should combine encapsulation and composi-
tion in such a way that composition preserves encapsulation. This is illustrated by

C1 C2 encapsulation
encapsulation

C3

after composition

encapsulation

composition

Fig. 1. Compositional encapsulation

Fig. 1, where two components C1 and
C2, each with their own encapsula-
tion, are composed into a composite C3,
which also has its own encapsulation
as a result of the composition. Such an
approach would allow component-based
systems to be constructed from decou-
pled components in a hierarchical fash-
ion, with encapsulation at every level. However, it would require the components to be
compositional, i.e. for a given definition of components, the result of composing two
components is also a component (with encapsulation).

Control encapsulation means that a component does not leak control. This means
two things. First, it means that any control originated in a component does not leak
out to another component. For example, in coordination languages [5], components are
active, or have their own threads, i.e. originate their own control, but control never leaks
out from components. Rather, components read input values from its (input) ports and
outputs values to its (output) ports. The chosen coordination model then coordinates
the distribution of the values on the output ports of the components to their input ports.
Thus in coordination, components encapsulate control.



Control Encapsulation: A Calculus for Exogenous Composition 123

However, coordination is not concerned with preservation of encapsulation in com-
posites, as in Fig. 1, because coordination does not build composites from sub-compo-
nents. That is, coordination is not a composition mechanism for components: it leaves
components ‘as is’. Web service orchestration [17] is an example of such a coordination
mechanism.

Secondly, control encapsulation means that when control is passed to a component,
e.g. by a caller invoking a method in the component, the component returns the control
to the caller upon completing its execution of the called method, without leaking it (to
another component) during its execution of the call. Again, web services encapsulate
control in this sense, but again, their orchestration does not compose components into
composites.

In this section, we consider control encapsulation by composition mechanisms in cur-
rent software component models [10]. In these models, components are either objects
or architectural units. Exemplars of these models are EJB [4] and ADLs (architecture
description languages) [11] respectively. In these models, components are composed by
connection. We will show that components in these models do not encapsulate control,
and connection does not support hierarchical system construction.

2.1 Connection

A generic view of a component is a composition unit with required services and pro-
vided services. Following UML2.0 [16], this is expressed as a box with lollipops (pro-
vided services) and sockets (required services), as shown in Fig. 2(a). An object

Provided
service
Required

service
Provided
method

input output

(a) A generic (b) An object (c) An architectural
component unit

Fig. 2. Components

normally does not have an
interface, i.e. it does not
specify its required services
or its provided services
(methods), but in compo-
nent models like JavaBeans
and EJB, beans are objects
with an interface showing
its provided methods but usually not its required services (Fig. 2(b)). Architectural units
have input ports as required services and output ports as provided services (Fig. 2(c).)
Therefore, objects and architectural units can both be represented as components of the
form in Fig. 2(a).

Assembly connector Delegation connector

(a) Without composite (b) With composite

Fig. 3. Connection

A required service rep-
resents an external de-
pendency. A component
with an external depen-
dency is not encapsulated,
in the sense of ‘enclosure
in a capsule’. Therefore,
objects and architectural
units do not have encapsulation, in particular control encapsulation. We will show that
control leaks out of these components.
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Objects and architectural units are composed by connection (Fig. 3),1 whereby
matching provided and required services are connected by assembly connectors
(Fig. 3(a)). We will show that connection does not always support hierarchical system
construction.

In order to get a required service from another object, an object calls the appropri-
ate method in that object. Thus objects are connected by method calls, i.e. by direct
message passing (Fig. 4(a)). For architectural units, connectors between ports provide

...
m2(...)...
}

{

m2

m1

A B C

control flow

m1(...)

m2(...)

A B C

control flow

m2

m1
m1(...)m1(...)

m2(...) m2(...)

(a) Method call between objects (b) Remote method call between architectural units

Fig. 4. Control flow in connection

communication channels for indirect message passing (Fig. 4(b)). In Fig. 4 it is clear
that neither objects nor architectural units encapsulate control that either originates in
them or is passed to them. When an object A makes a method call to another object
B (Fig. 4(a)), it passes control to the callee object B; if during its execution the called
method calls a method in another object C, then the object B passes control to C. C in
turn may call a method in another object, and so on. The result is that control is leaked
by B before it is (eventually if at all) passed back to A. When an architectural unit re-
quires the service of another unit, it initiates control to invoke that service by passing
control to that unit, albeit indirectly via their (connected) ports (Fig. 4(b)). Unlike ob-
jects, however, in an architectural unit, the required services are not necessarily invoked
by provided services; rather, the unit can initiate control independently. For example,
whereas in Fig. 4(a), in B the method m2 is invoked by m1, in Fig. 4(b), m2 is invoked
not by m1 but by control initiated by B.

Connecting two components may or may not produce a composite. Object delegation
does not result in a new (composite) object; rather, it produces a connection between
two objects which retain their original identities (Fig. 3(a)). The unconnected services
remain available for connecting to other objects. Clearly object delegation does not
support hierarchical composition.

Architectural unit composition can produce a composite with its own ports (i.e. an-
other architectural unit with its own identity), but the exact nature of this composite
depends on whether and which of the unconnected ports are exported (by delegation
connectors) to the composite’s interface, or disposed of (Fig. 3(b)). In some component
models, the notion of a composite is not clearly defined, and the unexported uncon-
nected ports inside the composite can even remain available for connecting to other
units. In general, therefore, architectural unit composition does not always support hi-
erarchical composition.

1 In [22] Szyperski classifies object delegation as object-oriented composition, and architectural
unit composition as connection-oriented composition. We generalise both as connection.
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3 Control Encapsulation in Exogenous Composition

We have formulated a component model [9, 7] in which components encapsulate con-
trol. In this section we briefly recall our model, and show how it achieves control en-
capsulation.

In our model, components are encapsulated: they encapsulate control, data as well
as computation. Our components have no external dependencies, and can therefore be
depicted as shown in Fig. 5(a), with just a lollipop, and no socket. There are two basic
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A

Composite
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(d)
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B

Composition
connector

(c)

ATM

(e) Bank
system

IU

U

Atomic(b)
component

Encapsulated
component

(a)

GA

SEQ

Fig. 5. Encapsulated components and exogenous composition

types of components: (i) atomic and (ii) composite. Fig 5(b) shows an atomic com-
ponent. This consists of a computation unit (U) and an invocation connector (IU). A
computation unit contains a set of methods which do not invoke methods in the compu-
tation units of other components; it therefore encapsulates computation. An invocation
connector passes control (and input parameters) received from outside the component
to the computation unit to invoke a chosen method, and after the execution of method
passes control (and results) back to whence it came, outside the component. It therefore
encapsulates control.

A composite component is built from atomic components by using a composition
connector. Fig. 5(c) shows a composition connector. This encapsulates a control struc-
ture, e.g. sequencing, branching, or looping, that connects the sub-components to the
interface of the composite component (Fig. 5(d)). Since the atomic components encap-
sulate computation and control, so does the composite component. Our components
therefore encapsulate control (and computation) at every level of composition. In fact
they also encapsulate data at every level of computation [8] but we omit data encapsu-
lation here for simplicity and for lack of space.

Our components are thus passive components that can be invoked. In typical soft-
ware applications, a system consists of a ‘main’ component that initiates control in the
system, as well as components that provide services when invoked, either by the ‘main’
component or by the other components. The ‘main’ component is active, while the other
components are passive. Our components are the latter. They receive control from, and
return it, to connectors. In a system, control flow starts from the top-level (composition)
connector.

Fig. 5(e) shows a simplified bank system with two components ATM and GA, com-
posed by a sequencer composition connector SEQ. Control starts when the customer keys
in his PIN (and maybe also the operation he wishes to carry out). The connector SEQ
passes control to ATM, which checks the customer’s PIN; then it passes control to GA



126 K.-K. Lau and M. Ornaghi

(get account), which gets hold of the customer account details (and possibly perform the
requested operation). Control then passes back to the customer. Our composition con-
nectors are exogenous connectors [9], encapsulating control as they do outside atomic
components. Clearly, exogenous composition is hierarchical: components can be ‘recur-
sively’ composed into larger composites. This is a consequence of control encapsulation.

3.1 Defining Control Encapsulation

So far we have defined control encapsulation informally. In this section we begin to
define it formally. The basic mechanism used for exogenous composition is as shown
in Fig. 5(d). We will elaborate on this.

The general picture of exogenous composition is given in Fig. 6, where a compo-
sition connector is connected to a component C (which may be atomic or composite).
More precisely, a socket of the connector is connected to the lollipop of C. Control
is passed from the connector to C via the socket, a method in C is invoked, and upon
completion of its execution, control (and result) is passed back to the connector.

control flow

C

?C.m(v)

m(...)

(a) (b)

!C.m w

C

! C.r?C.q  k  k

Fig. 6. Exogenous composition

To define this control flow, we use ?C.q to de-
note a request q received by a component C, and
!C.r to denote a result r returned by C (Fig. 6(a)).
Receiving a request (?C.q) and sending a result
(!C.r) will be called “events”. A request to C could
be a method call, and a result returned by C the
value(s) that result from the method execution.
Fig. 6(b) shows a method m(x : T ) : R in C (with
parameter x of type T and result of type R). A
method call m(v) to m is denoted by ?C.m(v),
which means the event “C receives the request m(v)”. The corresponding result w re-
turned by m is denoted by !C.m w, which means the event “C returns the result w of
m”. We write ?C.m(v)� !C.m w to indicate that the request ?C.m(v) “causes” the result
!C.m w, where � is a partial ordering on the events. The dot notation C.m follows the
object-oriented convention, whilst the punctuation marks ? and ! are often used in the
above sense in CCS [13], while causality relations are typical of semantics based on
posets (partially ordered sets) [21].

We will use the relation � in a weaker sense: e1 � e2 indicates that the event e1 must
precede e2 for some causal or non-causal reason, where an event may be a request or
a result. That is, we relax the causal relationship to one of precedence. This allows us
to express protocol requirements for the control flow. For example, an ATM terminal
ATM may have the protocol:

{?ATM.get(card, pin)→ATM !ATM.get ok, !ATM.get ok →ATM ?ATM.sel(op)} (1)

where we use →ATM to denote the covering relation2 of the protocol. That is, before
asking the user u to select an operation, the login process must end successfully. Con-
versely, the user (caller) has to conform to the protocol with the following covering
relation →u:

2 A finite poset 〈E,�〉 can be represented by a set of arcs {e1 → e′1, . . . ,en → e′n}, where → is
the covering relation (e → e′ if e �= e′ and e � e′′ � e′ entails e′′ = e or e′′ = e′).
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{!ATM.get(card, pin)→u ?ATM.get ok, ?ATM.get ok →u !ATM.sel(op)} (2)

i.e., send card and pin to the ATM, wait for the ok, and then select the operation.
Each event in the ATM must synchronise with a dual one in the caller, where for a
component C, the dual of ?C.q is !C.q (the caller sends q and C receives it) while the
dual of !C.r is ?C.r (C returns r and the caller receives it). Our dual events correspond to
complementary events in [14]. The main difference is that our model components and
connectors do not behave symmetrically. Events will always refer to the component C
and their duals to the connector or, more in general, to the environment interacting with
C. The protocol requirements (1) and (2) together define the control flow for using the
ATM to execute an ATM operation.

A protocol specifies the expected behaviours of a component C by posets of events
such as (1), and a compatible connector k has dual behaviours such as (2). Compatibility
means that the events of the expected behaviours of C synchronise with the dual ones
in k, while respecting the partial ordering of the protocol (behaviours are related to
the execution ordering, in general stricter than the one of the protocol). As for control
encapsulation, we begin with a simplistic but very strong requirement, which will be
weakened later. We say that:

A behaviour of a component C has control encapsulation iff for every request
?C.q and result !C.r, !C.r →C ?C.q does not belong to the behaviour.

It follows that:

A component has control encapsulation if all its expected behaviours have con-
trol encapsulation.

Intuitively, !C.r →C ?C.q is a “call back requirement”: the result !C.r, sent to the en-
vironment of C, “pretends” that the environment will eventually call C again. We see
this as a form of control exported from C to the environment. We show an example of
control encapsulation and, then, a counterexample.

Example 1. Consider the component C in Fig. 6(b), with a single method m(x : T ) : T .
The expected behaviours of C are of the form

?C.m(v) →C !C.m w

for every call m(v) and returned result w. Therefore C has control encapsulation. The

C

 k

m

!C.m(v)

?C.m(v) C

?C.m w

!C.m w

k dual
behaviour

behaviour

Fig. 7. Encapsulated control

compatible dual behaviours of the connector con-
tains !C.m(v) →k ?C.m w. The control flows from
the connector to C when !C.m(v) and ?C.m(v) re-
act,3 i.e., when the connector makes the call m(v).
During the whole execution of m, control is en-
capsulated in C and comes back to the connector
only when ?C.m w and !C.m w react, i.e., when
C returns w and the connector receives it. This is
depicted in Fig. 7, where the solid arrows correspond to the covering relation and the
dotted arrows to the reaction between dual events.

3 In the sense of CCS.
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As counter examples to control encapsulation, consider objects and architectural
units composed by connection (Fig. 4) again.

Example 2. Consider the objects A, B and C in Fig. 4(a). Suppose the method in B is
m1(x : T ) : T and the method in C is m2. A calls m1 in B, and while executing m1, B

m2 m1

C

B ?B.m1(v1) B !C.m2(v2)

?C.m2(v2) e

B

!C.m2 w1

?C.m2 w1 B !B.m2 w2

A !B.m1(v1) ?B.m2 w2
e e

Fig. 8. Non-encapsulated control

calls m2 in C. In this case,
the behaviours of B and the
dual ones of A and C are
of the form depicted in Fig.
8. The objects A and B,
together, form the environ-
ment e of B, and A starts
the control flow as follows:
(1) A calls B.m1(v1) and B
starts; (2) B calls C.m2(v2) and C starts; (3) B obtains w1 and uses it to get the final
result w2. The task (1) is performed inside B, (2) inside C and (3) again in B. B does
not encapsulate control, because control flows to C before the call m1(v1) ends. This is
reflected by the requirement !C.m2(v1) → ?C.m2 w1 where a request follows a result.

Similarly, we can show that the architectural unit B in Fig. 4(b) does not encapsulate
control.

The above (informal) definition of control encapsulation is too strong, as the follow-
ing example shows.

Example 3. Consider Example 1, but this time in a component B allowing C to be called
by the connector k a number of times. Suppose we observe a behaviour of C of the form:

{?C.m(v) →C !C.m w, !C.m w →C ?C.m(v′), ?C.m′(v′) →C !C.m w′}

In this case, in each of the calls C.m(v) and C.m(v′), the control remains encapsulated
in C until the end of the execution of m. However, according to our strong definition
of control encapsulation, the behaviours of C violate control encapsulation, owing to
!C.m w → ?C.m(v′). The fact that we can observe this kind of behaviour is not a real
lack of control encapsulation.

Indeed, the above observed behaviour is compatible with the requirements:

?C.m(v) → !C.m w, ?C.m(v′) → !C.m w′

which are just two instances of the protocol considered in Example 3.1. Thus, accord-
ing to our model, C has control encapsulation. In Fig. 9, we have used a dashed line

!C.m(v)

?C.m(v)C C

k?C.m w

!C.m w

k

C?C.m(v’)

!C.m(v’) k

C !C.m w’

?C.m w’

m

     kB

Fig. 9. Encapsulated control and connectors

for the arrow !C.m w → ?C.m(v′),
to put into evidence that it does not
come from the protocol of the com-
ponent C, but from the connector.
We remark that the connector does
not satisfy control encapsulation. In
general, control is not encapsulated
in a connector k, since it has to



Control Encapsulation: A Calculus for Exogenous Composition 129

connect the sub-components and coordinate their computation. A connector is only
required to maintain the control encapsulated in the component containing it. In our
example, k calls C a number of times, while maintaining control encapsulated in B.

We will relate control encapsulation to the interface behaviour specified by the pro-
tocol. In our example, C has control encapsulation since its interface protocol does not
contain any “call back” requirement. In contrast, if the requirement !C.m w → ?C.m(v′)
belongs to the protocol of C, then the control must come back to C. This corresponds to
the fact that we can use messages as a form of “control”. For example, the result w may
be a string containing the message “please, call me back again”.

The example shows that we have to distinguish between the behaviour exhibited in
an observation from the requirements of the protocol. Thus our weaker definition of
control encapsulation:

We say that a component violates control encapsulation if its protocol does.

Furthermore, when we compose components, we compose their specifications (which
include protocols), i.e., we are looking for composition rules that allow us to reason at
the specification level.

Having explained the notion of control encapsulation and how it can be defined using
posets as behaviour specifications, we now show that exogenous composition (using
exogenous connectors) is strictly hierarchical, by presenting a calculus for it.

4 A Generic Calculus for Exogenous Composition

In this section we outline a calculus for exogenous connectors, which allows us to build
new components on top of already existing components (atomic or composite) in a
hierarchical manner. First we define behaviour specifications (BSP) precisely, and then
we introduce components, their specifications and their correctness.

Definition 1. A BSP instance with request alphabet Q and result alphabet R is a finite
labelled poset B(Q,R) = 〈E,�,λ,Q,R〉 with labelling function λ : E → Q∪R, where E
is a finite set of “event indexes” and:

1. for every i ∈ E , if λ(i) ∈ Q, then there is an i′ ∈ E such that i � i′ and λ(i′) ∈ R;
2. for every i ∈ E , if λ(i) ∈ R, then there is i′ ∈ E such that i′ � i and λ(i′) ∈ Q;
3. for every i, i′ ∈ E , if λ(i) ∈ R and λ(i′) ∈ Q then i �� i′.

In our approach, a BSP instance represents a “testable” requirement for the behaviour
of a component C, so E is finite. Condition 1 says that if the control enters C with a
request, it has to leave it with a result. Condition 2 says that every result is caused by a
request, i.e., control cannot originate in C, while Condition 3 is our control encapsula-
tion condition.

A label e of the alphabets Q∪R is called an event. Let i be an event index with label
λ(i) = e. We call the pair 〈e, i〉 an event occurrence and we indicate it by ei. When ei

has a unique index i, then i may be omitted. We use indexes just to distinguish different
event occurrences. Thus behaviours are equivalent up to reindexing.4 According to the

4 A reindexing is an isomorphism I : E1 → E2 preserving � and λ.
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above section, we represent a behaviour instance by the labelled arcs ei → e′j of its
covering relation, that we call requirement instances. We indicate by EQ the subset of
the indexes with label in Q, by ER those with label in R, by B(Q) the request part of
B(Q,R) (namely the restriction to EQ) and by B(R) the result part (namely the restriction
to ER). When we do not need to explicitly mention Q, R, we omit them.

Components are built on top of a repository of computation units (Fig. 5(b)). A com-
putation unit U can be used by means of an invocation connector IU , giving rise to an
atomic component also denoted by IU .5 The connector IU defines the request and result
alphabets QIU and RIU . Furthermore, IU may have access to some permanent data. We
model data access by means of a set of “access variables” x1, . . . ,xn and we define a
component state σ as a set of bindings xi �→ vi associating each xi with its accessed data
value vi. Finally, the BSP of IU is denoted by [IU ] and defines a set of behaviour triples
of the form 〈σ,B(Q,R),σ′〉, where σ and σ′ are states and B(Q,R) is a behaviour with
requests Q ⊆ QIU and results R ⊆ RIU . We will write

IU : σ
B� σ′ (3)

to indicate that 〈σ,B,σ′〉 ∈ [IU ], and we call (3) a BSP-requirement. We attach to each
event occurrence of B an expected property, to be satisfied after the event occurrence.
The expected property of a request concerns the external environment and the data
flowing in, whilst that of a result concerns the state of IU and the data flowing out. A
test case for B(Q,R) is a sequence containing the requests of B(Q) in an order consistent
with �. Similarly, a result sequence for B(Q,R) is a sequence containing the results of
B(R) in an order consistent with �. A behaviour triple 〈σ,B(Q,R),σ′〉 ∈ [C] specifies
the following expected behaviour:

if we start C in the state σ and we submit a test case T for B(Q) while satisfying
the expected properties of the requests, then C returns a result sequence for
B(Q,R) and reaches the state σ′ while satisfying expected properties of the
results.

We say that the test case T is successful iff C exhibits the expected behaviour. We say
that C is correct iff for every 〈σ,B(Q,R),σ′〉 ∈ [C] and every test case T for B(Q,R), T
is successful.

Example 4. Here we give the BSP requirements of three atomic components. The ATM
waits for a card c by ?ic(c) and a pin p by ?ip(p); if p = pin(c) it gives the result ok,
otherwise the result err.

It also updates the data access variable card. The event ic(c) has the expected prop-
erty “a card has been inserted, containing the data c”, ip(p) the property “p has been
correctly composed”, ok the property “card contains the data c of the inserted card the
composed pin p coincides with pin(c)”, and err the property “the card has been re-
fused”. GA waits for the ok event and then uses the data accessed by card to get the
account number num(card) and the bank bank(card). It does not update any access
variable. The expected properties should be evident from the signature. Finally, EP
simply propagates the error event. The requirements are given in an open form, with the

5 The invocation connector provides the interface, hence the overloading of names.
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parameters c, p (the data access variables are not parameters). Each open requirement
is to be considered as the set of its instances, obtained by grounding the parameters.

ATM : if p = pin(c) [card �→ ]
?ic(c)→?ip(p), ?ip(p)→!ok

� card [card �→ c];

otherwise [card �→ ]
?ic(c)→?ip(p),?ip(p)→!err

� [card �→ ]

GA : [card �→ c]
?ok→!acc(num(card),bank(card))

� [card �→ c]

EP : []
?err→err� []

An alternative specification, where the information on card is passed using parameters
rather than by data access is:

AT M : if p = pin(c) []
?ic(c)→?ip(p),?ip(p)→!ok(c)

� [];

otherwise []
?ic(c)→?ip(p),?ip(p)→!err

� []

GA []
?ok(c)→!acc(num(c),bank(c))

� []

EP []
?err→err� []

Now we define the semantics of the components and of the connectors by means of
inference rules of the following form:

IU

IU : σ
B� w σ′

C1 : σ1
B1� w1σ′

1 . . . Cn : σ1
Bn� wnσ′

n
K

K(C1, . . . ,Cn) : σ
B� w σ′

In the (IU)-rule, IU is an atomic unit, w is a subset of the access variables of IU and

IU : σ
B� w σ′ means that (3) holds and that only the variables in w may have different

values in σ, σ′. In (K), K is a connector, K(C1, . . . ,Cn) denotes the component obtained

from C1, . . . ,Cn by means of K and σ
B� w σ′ is defined as a function of σ j

B j
� wj σ′

j.
If invocation and composition connectors are introduced by rules of the above kind, the
BSP semantic [C] of an atomic or composite component C can be defined as follows:

〈σ,B,σ′〉 ∈ [C] iff there is a judgement of the form C : σ
B� w σ′ provable by

the connector rules.

We remark that we decouple the BSP semantics [C] and the execution semantics of C.
The former specifies the expected behaviours, expressed by behaviour triples, whilst
the latter corresponds to the implemented behaviour. The two semantics are related by
the notion of correctness introduced before. The correctness of the basic components
is assumed. The one of the composed components is guaranteed as far as connectors
are correctly implemented, i.e., their execution preserves correctness. We assume that a
correct implementation is supplied by a composition environment CE , depending on the
programming language(s), the run time environment and the supported communication
mechanisms. We leave the notion of “successful test case” generic, to leave open the
choice of CE . For example, we could use CCS or the π-calculus as a formal CE . In
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this case we can define both test cases and components as processes, and we can define
successful test cases as particular kinds of “experiments” [13]. Alternatively, we could
define our CE using Petri Nets [18], or we could choose an informal CE such as Net
Beans. Finally, we could give an execution semantics based on our behaviours, in a way
similar to [2] for the internal π-calculus.

C1 : σ
B1� w1 σ′, C2 : σ

B2� w2σ′

par(C1,C2) : σ
B1

.∪B2� w1 ∪w2 σ′

C1 : σ
B1� w σ′

sel(C1,C2) : σ
1.B1� w σ′

C2 : σ
B2� w σ′

sel(C1,C2) : σ
2.B2� w σ′

C1 : σ
B1� w1 σ′, C2 : σ′ B2� w2σ′′,

pipe(p,C1,C2) : σ
B1|p|B2� w1 ∪w2 σ′′

C : σ
B
� w σ′

ra(C,g) : σ
B|g
� w σ′

C : σ
B
� w σ′

la( f ,C) : σ
f |B
� w σ′

B �∈ dom(p)

loop(p,C) : σ
B� w σ

C : σ
B1� w σ′, loop(p,C) : σ′ B2� wσ′′

loop(p,C) : σ
B1|p|B2� w σ′′

Fig. 10. The basic connectors and their semantics

In Fig. 10 we show a set of basic rules, in part inspired by constructive logic, in
particular by [12, 15]. In [15], information values are introduced. An information value
α : A for a formula A can be seen as a constructive explanation of the (classical) truth of
A and the rules of the related constructive calculus can be interpreted as truth preserv-
ing operations on the information values. Here, instead of information values we have
behaviour instances (BI) with attached properties. The BI can be seen as an explanation
of the attached properties in terms of the events making them true. The rules of the
connectors define the BSP of the composite in terms of the BSP of the components and,
according to the previous discussion on the CE , the connector execution is required to
realise the behaviour of the composite while preserving the correctness. The compo-
sition operations used in the rules are the following. For conciseness, we will briefly
comment on the similarity to the information-value logic (ivl) only for the first two.

– Disjoint Union (par rule). The disjoint union B
.∪ B′ is defined in the usual way [3].

The expected properties remain unchanged. In the par rule, we require also that
w1 ∩w2 = /0.

The par rule is similar to the (ivl) ∧-introduction rule. The latter takes two infor-
mation values α : A and β : B and builds 〈α,β〉 : A∧B. Similarly, par takes two BI
B1 for C1 and B2 for C2 and builds B1

.∪ B2 for par(C1,C2). In the par composition
the two components run independently, while preserving correctness. Indeed, no
further ordering is imposed in B1

.∪ B2 and the (possible) shared access variables
are not updated. There are other forms of parallel composition, involving fork and
join, not considered here for conciseness.
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– Prefixing (sel rules). The behaviour h.B(Q,R) is obtained by adding the prefix h
to the labels (?q becomes ?h.q and !r becomes !h.r). The sel rule is similar to
the (ivl) ∨-elimination. An information value for A∨B is of the form 1.α, with
α : A, or 2.β, with β : B. Roughly, ∨-elimination works as a case applying a suitable
function fA(α) or fB(β), depending on the index 1 or 2. Similarly, the selector
uses the index h to choose the right component to execute while maintaining the
correctness. If the signatures of the two components are disjoint, prefixing is not
necessary. Furthermore, since the selection is based on the requests, one can apply
prefixing only to the request part, as we will do in Section 4.1.

– Relabelling (left and right adapt la( f ,C) and ra(C,g)). Let B(Q,R) be a behaviour.
A left adaptor is based on an injective function f : Q′ → Q. It replaces every q in its
range by the q′ such that f (q′) = q. The expected properties of q′ must entail those
of q. We indicate by f |B the resulting behaviour. Dually, in B|g the right adaptor
relabels the results in the domain of g.

– Piping (pipe and loop rules). A pipe function p for B1(Q1,R1),B2(Q2,R2) is a par-
tial function p : R1 → Q2. We require that B2(Q2) is of the form B2(Q′

2)
.∪ B2(Q′′

2),
where Q′

2 is the range of p. The function p is used to pipe the results r ∈ dom(p) of
R1 into requests p(r) of B2(Q′

2), guaranteeing that if the expected property of r is
satisfied, then so is that of p(r). We say that p can be applied if for every linear ex-
tension S of B1(R1), there is a linear extension T of B2(Q′

2) such that λ(T ) = p(S),
where λ(T ) is the sequence of the labels of T and p(S) is that of the labels of
p(r) coming from the sub-sequence of S with labels from dom(p). Intuitively, this
means that the pipe connector sends the requests p(S) to C2. If p can be applied,
then the latter are accepted, since they arrive in the right order. Otherwise, we get
an abort result. The results with labels not in dom(p) and the requests of B2(Q′′

2)
are not piped. To obtain the composite behaviour B1|p|B2 we delete the piped
events (while reconstructing �, details omitted) and we further impose that the
requests of B1(Q1) precede those of B2(Q′′

2) and the non-piped result of B1 precede
those of B2.

– Sequencing. Sequencing may be defined as B1 ·B2 =de f B1|u|B2, where u is the
function with an empty domain or, more generally, a function such that dom(u)∩
R1 = /0. We remark that in piping (and hence in sequencing) the requests of B1

precede those of B2 and the results of B1 precede those of B2, but we do not require
that the results of B1 precede the requests of B2 to preserve control encapsulation.

– The loop rule of Fig. 10 is only one of the possible iterations. It halts when no result
belongs to the domain of p.

We conclude this section by briefly discussing the problem of the implementation in a
composition environment CE . The latter plays an important role in our approach. The
composition rules are used in the logical design phase, to meet the system’s require-
ments. They work at a very high level of abstraction since they compose the BSP of
components, rather than their implemented behaviours. The latter will be composed
by the CE . This may lead to inefficiency. In particular, our strictly compositional ap-
proach may introduce a huge number of composition levels, and therefore long delega-
tion chains, which may cause inefficiency. Our idea is that, once we have a satisfactory
logical design, we can optimise it by transformations supported by the CE . An example
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of transformation is shown in Fig. 12, where we use hierarchical Petri Nets to imple-
ment the connection rules.

4.1 Typing Connectors

The rules of the previous section give a precise compositional semantics for the con-
nectors. However, there are cases where the piping does not apply to any BSP instance
B2 of the second component. In this case, we say that the pipe aborts. We have a similar
situation in the loop rule, when we are not in the base case and the pipe of the step
aborts. To avoid aborts, we can type connectors. For simplicity, we do not consider here
the data access and we show a simplified set of rules, which work in the simpler cases.
Types are interpreted as sets of BSP instances and are built up from a family of basic
types, which depends on the atomic components, using the following operations: 6

– B1 ×p B2 = {B1
.∪ B2 | B1 ∈ B1,B2 ∈ B2}, 7 where we represent disjoint union

by 1.B1 ∪2.B2.
– B1 +B2 = {1.B1 | B1 ∈ B1}∪{2.B2 | B2 ∈ B2}
– B1 ·B2 = {B1 ·B2 | B1 ∈ B1,B2 ∈ B2}

Components are built starting from the atomic ones, using the connectors and the com-
positional semantics of the previous section. A judgement has the form C : Q ⇒ R,
where C is a component, Q a request type, and R a result type. It means that for every
B(Q,R) ∈ [C], the request part B(Q) belongs to Q and the result part B(R) belongs R,
and for every I ∈ Q, there is a B(Q,R) ∈ [C] such that B(Q) = I (= up to reindexing).
The rules are given in Fig. 11, where:

C1 : Q1 ⇒ R1 C2 : Q2 ⇒ R2

par(C1,C2) : Q1 ×p Q2 ⇒ R1 ×p R2

C1 : Q1 ⇒ R C2 : Q2 ⇒ R

sel(C1,C2) : Q1 +Q2 ⇒ R

C1 : Q1 ⇒ R1 ×p R ′
1 C2 : Q2 ×p Q′

2 ⇒ R2 p : R ′
1|Q′

2

pipe(p,C1,C2) : Q1 ·Q2 ⇒ R1 ·R2

C : Q ⇒ R +E p : R|Q
while(p1,C) : Q ⇒ E

C : Q ⇒ R g : R → R ′

ra(C,g) : Q ⇒ R ′
C : Q ⇒ R f : Q′ → Q

la( f ,C) : Q′ ⇒ R

Fig. 11. Typing connector composition

– The adaptors f and g are assumed to be chosen in a set of known adaptors such that
P( f (q)) entails P(q) and P(r) entails P(g(r)), where P(e) is the expected property
attached to e. We have problem domain adaptors and type adaptors. The former
transform basic types, the latter adapt the structure of the event terms of a BSP
instance B, according to the type of B. Examples are j1 : R → R +R ′ defined by
j1(!e) =!1.e and j2 : R ′ → R +R ′ defined by j2(!e) =!2.e.

6 For conciseness, we mix syntax and semantics.
7 Different kinds of parallel compositors C have different ×C .
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– The pipe function p : R ′
1|Q′

2 is such that for every R′ ∈ R ′
1, there is Q′ ∈ Q′

2 such
that R′ pipes to Q′. It is chosen in a set of known pipes for the types R ′

1,Q
′
2.

Like adaptors, pipe functions are required to maintain the expected properties.
We may have problem domain and type pipes. Examples of type pipes are e1 :
!B+!B′ →?B, defined by e1(!1.e) =?e and is1 :!B+!B′ →?B+?B′, defined by
is1(X) = j1(e1(X)). Both are partial (only the labels of the form 1.e are piped), but
e1 destructures 1.e into e while is1 leaves 1.e unchanged.

– The while connector is a special case of loop, defined by:

while(p,C) =de f ra(loop(p1,C),e2)

The pipe function p1 is defined by p1(1.r) = p(r), while p1(2.r) is undefined.
This guarantees that the loop halts when we get a result of the form 2.B, with
B ∈ E . The adaptor e2 eliminates the prefix 2, giving rise to B ∈ E . There are other
specialisation of loop, giving rise to components that transform an input stream
into an output stream. Here we do not discuss the issue of termination.

Now we discuss the application of typed rules in a hierarchical top-down or bottom-up
development. Let Q ⇒ R be a problem specification and CR be a component repos-
itory. To get a composed component C solving our problem, we look for a proof tree
applying the inference rules, with conclusion C : Q ⇒ R and assumptions containing
components of CR. In the bottom-up approach we start by applying the rules to com-
ponents chosen in CR, in such a way that the behaviour of the composites becomes
“nearer and nearer” to the wanted one. We stop when we reach it. Here the problem
is that it is difficult to establish what is “nearer”. On the other hand, in simple cases
a brute-force approach could work. The top-down approach is goal oriented. To solve
Q ⇒ R we have to choose one of the rules with a conclusion C : Q′ ⇒ R ′ matching
Q ⇒R. The premises of the rule contain the sub-problems. We stop the decomposition
process when we reach a sub-problem solved by a component of the repository. Rules
sel and par are top-down deterministic, i.e., the types of the premises are uniquely de-
termined by the one of the conclusion. The adaptor and while rules are top-down non
deterministic, because the types of the of the premises are determined by those of the
consequence and by the non-deterministic choice of the adaptor ( f , g) or type pipe (p)
function. Finally, the pipe rule is not purely top-down. Indeed, the types of the premises
depend also on the components we want to pipe. On the other hand, if we are looking
for a pipe, likely we have an idea of the components we want to pipe. We illustrate the
above discussion by an example.

Example 5. Let AT M and GA be the atomic components of Example 4 and let us assume
that we have to solve the problem specified by

ic(c) → ip(p) ⇒ err + acc(num(c),bank(c)) (4)

i.e., the user inserts card c and pin p and the component returns either err (operation
refused) or acc(num(c),bank(c)) (account number and bank of c). The types of ATM
and GA are shown below, where we omit ?, ! since on the left hand side of ⇒ we have
requests, and results on the right hand side:

AT M : ic(c) → ip(p) ⇒ err + ok(c)
GA : ok(c) ⇒ acc(num(c),bank(c))
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We observe that: the request type of the problem coincides with the one of the ATM
component; ok(c) pipes to ok(c) by the identity pipe I : Q|Q; and the result type of GA
entails the one of the problem. Thus it is reasonable to look for the following pipe

AT M : ic(c) → ip(p) ⇒ err +ok(c), C : err +ok(c) ⇒ err +acc(num(c),bank(c)), I

pipe(I,AT M,C) : ic(c) → ip(p) ⇒ err +acc(num(c),bank(c))

where C can be likely obtained from GA by the sel rule, as suggested by the + in its
result type. Indeed, our top down process can be continued until we reach the following
solution for C:

EP : err ⇒ err

ra(EP, j1) : err ⇒ err +acc(num(c),bank(c))

GA : ok(c) ⇒ acc(num(c),bank(c))

ra(GA, j2) : ok(c) ⇒ err +acc(num(c),bank(c))

sel(ra(EP, j1),ra(GA, j2)) : err +ok(c) ⇒ err +acc(num(c),bank(c))

where EP : err ⇒ err is a propagator. With request ?1.err, the selector sends ?err to
ra(EP, j1), which returns j1(!err) =!1.err. With request ?2.ok(c), ?ok(c) is sent to
ra(GA, j2), which returns !2.acc(n,b) (where n = num(c) and b = bank(c)).

As already remarked, our approach may introduce redundancies and many compo-
sition levels and this problem is to be solved at the composition environment level. We
conclude this section by an example on this issue.

Example 6. Let us assume to use Petri Nets as a EC. We label transitions by request
types (to fire, a transition waits for a mark) and places by result types (a place receives
a mark). A component is represented by a unique transition with an input place wait-
ing for requests and an output place receiving the results, as shown in Fig. 12. If a

R’Q’

(a) (b)

Q’ R’
e1 Ie2

RQ1 Q2

Q1+Q2 R

(c)

Fig. 12. Petri-net components and connectors

component is not atomic, its place can be exploded into type sub-nets, i.e., we have
a hierarchical representation of composites (Fig. 12 (b)). Connectors are net schemas,
with plugs for the components they connect. In Fig. 12 we show a plug (a) and the
sel connector (b). Composing means plugging the input and output places in the corre-
sponding connectors. Connectors and components are typed. The types of a connector
are parametric and a component can be plugged in only it its types match those of the
connector. For example, the type acc(db,c)+ err matches Q1 + Q2, where Q1,Q2 are
type variables.

Fig. 13(a) is the net representation of the proof-tree of (4). In Fig. 13(b) we show a
simplification of the net in (a), based on the fact that the pipe function I (for Identity)
maps x into x, EP is a propagator, and transitions e1(1.x) = x and j1(x) = 1.x compose
into is1(1.x) = 1.x (the latter simply controls that the form of the token is 1. . . .).
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GAe2

I

ATM

e1 EP

(a)

j1

j2 ATM e2 GA

is1

(b)

j2

Fig. 13. Petri-net simplification

5 Discussion and Concluding Remarks

The calculus for exogenous composition in Section 4 shows that exogenous compo-
sition supports hierarchical system construction. Control encapsulation allows us to
consider the request and result types separately. This facilitates both hierarchical de-
composition and composition of the functions of the system, while offering the facility
for specifying protocols. Types and inference rules for them make the calculus non ad
hoc. Indeed, we say that exogenous composition is both functional, i.e. it can be de-
fined explicitly as a function, and algebraic, i.e. it results in a unit of the same type as
the sub-units. A composition mechanism that is functional can be fully automated as
a composition operator, since it is fully defined. By contrast, a non-functional mecha-
nism can only be applied manually, since it requires glue. A composition mechanism
that is algebraic supports hierarchical (recursive) composition, since each composition
step yields a construct of the same type. Such mechanisms are most desirable since they
can constitute a component algebra [1]. By contrast, a non-algebraic mechanism cannot
support hierarchical composition, since each composition step may yield a construct of
a different type.

The calculus for software composition in [1] is also based on the π-calculus. How-
ever, it is not based on control encapsulation, and the composition mechanism is con-
nection. Units (called forms) are linked by scripts via their services. So the composition
mechanism is like architectural unit composition, using connection (with glue); it is
algebraic but non-functional.

In our calculus, we have chosen to stay at a very abstract level, to decouple the cal-
culus (meant to be used in the design phase) from the composition environment (in the
deployment phase) for implementing a design expressed in the calculus. Our study of
the latter is only at an initial stage. Some ideas come from [6], where connectors are
implemented in the formalism of hierarchical Petri nets [19]. Using Petri nets we do not
have a natural representation of streams, which can be treated in the calculus by means
of a special kind of loop connector. So we are considering the π-calculus as a candidate
for building a formal model of a composition environment. The advantage is that our
behaviours fit with a a restricted form of π-calculus. The fact that restricted forms of
process calculi give rise to a compositional semantics is not new [20, 2]. An example
is the internal π-calculus [2], which admits event structures [23] as a compositional
semantics [2], and has a simpler notion of equivalence than the full π-calculus. Inter-
estingly, the internal π-calculus comes with the idea of formalising internal mobility.
Our approach comes with the idea of control encapsulation, which allows us to give
a calculus for typed components where types have a “request-result” form Q ⇒ R,
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highlighting the functional behaviour of components. Event structures are posets with
a conflict relation. In our case, we have a further simplification and we use only posets.
We have not yet studied the possibility of extending our approach to event structures.

Our system is Turing complete using pipe, sel and while, and atomic units for succ
and ‘=’, over natural numbers. This shows that our calculus is powerful but undecid-
able. In particular, termination is undecidable and must be treated ad hoc. Iteration rules
that are not ad hoc and more controlled can be given, and we could argue that they are
sufficient for the purpose of building applications from components at a high granularity
level.

Finally, using the calculus will naturally lead to multiple levels of composition. So
it is important to be able to optimise such a design by simplifying the composition at a
particular level, or even reducing the number of levels. Here, the typed inference rules
should be able to offer useful help. For instance, ideas from proof-theory (in partic-
ular, cut elimination) would seem to be able to offer strategies for optimising a pipe
composition.
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